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Figure S3. IME1 and IRT1 expression analysis inMATa haploid single cells.

Representative images of IME1 (green) and IRT1 (red) transcripts in MATa haploid cells

(A10931) detected by RNA fluorescence in situ hybridization (FISH) (see materials and methods

for details). DNA is shown in blue. Samples were taken from cells grown to saturation in YPD or

in SPO medium for 0, 30 min, 1, 2 and 4 hours.
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Predictive understanding of cell biological 
systems through kinetic analysis



Biology is governed by combinatorial complexity

the tails are frequently modified with a single acetyl or methyl group, and
arginines are found to be modified with one, two, or three methyl groups
(Fig. 8-40). Similarly, serines and threonines (and one tyrosine) are subject
to modification with phosphate. Although less common, other modifica-
tions with larger moieties including ADP-ribose and the small proteins
ubiquitin and sumo are also found attached to histones.

Importantly, specific modifications are associated with histones
involved in different cellular events. For example, acetylation of lysines
at positions 8 and 16 of the histone H4 amino-terminal tail is associated
with the start sites of expressed genes, but acetylation at lysines 5 and 12
is not. Instead, acetylation of these other lysines (5 and 12) marks newly
synthesized H4 molecules that are ready to be deposited onto DNA as
part of a new nucleosome. Similarly, methylation of lysines 4, 36, or 79
of histone H3 typically is associated with expressed genes, whereas meth-
ylation of lysines 9 or 27 of the same histone frequently is associated with
transcriptional repression. The observation that particular histone modifi-
cations have a high probability of occurring at specific functional regions of
chromatin (e.g., transcription start sites) has led to the hypothesis that his-
tone tail modifications constitute a biological code that can be written,
read, and erased by specific proteins in the cell. For a full discussion of
this hypothesis, see Box 19-5.

How does histone modification alter nucleosome function? One obvious
change is that acetylation and phosphorylation each acts to reduce the over-
all positive charge of the histone tails; acetylation of lysine neutralizes its
positive charge (Fig. 8-41). This loss of positive charge reduces the affinity
of the tails for the negatively charged backbone of the DNA. More impor-
tantly, modification of the histone tails affects the ability of nucleosome
arrays to form more repressive higher-order chromatin structure. As we
described above, histone amino-terminal tails are required to form the
30-nm fiber, andmodification of the tailsmodulates this function. For exam-
ple, consistentwith the association of some types of acetylatedhistoneswith
expressed regions of the genome, acetylation of the H4 amino-terminal tail
interferes with the ability of nucleosomes to be incorporated into the

F I G U R E 8-39 Modificationsof thehis-
tone amino-terminal tails alters the func-
tion of chromatin. The sites of known his-
tone modifications are illustrated on each
histone. Although the types of histonemodi-
fications continue togrow, for simplicity, only
sites of acetylation, methylation, phosphory-
lation, and ubiquitinylation are shown. The
majority of these modifications occur on the
tail regions,but thereareoccasionalmodifica-
tions within the histone fold (e.g., methyla-
tion of lysine 79 of histone H3). (Adapted,
with permission, from Alberts B. et al. 2002.
Molecular biology of the cell, 4th ed., Fig.
4-35. # Garland Science/Taylor & Francis
LLC; and, with permission, from Jenuwein
T. and Allis C.D. 2001. Science 293: 1074–
1080, Figs. 2 and 3.# AAAS.)
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Biology is governed by combinatorial complexity
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Use predictive modeling and 
experimental design to address 

biological complexity and 
molecular mechanism

in health and disease state



Many physical systems are deterministic and 
models are very predictive

radio

Radio Simple model Model simulation and prediction

Homogeneous / Deterministic: variance in experimental data is lower than variance in measurement



Fundamental differences in modeling cells in 
comparison to physical objects

radio

Radio Simple model Model simulation and prediction

Homogeneous / Deterministic: variance in experimental data is lower than variance in measurement

Heterogeneous / Stochastic: variance in experimental data is higher then variance in measurement

Yeast Stem Cells

Hanahan, Weinberg, Cell, 2000; Elgar et al, Nature 2010; Bumgarner, Neuert, et al., Mol. Cell 2012; Van Werven, Neuert et al., Cell, 2012 



How to practically approach 
predictive modeling in biology?



Yeast are a great model organism for modeling

Kristen L. et. Al. Nature Reviews Molecular 
Cell Biology, 2002

Yeast
Stress response

Osmotic
Heat 
pH
Oxidative

1. Many fundamental biological processes are conserved from 
yeast to human and have been first discovered in yeast 
(many Nobel prizes).

2. Yeast cells are much smaller then mouse or human cells 
which allows to image the same data in 1 day instead of 10-
30 days at the same resolution.

3. Yeast cell cycle (90 min) vs mouse/ human cells (16 – 48h) 
=> faster turnaround.

4. Yeast genetics is still much more controlled, efficient and 
cheaper then CRISPR in mouse or human cells.



Yeast are a great model organism for modeling

Kristen L. et. Al. Nature Reviews Molecular 
Cell Biology, 2002

Yeast
Stress response

Osmotic
Heat 
pH
Oxidative

1. Many fundamental biological processes are conserved from 
yeast to human and have been first discovered in yeast 
(many Nobel prizes).

2. Yeast cells are much smaller then mouse or human cells 
which allows to image the same data in 1 day instead of 10-
30 days at the same resolution.

3. Yeast cell cycle (90 min) vs mouse/ human cells (16 – 48h) 
=> faster turnaround.

4. Yeast genetics is still much more controlled, efficient and 
cheaper then CRISPR in mouse or human cells.

5. What is a representative normal human cell?

6. How do we know results are not tissue or disease specific 
but rather of general interest?

7. What is a biological replica in a patient sample?

8. Are cell lines more informative then yeast cells?

9. Do we want to cure mice or humans?

10. We are interested in understanding fundamental 
questions of how to model biological systems.



Single cell approaches to quantify signal 
transduction and transcription

Signal transduction Transcription

Fluorescent in-situ hybridization 
with single molecule resolution

Live cell time lapse microscopy

Target mRNA

30 – 60 probes, 20nt each 
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Osmotic stress / NaCl



Endogenous mRNA expression of the STL1 gene

Yeast cell boundary

DAPI stained nucleus

STL1 mRNA

5µm

0 4 8 12 16 30 40 50  min

3 genes
2 different conditions
WT and three mutants
each 16 time points 
2-3 biological replica
~ 160.000 cells

Homogeneous signal transduction results in 
heterogeneous transcription

Hog1

Neuert, Munsky, et al., 
Science 2013



FSP: Solving the stochastic chemical master equation

Determine Probability density of the gene regulatory model: 
Pi,m = P(state = i, mRNA = m)

Solve chemical master equation: description of the probabilities over time

State 1 State 2 State 3

OFF ON‘COMPETENT’

Solving CME very fast with finite state projection
Munsky et al., JCP, 2006; Munsky, Fox, Neuert, Methods, 2015; Fox, Neuert, Munsky, JCP, 2016

In collaboration with:

Dr. Brian Munsky
Assistant Professor

Colorado State University



Objective identification of predictive model

NaCl

No. of mRNA Experimental mRNA distributions , two replica
Fit best 4 - state model (1 kinase, k21) 
Prediction best 4 - state model (1 kinase, k21)
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Munsky et al., JCP, 2006; Neuert, Munsky, et al., Science 2013; 
Munsky, Fox, Neuert, Methods, 2015; Fox, Neuert, Munsky, JCP, 2016
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Chromatin mutants modulate specific rates

Neuert, Munsky, et al., Science 2013 Vikki et al., Nature Reviews Genetics, 2010

Jason Hughes Rohit Venkat

Poster 17, 21
Ben Kesler



Hanahan, Weinberg, Cell, 2000

Are single cell experiments 
more predictive than cell 
population experiments?

Guoliang Li, 
Post-doctoral fellow
Vanderbilt University

Dr. Brian Munsky
Assistant Professor

Colorado State University

Zachary Fox
Graduate Student

Colorado State University



Single cell data contains information on the mean, 
variance, fraction of cells and full distribution

mRNA 
Molecules
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ONOFF

Munsky et al., PNAS, 2018



Single cell data contains information on the mean, 
variance, fraction of cells and full distribution

mRNA 
Molecules
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y

Mean

Variance

ONOFF

Same 
Experiments

Same
Model

Modeling 
Assumption

Mean 1. Moment of 
the distribution Central Limit 

Theorem 
needs to be 

fulfilledVariance 2. Moment of 
the distribution

ON-Fraction From FSP No assumption 
on the shape 

of the 
distributionDistribution FSP

Munsky et al., PNAS, 2018



Single cell experimental and modeling framework
Hog1
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Good fits do not result in good predictions
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Fitted distribution result in superior 
predictions of nascent transcription

Number of Nascent STL1 mRNA per TS
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Inferred parameters are highly reproducible
Parameter comparison (within 8%): Degradation rate

gSTL1 = 4.9E-3 1/s (Neuert et al. Science 2013)

gSTL1 = 5.3E-3 1/s (Munsky et al., PNAS, 2018)

gCTT1 = 2.0E-3 1/s (Neuert et al. Science 2013)

gCTT1 = 2.1E-3 1/s (Munsky et al., PNAS, 2018)

Based on:
New geographic location
New lab
New microscope
Different yeast strain
New reagents
New person doing the experiment
Improved image processing software



Why are single cell experiments 
more predictive than cell 
population experiments?



Quantify contribution to bias and uncertainty of 
parameter estimation in modeling



Quantify contribution to bias and uncertainty of 
parameter estimation for different models / data

Change in uncertainty

Change in bias



Distributions reduce bias and uncertainty

Number of Nascent STL1 mRNA per TS
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Using Markov Chain Monte Carlo 
simulation with Metropolis 
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parameter distribution)
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Why is there such a strong bias 
in parameters using moments

instead of distributions?



Using moments requires that the Central Limit 
Theorem is fulfilled

The central limit theorem (CLT) states that if one makes sufficiently many 
quantitative observations from the same underlying distribution then the 
average of those observations would be normally distributed with a 
deviation given by the standard error of the mean.

Population 
distribution

Sampling distribution 
of the mean from 
5 measurements

Sampling distribution 
of the mean from 
30 measurements

Number of proteins

Mean number 
of proteins

Mean number 
of proteins



Nonsymmetrical distributions require more 
measurements to satisfy the CLT

Population 
distribution

Sampling distribution 
of the mean x from 
5 measurements

Sampling distribution 
of the mean from 
30 measurements

x - Number of proteins

x - Mean number of proteins

x - Mean number of proteins

Mean number 
of proteins



Nonsymmetrical distributions are a result of high 
expressing cells violating the CLT

Data

Theoretical model mean using the FSP parameters

Calculated median from 100 stochastic simulations from FSP 

100 Stochastic simulation of 200 cells each from FSP 
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Nonsymmetrical distributions due to outlier cells 
require very large number of cells to fulfill the 
Central Limit Theorem (CLT), which is a 
requirement to apply mean, variance or higher 
moment approximations
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General implications for identification of parametric model 
from any positive nonsymmetricly distributed data set

Flow cytometry data

Brodin, P. & Davis, M. M.,  Nat Rev Immunol 17, 21–29 (2017).

High expressing cells:
• Mammalian cells
• High expressing rare 

cells 
• Mutant cells 
• Rare cell type
• Different genotype
• Resistant individual



Model inference from means or variances result in 
biased parameter sets and poor predictions because 

data is positive and non-symmetrical distributed 
and therefor modeling assumptions are violated 

and not only because of over fitting 

Take home message



Biology is governed by dynamic pocesses

the tails are frequently modified with a single acetyl or methyl group, and
arginines are found to be modified with one, two, or three methyl groups
(Fig. 8-40). Similarly, serines and threonines (and one tyrosine) are subject
to modification with phosphate. Although less common, other modifica-
tions with larger moieties including ADP-ribose and the small proteins
ubiquitin and sumo are also found attached to histones.

Importantly, specific modifications are associated with histones
involved in different cellular events. For example, acetylation of lysines
at positions 8 and 16 of the histone H4 amino-terminal tail is associated
with the start sites of expressed genes, but acetylation at lysines 5 and 12
is not. Instead, acetylation of these other lysines (5 and 12) marks newly
synthesized H4 molecules that are ready to be deposited onto DNA as
part of a new nucleosome. Similarly, methylation of lysines 4, 36, or 79
of histone H3 typically is associated with expressed genes, whereas meth-
ylation of lysines 9 or 27 of the same histone frequently is associated with
transcriptional repression. The observation that particular histone modifi-
cations have a high probability of occurring at specific functional regions of
chromatin (e.g., transcription start sites) has led to the hypothesis that his-
tone tail modifications constitute a biological code that can be written,
read, and erased by specific proteins in the cell. For a full discussion of
this hypothesis, see Box 19-5.

How does histone modification alter nucleosome function? One obvious
change is that acetylation and phosphorylation each acts to reduce the over-
all positive charge of the histone tails; acetylation of lysine neutralizes its
positive charge (Fig. 8-41). This loss of positive charge reduces the affinity
of the tails for the negatively charged backbone of the DNA. More impor-
tantly, modification of the histone tails affects the ability of nucleosome
arrays to form more repressive higher-order chromatin structure. As we
described above, histone amino-terminal tails are required to form the
30-nm fiber, andmodification of the tailsmodulates this function. For exam-
ple, consistentwith the association of some types of acetylatedhistoneswith
expressed regions of the genome, acetylation of the H4 amino-terminal tail
interferes with the ability of nucleosomes to be incorporated into the

F I G U R E 8-39 Modificationsof thehis-
tone amino-terminal tails alters the func-
tion of chromatin. The sites of known his-
tone modifications are illustrated on each
histone. Although the types of histonemodi-
fications continue togrow, for simplicity, only
sites of acetylation, methylation, phosphory-
lation, and ubiquitinylation are shown. The
majority of these modifications occur on the
tail regions,but thereareoccasionalmodifica-
tions within the histone fold (e.g., methyla-
tion of lysine 79 of histone H3). (Adapted,
with permission, from Alberts B. et al. 2002.
Molecular biology of the cell, 4th ed., Fig.
4-35. # Garland Science/Taylor & Francis
LLC; and, with permission, from Jenuwein
T. and Allis C.D. 2001. Science 293: 1074–
1080, Figs. 2 and 3.# AAAS.)
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Protein complexes

Disease mutations /
Cell types

Genotype / 
Phenotype

Pathway complexity



Cell environments in humans change kinetically 



Majority of current biomedical research focuses 
on static environments



Multidisciplinary approach to study dynamic cell 
signaling and gene regulation

Computational 
biology

cells measured in constant environments 



Are biological mechanisms 
and phenotypes specific to 

kinetic environments? 



How do human cells respond to 
kinetic environments?



Why are kinetic environments 
more informative to built predictive 

models?
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