References

References#

[1]

David Goldberg. What every computer scientist should know about floating point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[2]

Bernard Widrow and István Kollár. Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge University Press, 2008.

[3]

David Griffiths. Introduction to Quantum Mechanics. Cambridge University Press, 3rd edition, 2018. ISBN 978-1107189638.

[4]

Eliot Marshall. Fatal error: how patriot overlooked a scud. Science, 255(5050):1347–1347, 1992.

[5]

S. H. Strogatz. Nonlinear Dynamics and Chaos. Chapman and Hall/CRC, 3rd edition, 2024. ISBN 978-0367026509.

[6]

J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Cambridge University Press, 3rd edition, 2020. ISBN 978-1108473224.

[7]

L. E. Ballentine. Quantum Mechanics - A Modern Development. World Scientific, 2nd edition, 2014. ISBN 978-9814578578.

[8]

Mary L. Boas. Mathematical Methods in the Physical Sciences. Wiley, 3rd edition, 2006.

[9]

Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.

[10]

Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1970. Table 25.2.

[11]

J. R. Taylor. Classical Mechanics. University Science Books, 2004.

[12]

Daniel D. Konowalow. Interatomic Potentials for HeNe, HeAr, and NeAr. The Journal of Chemical Physics, 50(1):12–16, 01 1969. doi:10.1063/1.1670768.

[13]

H. Goldstein. Classical Mechanics. Pearson, 3rd edition, 2001.

[14]

R. K. Pathria and P. D. Beale. Statistical Mechanics. Academic Press, 4th edition, 2021. ISBN 978-0081026922.

[15]

S. J. Blundell and K. M. Blundell. Concepts in Thermal Phyisics. Oxford University Oress, 2nd edition, 2009. ISBN 978-0199562107.

[16]

W. C. DeMarcus. Classical motion of a Morse oscillator. American Journal of Physics, 46(7):733–734, 07 1978. doi:10.1119/1.11110.

[17]

V. Astapenko and M. Mutafyan. The morse oscillator’s free motion as the one-dimensional analogue for the kepler problem. BiomedJ Sci & Tech Res, 47:38053, 2022. doi:10.26717/BJSTR.2022.47.007440 PDF.

[18]

Cooley, James W. and John W. Tukey. An algorithm for the machine calculation of complex fourier series. Math Comput, 19:297–301, 1965.

[19]

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[20]

Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in the west. Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology, September 1997. The source codes and manuals are available at \texttt http://www.fftw.org/.