University of California San Diego \& Free University of Brussels

Efficiency of chemical energy extraction using entropy growth

Massimiliano Esposito

in collaboration with

Christian Van den Broeck and Katja Lindenberg

Introduction

Efficiency in thermodynamics: transform one form of energy into another

Optimal for reversible transformations (importance of strong coupling)

- however power output is zero!

At maximum power and close to equilibrium optimal efficiency is half that of a reversible transformation.
[1] C. Van den Broeck, Phys. Rev. Lett. 95, 190602, (2005).
[2] M. Esposito, K. Lindenberg and C. Van den Broeck, PRL 102, 130602 (2009).

We will consider chemical energy extraction using the configuration entropy of a growing copolymer.

This model has been studied in:
[3] C. H. Bennett, BioSystems 11, 85 (1979)
[4] D. Andrieux and P. Gaspard, PNAS 105, 9516 (2008) \& J. Chem. Phys. 130, 014901 (2009)

Copolymerization model

Thermodynamic description

Isothermal and isobaric open system:

$$
\begin{gathered}
G=U+P V-T S=H-T S=\sum_{i} \mu_{i} N_{i} \\
d_{i} S=-\frac{d G}{T}=-\frac{d H}{T}+d S=-\frac{\sum_{j} \mu_{j} d N_{j}}{T} \geq 0
\end{gathered}
$$

$$
\text { Entropy production } \quad \dot{S}_{i} \equiv \frac{d_{i} S}{d t}=A_{1} J_{1}+A_{2} J_{2}
$$

Kinetic description

Configuration entropy per monomer

$$
\begin{aligned}
D & =-\lim _{l \rightarrow \infty} \frac{1}{l} \sum_{\omega} P_{\omega} \ln P_{\omega} \\
& =-p \ln p-(1-p) \ln (1-p)
\end{aligned}
$$

Free enthalpy per monomer $T \epsilon$

$$
\frac{k_{+1}}{k_{-1}}=\frac{k_{+2}}{k_{-2}}=\exp \{-\epsilon\}
$$

Entropy production

$$
\dot{S}_{i}=(D-\epsilon) v=A v \geq 0
$$

Velocity of polymer growth $v=J_{1}+J_{2}=k_{+1}-k_{-1} p+k_{+2}-k_{-2}(1-p)$

Probability to insert monomer 1:

$$
\begin{array}{r}
p=\left(a-\sqrt{a^{2}-4\left(k_{-1}-k_{-2}\right) k_{+1}}\right) /\left(2\left(k_{-1}-k_{-2}\right)\right. \\
\text { where } a=k_{+1}+k_{+2}+k_{-1}-k_{-2}
\end{array}
$$

$$
\dot{S}_{i}=(D-\epsilon) v=A v \geq 0
$$

The model has two variables: ϵ and k_{+2}

Time rescaling
$\left(k_{+1}=1\right)$

$$
A, v>0 \text { if } \epsilon<\ln 2
$$

Equilibrium:

$$
\begin{aligned}
& A, v=0 \text { if } \epsilon=\ln 2 \\
& A, v<0 \text { if } \epsilon>\ln 2
\end{aligned}
$$

$0<\epsilon<\ln 2 \quad$ Entropy driven growth

$$
A=D-\epsilon
$$

$$
\epsilon<0 \quad \text { Enthalpy driven growth }
$$

$$
\dot{S}_{i}=(D-\epsilon) v=A v \geq 0
$$

Power
Efficiency

$$
\mathbb{P}=\epsilon v=(D-A) v \quad \quad \eta=\frac{\epsilon v}{D v}=\frac{D-A}{D}
$$

Linear regime: $\quad v=L A+\mathcal{O}\left(A^{2}\right)$

Equilibrium: $A \rightarrow 0$

$$
\eta \rightarrow 1
$$

$$
\mathbb{P} \rightarrow 0
$$

Efficiency at maximum power: $\partial_{A} \mathbb{P}=0$ $\eta \rightarrow 1 / 2$

Conclusions

Our model illustrates how chemical energy can be extracted from the environment using configuration entropy

A regime of linear response exists but fails to accurately describe the efficiency at max power (no universality close to equilibrium)

A nonlinear branch occurs far from equilibrium along which entropy production increases while affinity decreases. Power, velocity, efficiency, entropy production become bi-valued functions of the affinity.

