San Diego meeting, July 2009

Optimal Processes within Stochastic Thermodynamics

and beyond

Udo Seifert

II. Institut für Theoretische Physik, Universität Stuttgart

Thanks to Tim Schmiedl (PhD thesis work)

- Intro: Classical vs Stochastic thermodynamics
- Optimization
 - directed processes
 - cyclic processes
 - * heat engines
 - * temperature ratchets
 - * biochemical machines: motor proteins
- beyond

• Thermodynamics of macroscopic systems [19th cent]

- First law energy balance:

$$W = \Delta E + Q = \Delta E + T \Delta S_M$$

- Second law:

 $\Delta S_{\text{tot}} \equiv \Delta S + \Delta S_M > 0$ $W > \Delta E - T \Delta S \equiv \Delta F$

$$W_{\text{diss}} \equiv W - \Delta F > 0$$

• Macroscopic vs mesoscopic vs molecular machines

[Bustamante et al, Physics Today, July 2005]

- Stochastic thermodynamics for small systems $\sqrt[4]{W} = \sqrt[4]{T,p} = \lambda_t = \lambda_t = 0$
 - driving: mechanical hydrodyn
- hydrodynamical (bio)chemical
 - First law: how to define work, internal energy and exchanged heat?
 - fluctuations imply distributions: $p(W; \lambda(\tau))$...
 - entropy: distribution as well?

• Nano-world Experiment: Stretching RNA

[Liphardt et al, Science **296** 1832, 2002.]

- distributions of W_{diss} :

- Stochastic thermodynamics applies to such systems where
 - non-equilibrium is caused by mechanical or chemical forces
 - ambient solution provides a thermal bath of well-defined ${\cal T}$
 - fluctuations are relevant due to small numbers of involved molecules

- Main idea: Energy conservation (1^{st} law) and entropy production (2^{nd} law) along a single stochastic trajectory
- Review: U.S., Eur. Phys. J. B 64, 423, 2008
- Precursors:
 - notion "stoch th'dyn" by Nicolis, van den Broeck mid '80s (on ensemble level)
 - stochastic energetics $(1^{st} law)$ by Sekimoto late '90s

—

• Paradigm for mechanical driving:

- Langevin dynamics $\dot{x} = \mu \underbrace{\left[-V'(x,\lambda) + f(\lambda)\right]}_{F(x,\lambda)} + \zeta \qquad \langle \zeta \zeta \rangle = 2\mu \underbrace{k_B T}_{(\equiv 1)}$
- external protocol $\lambda(\tau)$
- First law [(Sekimoto, 1997)]:

$$dw = du + dq$$

- applied work: $dw = \partial_{\lambda} V(x, \lambda) d\lambda + f(\lambda) dx$
- internal energy: du = dV
- dissipated heat: $dq = dw du = F(x, \lambda)dx = Tds_{m}$

• Experimental illustration: Colloidal particle in $V(x, \lambda(\tau))$

[V. Blickle, T. Speck, L. Helden, U.S., C. Bechinger, PRL 96, 070603, 2006] 15 (b)8 (a) 10 Potential Energy [k_BT] Energy [k_BT] $\delta [k_{\rm B} T]$ Ω (1)(3)(2) -10 0 ΔV

-15

5950

– non-Gaussian distribution \Rightarrow

6090

6020

Pulse Number

- Langevin valid beyond lin response

0.00 0.05 0.10 0.15

probability

[T. Speck and U.S., PRE 70, 066112, 2004]

- Stochastic entropy [U.S., PRL 95, 040602, 2005]
 - Fokker-Planck equation $\partial_{\tau} p(x,\tau) = -\partial_{x} j(x,\tau) = -\partial_{x} (\mu F(x,\lambda) - D\partial_{x}) p(x,\tau) \quad [D = \mu k_{B}T]$
 - Common non-eq **ensemble** entropy $[k_B \equiv 1]$ $S(\tau) \equiv -\int dx \ p(x,\tau) \ln p(x,\tau)$
 - Stochastic entropy for a single trajectory $x(\tau)$ $s(\tau) \equiv -\ln p(x(\tau), \tau)$ with $\langle s(\tau) \rangle = S(\tau)$

$$-\Delta s_{tot} \equiv \Delta s_{m} + \Delta s$$

$$- \left\langle \exp[-\Delta s_{\text{tot}}] \right\rangle = 1 \Rightarrow \left\langle \Delta s_{\text{tot}} \right\rangle \ge 0$$

* integral fluctuation theorem for total entropy production
* arbitrary initial state, driving, length of trajectory

• General integral fluctuation theorem

$$1 = \langle \exp[-q[x(\tau)] + \ln p_1(x_t)/p_0(x_0)] \rangle \quad \text{for any (normalized) } p_1(x_t)$$

• Jarzynski relation (1997)

• Optimal finite-time processes in stochastic thermodynamics

[T. Schmiedl and U.S., PRL 98, 108301, 2007]

– optimal protocol $\lambda^*(\tau)$ minimizes $\langle W \rangle$ for given λ_i, λ_f and finite t

• Ex 1: Moving a laser trap $V(x,\lambda) = (x - \lambda(\tau))^2/2$

 $-\lambda^*(au)$ requires jumps at beginning and end $\Delta\lambda = \lambda_f/(t+2)$

- gain $1 \ge W^*(t)/W^{lin}(t) \ge 0.88$

$$V(x,\lambda) = \lambda(\tau)x^2/2$$

- typical size of the jump

- might help to improve convergence of $\langle \exp(-W) \rangle$

- Underdamped dynamics: role of inertia
 - [A. Gomez-Marin, T.Schmiedl , U.S., J Chem Phys 129 024114 (2008)]

 $m\ddot{x} + \gamma x + V'(x,\lambda) = \xi$

- * jumps and delta-functions at the boundaries
- * $W^*/W^{lin} >> 1$ possible

• Heat engines at maximal power

 $- \eta_c \equiv 1 - T_c/T_h$ but zero power

- Carnot (1824)

- Curzon-Ahlborn (1975)

- efficiency at maximum power $\eta_{ca} \equiv 1 \sqrt{T_c/T_h}$
- universality(?)[cf van den Broeck, PRL 2005]
- what about fluctuations?

• Brownian heat engine at maximal power

[T. Schmiedl and U.S., EPL 81, 20003, (2008)]

Curzon-Ahlborn neither universal nor a bound

• Optimizing potentials for temperature ratchets

[F. Berger, T. Schmiedl, U.S., PRE **79**, 031118, 2009]

• Stochastic th'dynamics of a driven enzym with internal states

[T.Schmiedl, T.Speck and U.S., J. Stat. Phys. **128**, 77 (2007)]

$$-A_1 + n \stackrel{w_{nm}}{\underset{w_{mn}}{\stackrel{w_{nm}}{\Rightarrow}}} m + A_2 + A_3$$

mass action law kinetics:

$$- \frac{w_{nm}}{w_{mn}} = \frac{w_{nm}^0}{w_{mn}^0} [A_1] / [A_2] [A_3]$$

- First law along a trajectory $w = \Delta E + q$ for a single reaction step ?
 - chemical work: $w_{chem}^{nm} \equiv \mu_1 \mu_2 \mu_3$
 - internal energy: $\Delta E^{nm} \equiv E_m E_n$

- dissipated heat:
$$q^{nm} \equiv w_{\text{chem}}^{nm} - \Delta E^{nm} = \ln \frac{[A_1]}{[A_2][A_3]} \frac{w_{nm}^0}{w_{mn}^0} = \ln \frac{w_{nm}}{w_{mn}} w_{mn}$$

• Efficiency of molecular motors at maximum power

[T. Schmiedl and U.S., EPL 83, 30005, 2008]

– "Power stroke" ($\delta \simeq 0$) highest efficiency at max power

- η^* can increase beyond lin response regime ($\eta^* = 1/2$)

• beyond stochastic dynamics

[T. Schmiedl, E. Dieterich, P.S. Dieterich, U.S., J Stat Mech, P07013 (2009)]

- Hamiltonian dynamics
- Quantum dynamics

• Hamiltonian dynamics

$$- \partial_{\tau} \rho(x, p, \tau) = \left\{ \rho, p^2/2m + V(x, \lambda(\tau)) \right\}_{PB}$$

$$-\rho(x, p, \tau = 0) = \exp[-\beta(H - \mathcal{F})]$$

$$-\lambda_i
ightarrow \lambda_f$$
 in finite t

- adiabatic=quasistatic work $W^{ad} \neq \Delta F$

•
$$W = \left[\frac{\langle p \rangle^2}{2m} + \frac{k}{2} (\langle x \rangle - \lambda)^2 \right]_0^t$$

$$\Rightarrow W = 0 \text{ if } \langle p(t) \rangle = 0 \text{ and } \langle x(t) \rangle = \lambda$$

- only two conditions on $\lambda(\tau)$ \Rightarrow optimal protocol highly degenerate
- adiabatic work can be reached in $0 + \epsilon$ time (price: extreme λ -values)
- Hamiltonian dynamics beats Langevin evolution ($W^* \to W^{jp} = k \lambda_f^2/2$ for $t \to 0)$

• qualitatively similar for case II:

• Anharmonic potential $V(x,\lambda) = \lambda x^4/4$ $\lambda(0) = 1 \rightarrow \lambda(t) = 2$

- Fourier protocol better than linear

$$- W^*(0 + \epsilon) < W^{jp} = 0.25$$

$$-W^{ad}$$
 reached in finite time ??

• Improvement for Jarzynski estimate:

te:
$$V(x,\lambda) = \lambda x^4/4$$
 $\lambda = 1 \rightarrow 2$

• Schrödinger dynamics

$$-i\hbar \ \partial_t \rho = \left\{ \rho, p^2/2m + V(x, \lambda(t)) \right\}_-$$
$$\rho(t=0) = \exp[-\beta(H-\mathcal{F})]$$
$$\lambda_i = 0 \to \lambda_f \text{ in finite } t$$

- Talkner et al PRE 2008: p(W) depends only on $z \equiv \int_0^t \dot{\lambda}(t') e^{i\omega t'} dt'$

-z = 0 for an adiabatic transition

 $\Rightarrow W^* = W^{ad}$ for any t > 0 possible !

- case II similarly
- general case: open

- Conclusions and perspectives
 - Optimal protocols in stoch th'dynamics:
 - * directed processes: remarkable singularities
 - * cyclic processes: efficiency at max power
 - * optimization wrt other quantities like ΔS_{tot} ?

* ...

- Hamiltonian and quantum dynamics
 - * systematics beyond case studies?
 - * open quantum systems?
- Efficient algorithms for finding optimal protocols?