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Abstract. – We illustrate the Jarzynski equality on the exactly solvable model of an ideal gas
in uniform expansion or compression. The analytical results for the probability density P (W )
of the work W performed by the gas are compared with the results of molecular dynamics
simulations for a two-dimensional dilute gas of hard spheres, a prototype for a real, slightly
non-ideal gas.

Exactly solvable models play an important role in statistical mechanics. They complement
and verify results that are derived from general and usually abstract arguments, while at the
same time they offer insight and intuition. They are particularly useful in far-from-equilibrium
situations, for which few generic exact results are available. In this letter, we focus on a
remarkable result in nonequilibrium statistical mechanics, namely the Jarzynski equality [1,2],
which has given rise to a certain amount of confusion about its validity and interpretation [3].
The Jarzynski equality relates the statistics of the amount of work W performed by a system
in a nonequilibrium transition between two equilibrium states, to the difference in the free
energies of these states, as

〈exp[βW ]〉 = exp[−β∆F ], (1)

where W is the work delivered by the system(1) upon varying an external control parameter
following a specified schedule between an initial and a final value, starting from an initial
state of the system sampled from a canonical distribution at temperature T (β−1 = kBT ).
W is a random variable due to the sampling of the initial state. The first surprise is that
the above specified average 〈. . .〉 with respect to W is independent of the schedule according
to which the control parameter is changed between the specified initial and final values. In
particular it is independent of whether this schedule keeps the system close to equilibrium
(quasi-static transformation) or whether it entails large deviations from equilibrium. As a
consequence, the average is expressed in terms of the difference ∆F in free energy of the
canonical equilibrium states at temperature T at the final and initial values of the control
parameter, respectively. The second surprise is then that the equilibrium quantity ∆F can be
obtained by an ensemble average over nonequilibrium measurements. Finally and foremost,
the appearance of an equality in far-from-equilibrium dynamics is very surprising. In fact, the

(1)In Jarzynski’s original paper and most of the references in [1], W is the work done on the system. Thus
the sign of W in the present letter is opposite to that used in these papers.
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equality (1) leads, upon application of the Jensen inequality, to the familiar inequality 〈W 〉 �
Wrev = −∆F , corresponding to the formulation of the second principle of thermodynamics
for a system in contact with a heat bath.

Our purpose here is to verify and complement the discussion of the Jarzynski equation
by deriving the analytic expression of the probability density P (W ) for the work W in a
system with Newtonian dynamics. We will consider the so-called Jepsen gas, for which a
number of other exact equilibrium and nonequilibrium results have been derived [4]. The
Jepsen gas consists of N identical point particles of mass m moving on a line and undergoing
perfectly elastic collisions. Actually, since the speeds are merely exchanged upon collision,
and the identity of the particles is irrelevant, the same model can represent an ideal gas in
which particles do not interact with each other. We consider a system initially at thermal
equilibrium at temperature T , i.e., the particles are uniformly distributed in the interval
[−L, 0], and their velocities are randomly and independently chosen from the Maxwellian
distribution φ(u) =

√
mβ/2π exp[−βmu2/2]. The right-hand side of the interval is formed

by a piston of infinite mass, which is moved according to a specified schedule. Although
more complicated situations can be considered, we will concentrate on the case of a piston
moving at a constant velocity V (positive or negative, i.e., corresponding to gas expansion or
compression, respectively), from the initial position X = 0 to the final position X = V t.

A similar “ideal gas” model has been discussed by Lua and Grosberg [5]. In their more
academic setup, the system size is finite, and correlated recollisions of the particles with the
piston are allowed and contribute to the work distribution function. In contrast, we are
studying here the so-called thermodynamic limit of an infinite system, with L → ∞, N → ∞
and fixed density n = N/L, which is a more relevant physical limit. In this limit, recollisions
of particles with the piston are no longer possible for the considered schedule, and the gas
acquires properties of an irreversible system. Lua and Grosberg also investigated a system of
large volume, but their results are limited to short-time behavior, where only a single particle
collides with the piston. Our present results are more general, and agree with their findings
in the short-time limit. Furthermore, the results of the present model are compared with
molecular dynamics simulations for dilute hard-disk gases, as prototypes of real, slightly non-
ideal systems. The formalism we are proposing can be put in parallel with the mean-field
approximation of the general theory developed by Ritort and later on by Imparato et al. [1].

To evaluate W , we first note that a particle of velocity ui > V colliding with the piston
will recoil with the velocity u′i = 2V − ui. Hence there is an energy transfer in the interval
[0, t] from this particle to the piston given by ∆Wi = 2mV (ui − V )θ(xi + uit − V t), where
the Heaviside θ function expresses that the collision between the particle (with initial position
xi < 0 and velocity ui) and the piston has to take place before time t. We conclude that
the probability to have a total energy transfer W from the gas to the piston during the time
interval [0, t] is given by

P (W ) =
〈
δ

(
W −

N∑
j=1

∆Wj

)〉
0

=

〈∫ ∞

−∞

dk
2π

exp


ik


W −

N∑
j=1

∆Wj







〉
0

=
∫ ∞

−∞

dk
2π

exp[ikW ] 〈exp[−ik∆Wj ]〉N0

=
∫ ∞

−∞

dk
2π

exp
[
ikW − nt

∫ ∞

V

du (u− V )φ(u)
[
1 − exp [−2ikmV (u− V )]

]]
. (2)

The average 〈. . .〉0 is taken over the distribution of the initial positions and velocities of the
particles. Note that we have not taken into account recollisions of the particles with the
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Fig. 1 – Profiles of the nonsingular part of P (w) for various velocities v of the piston at a fixed
time τ = 5 (left: gas compression; right: gas expansion). The area below the curves represents the
probability to have a nonzero value of w and is equal to [1 − exp[−τC0]]. The graphs illustrate the
agreement between analytical calculations (solid lines) and molecular dynamics simulations results
(dashed lines), see the main text.

piston, hence only the final line, in which the thermodynamic limit has been taken, gives the
exact result for P (W ).

The schedule under consideration can be conveniently characterized by the following two
dimensionless variables: v = V (βm/2)1/2 and τ = nt/(2mβ)1/2, which are, essentially, the
velocity of the piston measured in terms of the thermal speed of the gas particles, and the
average number of collisions during the considered time interval [0, t] for a stationary piston.
In terms of the scaled work w = βW , the expression (2) for the probability density becomes

P (w) =
∫ ∞

−∞

dq
2π

exp [iqw − τC(q)] , (3)

where the function C(q) can be written as the sum of two parts, C(q) = C0 + C̃(q). The
“collisionless” part, C0 = 1/

√
π exp[−v2] − v erfc(v) (where erfc(. . .) is the complementary

error function) corresponds to the absence of collisions between the gas particles and the
piston, i.e., when no work is performed. This leads to a singular contribution exp[−τC0] δ(w)
in the expression (3) of P (w). This contribution is exponentially decaying with respect to
the scaled time τ , while the damping exponent C0 is a rapidly decaying function of v. The
second part,

C̃(q) = v(1 + 2iq) erfc [v(1 + 2iq)] exp
[
v2(1 + 2iq)2 − v2

] − 1/
√
π exp

[−v2
]

(4)

is determined by the collisions between the gas particles and the piston, and leads to a mono-
modal nonsingular contribution to P (w), as illustrated in figs. 1, 2, and 4.

Based on this exact result, we first turn to the explicit verification of the Jarzynski equality.
One has

〈exp[βW ]〉 = 〈exp[w]〉 =
∫ ∞

−∞

dq
2π

exp[−τC(q)]
∫ ∞

−∞
dw exp[iqw + w]

= exp[−τC(i)] = exp[2τv] = exp[ntV ]. (5)

On the other hand, the change in the equilibrium free energy of the ideal gas due to the
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Fig. 2 – Profiles of the nonsingular part of P (w) at different times τ for fixed velocities of the piston,
v = 1 (left) and v = −0.1 (right). Note the evolution from a highly asymmetric profile at short
times, eq. (12), to an asymptotic Gaussian shape with mean and standard deviation given by eqs. (8)
and (9), respectively.

variation of its volume is a purely entropic factor given by

exp[−β∆F ] =
(
L + V t

L

)N thermodynamic limit−−−−−−−−−−−−−−−−−→ exp[ntV ], (6)

so that the Jarzynksi equality (1) is indeed reproduced.
We next examine the characteristic properties of P (w). While an explicit evaluation of

the Fourier transform (3) appears to be difficult, one can easily obtain exact results for the
moments using the characteristic function of the probability density, namely

G(q) = 〈exp[−iqw]〉 =
∞∑

n=0

(−iq)n

n!
〈wn〉 = exp[−τ C(q)]. (7)

In particular, one obtains the mean value of the transferred energy

〈w〉 = 2vτ
[
(1 + 2v2) erfc(v) − 2/

√
π v exp

[−v2
]]

, (8)

that increases linearly with time and has a maximum as a function of v (see fig. 3). The
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Fig. 3 – The mean value of the energy transfer per unit time 〈w〉/τ , and, in inset, (〈w〉 − wrev)/τ ,
both as a function of v. Note that 〈w〉 � wrev, in agreement with the second law of thermodynamics.
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Fig. 4 – Profiles of the nonsingular part of P (w) for a fixed value of |wrev| = 2|v|τ = 20 and different
velocities v of the piston (left: compression, right: expansion). The inset shows the same plots for
faster compression. The arrows indicate the theoretical means, eq. (8). The theoretical results (solid
lines) agree qualitatively with the computer simulation (dashed lines). Quantitative disagreement for
fast compression and slow expansion are presumably due to recollisions and finite-size effects.

centered moments of second through fourth order are

σ2 = 〈w2〉 − 〈w〉2 = 8v2τ
[
2/
√
π (1 + v2) exp

[−v2
] − v(3 + 2v2) erfc(v)

]
, (9)

〈(w − 〈w〉)3〉 = 16v3τ
[
(3 + 12v2 + 4v4) erfc(v) − 2/

√
π v (5 + 2v2) exp

[−v2
] ]

, (10)

〈(w−〈w〉)4〉 = 3σ4+64v4τ
[
2/
√
π (4+9v2+2v4) exp

[−v2
]−v (15+20v2+4v4) erfc(v)

]
. (11)

The explicit analytical expression of P (w) can be derived in specific limits.
i) In the limit of large number of collisions τ � 1, the work is the sum of a large number of

independent contributions. One finds, in agreement with the central limit theorem, that the
distribution function P (w) converges to a Gaussian. The mean and standard deviation are
given by eqs. (8) and (9). The skewness γ3 = 〈(w − 〈w〉)3〉/σ3 = O(τ−1/2) and the kurtosis
γ4 = 〈(w − 〈w〉)4〉/σ4 − 3 = O(τ−1) decay to zero.

ii) For the limit of small number of collisions τ 	 1, the moment-generating function
reads G(q) ≈ 1 − τC(q), hence

P (w) ≈ (1 − τC0)δ(w) +
τ

8
√
πv2

|w| exp
[
−

( w

4v
+ v

)2
]
θ(wv) , (12)

corresponding to an asymmetric probability density profile (compare, for v > 0, with eq. (18)
from ref. [5] for the case of a single particle, n = 1/L).

iii) The quasi-static limit. The reversible work Wrev delivered by the ideal gas during an
expansion over a distance ∆x is P∆x, with the pressure P given by nkBT . This result has
to be compared with the irreversible expansion at a finite speed V over the same distance,
i.e., ∆x = V t. In terms of the previously introduced dimensionless variables, this implies
wrev = 2vτ . This result is indeed recovered in the limit |v| 	 1, since C(q) ≈ 2viq, and
P (w) ≈ δ(w−wrev). By including a first-order correction, C(q) ≈ 8v2q2/

√
π+2viq(1−4v/

√
π),

the probability density P (w) assumes a Gaussian profile, with mean and variance:

〈w〉 ≈ wrev − 8τv2/
√
π, σ2 ≈ 16τv2/

√
π. (13)
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Table I – Comparison of the mean values and higher moments obtained from the molecular dynamics
simulations with analytical results (values in parentheses), for different values of the velocity v of the
piston and a fixed value of |wrev| = 2|v|τ = 20. The agreement is satisfactory, except for a few cases,
cf. the discussion in the main text.

v Mean Variance Skewness Kurtosis v Mean Variance Skewness Kurtosis

0.01
19.8 0.25 0.015 0.0016 −0.01 −20.60 0.26 −0.014 0.0041
(19.6) (0.88) (0.057) (0.0036) (−20.46) (0.93) (−0.055) (0.0035)

0.1
14.5 5.42 0.18 0.013 −0.1 −21.75 8.42 −0.14 0.030
(15.9) (6.88) (0.20) (0.044) (−24.92) (11.71) (−0.16) (0.029)

1.0
1.07 3.37 2.09 5.06 −1.0 −97.47 585.8 −0.25 0.044
(1.13) (3.50) (2.03) (4.81) (−118.9) (803.5) (−0.27) (0.077)

Note that the Jarzynski equality, eq. (1), implies that for a Gaussian distribution the
fluctuation-dissipation ratio

R =
σ2

2(wrev − 〈w〉) (14)

is equal to 1. This is indeed the case in the quasi-static limit, cf. eq. (13), but not in the
long-time limit, cf. eqs. (8) and (9). The origin of this problem can be traced back to the
contribution of large deviations to the Jarzynski average: this average corresponds to the
characteristic function evaluated at the complex unit, G(q = i), cf. eqs. (5) and (7). Even
when higher-order cumulants converge to zero for the rescaled variable (w − 〈w〉)/σ (central
limit theorem), there is no guarantee that the contribution of the non-Gaussian tails can be
neglected in the Jarzynski average. Hence the application of the Jarzynski equality using a
Gaussian ansatz is not reliable and can lead, in a numerical or real experiment where a Gaus-
sian distribution is observed, to an erroneous value of the corresponding free energy difference.

We finally turn to the practical and experimental relevance of the Jarzynski equality. In
particular one may wonder to which extent the above ideal-gas results are representative of
experimentally accessible measurements in a dilute gas. As a first step in answering this ques-
tion, we have performed extensive molecular dynamics simulations of a dilute two-dimensional
gas of hard disks. Note that such simulations allow to investigate parameter regions of high
piston speed and short times which may be difficult to reach in experiment. The obtained
simulation results represent an average over a half million runs, for a dilute hard disk gas
with N = 2000 disks (diameter d = 1, mass m = 1). The initial positions and velocities of
the disks are sampled from a microcanonical ensemble in a cylinder of length L = 104 and
cross-section S = 102 (i.e., initial gas density ρ = 0.002), and initial “temperature” T = 1.
Extra caution was taken to reduce correlations between samples. To compare the results with
the one-dimensional model, the effective projected density n = ρS has to be used.

A systematic comparison between analytical and simulation results was performed for a
wide range of values of the speed v and of time τ , cf. figs. 1 and 4 for an illustration. Overall,
the analytical and the simulation results agree qualitatively. In particular, the progressive
change in the general shape of the probability distribution from adiabatic to non-adiabatic
regime is well reproduced by the numerics. The comparison of moments given in table I
confirms this agreement. There are, however, some notable discrepancies, namely for the
mean and variance for the compression case (v < 0) and the variance for the slow piston
(|v| = 0.01 in table I and fig. 4). These deviations can be explained by the fact that the
molecular dynamics simulation deviates in two basic assumptions from the analytical model,
namely the ideality of the gas and the thermodynamic limit. Although a rather low density
is used, recollisions of the gas particles with the piston are not negligible. In particular, they
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are clearly visible in the simulations when the piston compresses the gas. This presumably
causes the shift in the mean value and the variance for v < 0. For very slow piston motion,
recollisions are not a major problem, but the absence of the thermodynamic limit causes
discrepancies between theory and simulations. Since τ = 1000 for |v| = 0.01, several hundreds
to a thousand particles collide with the piston out of the limited number of N = 2000. Clearly,
the absence of fast particles in the tail of the Maxwellian distribution will cause a narrowing
of the observed P (w) distribution.

In conclusion, the verification or exploitation of the Jarzynski equality to measure free
energy differences appears to be quite intricate. Due to the role of extreme events, the gain
in computational time, when using a fast route between initial and final values of the control
parameter, is outdone by the exponential increase in the required statistics [6]. The above
explicit calculation and molecular dynamics simulations provide a dramatic example of this
problem: even in the limit when a Gaussian distribution correctly describes the whole proba-
bility mass (in the sense of the central limit theorem), extreme events may still be needed to
correctly perform the Jarzynski average. In particular, the fluctuation-dissipation ratio (14)
need not approach the value 1 in a limit where P (w) converges to a Gaussian distribution.
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