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Abstract,

An amazing feature of feedforward neural and Boolean networks
is their ability to generalize. We present a rigorous lower bound for the
probability for generalization. This bound can be calculated on the basis
of the probability (or entropy) landscape, that characterizes the
network prior to teaching taking place. The predicted learning curves
agree extremely well with the results obtained using various teaching
procedures in both neural and Boolean networks. Large fluctuations in
the gencralization ability are observed, indicating that the average or
worst case performance may not be very representative.

Introduction,

We will study the following question: a feedforward network is
trained to correctly classify a (non-exhaustive) set of teaching examples;
what is the probability that the network will cormrectly classify new
input patterns? Such an ability to generalize has been demonstrated
quite convincingly in several neural (1) and Boolean networks (2-3), At
first, it may seem surprising that a network select one classification
scheme, compatible with the teaching examples, rather them another
compatible choice. The explanation is quite simple: the specific
architecture and building blocks of the network restrict the number of
classification schemes that can be implemented or establishes a
hierarchy of hypotheses such that unlikely hypotheses are implemented
by a comparatively small fraction of network configurations. For
example, a perceptron with n binary-valued conncction strengths has
only 2¢ different network configurations, and can only implement that
many out of the total number of 22" possible binary input-output
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tables. A richer structure was found for a feedforward Boolean nct (3):
the various input-output tables are implemented with a priori
probabilities that form a self-similar hierarchy. As teaching proceeds,
the incompatible hypotheses are eliminated, and the probability
landscape is redrawn in favor of the hypotheses that are similar to the
classification scheme from which the teaching examples were drawn.

Previous theoretical approaches of generalization have established
bounds on the generalization performance, based on a worst case
analysis (4), or have calculated the statistical properties of an ensemble
of networks (5). Although these results are valuable, we believe that the
interesting properties of the networks do not reside in the behavior of
the worst-case scenario or the statistical average. On the contrary, a
sizable number of specific input-output tables or hypotheses can be
learned rather easily precisely at the "expense” of the mediocre average
performance.

In previous work 3), we derived a rigorous lower bound for the
generalization performance of a specific hypothesis, given in terms of
the probability landscape prior to teaching. We review the derivation of
this bound in section’ 2, and compare it to the results obtained using a
similar approach that was formulated independently (6). In section 3,
we shew that this lower bound agrees well with the results obtained
using various teaching procedures in neural and Boolean networks.

For simplicity, we have restricted oursclves to networks with n
binary input signals :1, and with a single binary output. This
corresponds to a simple yes/no classification of the 27 input patterns, or
in other words, to the implementation of a n-variable Boolean function.
Note that there are 22" such input-output tables or Boolean functions
(e.g. 65536 for n=4), each of which can be specified by the value of a
running index i, i=1, 22"
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The a priori probability p; is defined as the probability that a
randomly selected network configuration will implement the input-
output table i. p; can be obtained, cither through exhaustive search in
smaller networks, or through Monte Carlo analysis in larger networks.

probability
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For example, in Fig. la, we have represented the “entropy landscape”,
log pi versus i, for a n=5 Boolean network, obtained by generating 107
randomly chosen network configurations. Such a network consists of
ordinary Boolean gates, such as a XOR, AND, OR, ..., linked together in a
feedforward but otherwise random manner (for more details, see (2-3)),
Clearly, the landscape displays a hierarchical, self-similar structure. This
is confirmed by the log-log plot of pi versus rank r, with ranking
according to decreasing values of p; (i.c. piis ranked r if it is the b
largest probability), cf. Fig. 1b.

Fig. la Fig. 1b

The a priori probability p; versus Log-log plot of pjversus rank
i in a 5-input Boolean network. r of table i.
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The observed scaling behavior p ~ l/rY(with y= 1.3) is similar to that
encountered when the words of natural language are ranked in order of
decreasing frequency of appearance (Zipf's law (D). For comparison, we
show the analogous results obtained for a 5-input perceptron with real-
valued Eonneclion strengths  J; (chosen at random on the unit
sphere |J|= 1), in Fig. 2a and Fig. 2b respectively. We again observe
scaling behavior. We finally note that the landscape is rather trivial in
the case of a perceptron with binary connection strengths J; = £1: either

pi= 1 if table i can be implemented (e.g. the majority problem), else p; =
0.
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Fig. 2a Fig. 2b
The a priori probability p; versus i Log-log plot of p; versus the
in a S-input perceptron. rank r of table i.

J. Lower bound for generalization.

We now derive a lower bound for the generalization probability
Pi(L) that the network will implement the input-output table i without
a single error, after being trained to correctly classify L teaching
examples from this table. Typically, this probability depends on the
choice of the teaching examples, and we define Pi(L) as the ensemble
average over all these choices. Clearly, a network trained on L examples
of table i, with L < 27, can still implement a table j = i, provided this
classification table is compatible with the teaching examples. If the
teaching procedure is equivalent to a random search in the space of
compatible configurations, the probability to choose such a classification
is pj, and Py(L) is given by:

. = Pi
Pi(L) = < ' > average over the choice
Z |41 of the L weaching examples
J is compatible with
the L teaching examples (1)

The average over the choice of the L teaching examples is very difficult
to perform at this stage, but using Jensen's inequality <1/x> 2 l/<x>, for
any random variable x taking positive values only, one obtains the
following rigorous lower bound:

P; (L) 2 Pi

< Z . P > average over the choice
j is compatible with of the L waching examples
the L teaching examples (2

For the further discussion, it is convenient to define the Hamming
distance d between two Boolean functions as the number of different
classifications in their respective output tables, 0 s d s 22, The sum
appearing in the denominator of the r.h.s. of Eq. (2) can then be
rewritten as follows:
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< z P > average over the choicc

J is compatible with of the L teaching examples
the L teaching examples

2°-L
- dgl) < 2 P > average over the choice

j is compatible with of the L ieaching examples
the L teaching examples and
is at Hamming distance d from i A3)

The point is now that the averages appearing in the r.h.s. of (3) can be
calculated exactly in terms of the a priori probabilities {p;i]:

")
. @
< z B > average over the choice 20 Pi
j is compatible with of the L teaching examples
the L teaching examples and d
is at Hamming distance d from i 4)

where we introduced the neighborhood function (note that p§°)= pi):

.-
p® =+ Y

j is at Hamming
distance d from i (5)

We conclude that:

. Pi
Pi(L) 2 L S . L)
( d (d)
2 (2“ ) P
d=0 d ©)

A rigorous lower bound to Pj(L) is thus obtained in terms of the a priori
probability landscape (pij) of the untrained network. Other quantities
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can be calculated in a similar way, but the average over the choice of
the teaching examples can only be done approximately. For example,
the probability Gij(L) that a new example will be classified correctly
according 10 table i, after L teaching examples from this table have been
learned, is given by the following approximate result:

;)
2(2“ L- d)( ) g?
Gi(L) =

Z - L)((—ﬁ—))pf"

The combinatorial factors, appearing in Egs. (6) and (7) can be
simplified considerably, if we assume that the Jearning transition occurs
in the region L<<2?, and that the dominant contribution to the sum
comes from values d>>L and d<<2® - L. In this case, we get the following
estimates:
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Eq. (9) is identical to the result obtained by Schwartz et al. (6). In most
applications reported in the following section, the difterences between
the results obtained from Eqs. (6) and (7) and from Egs. (8) and (9)
respectively, are small. For lack of space, we only report the results
obtained from Eq. (6).

3 licati

In Fig. 3a, we show the learning curve Pj(L) for the parity
problem in a 4-input feedforward Boolean network. The full line
represents the lower bound obtained from Eq. (6), the circles
correspond to the results of a random search teaching procedure, and
the triangles are the results of a simulated annealing teaching
procedure (for more details, see (3)). The agreement between the lower
bound and the results obtained through teaching is rather good. The
error bars indicate the amplitude of the fluctuations around the
ensemble average Pj(L) from one set of teaching examples to another.

Similar results are obtained for the case of neural networks. In
Fig. 3b, we have plotted the learning curves obtained from Eq. (6) (full
line) and from a random search algorithm (circles) for the majority
problem in a 15 input perceptron with binary connection strengths Jj =

+1. Ip Fig. 3c we give the corresponding results for the majority.

problem in a 5 input perceptron with continuous weights. We also
included the leaming curve found by applying the perceptron teaching
algorithm (cf. triangles). Finally, the learning curves for the contiguity
problem in a feedforward network with a hidden layer (for more
details, see reference (6)) are reproduced in Fig. 3d. The results for Figs.
3b and 3d were obtained through exhaustive search of all network
configurations on the Connection Machine, and are thus exact.

In all the above cases the lower bound for Pij(L) given in Eq. (6)
gives a rather accurate picture of the actual learning features of the
network. However, we repeat that this result refers to an average over
the choice of the teaching examples, and the learning curve obtained for
the "worst choice” of these examples may actually lic below this lower
bound. This for instance happens when the generalization probability
strongly differs from one choice of teaching examples to another one.
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Fig. 3
The generalization probability Pj(L) in function of the number of
teaching examples, obtained from Eq. (6) (full line) and by applying
random search (circles) or other teaching procedures (triangles) for the
Boolean network (Fig. 4a), the perceptron with binary (Fig. 45)' and
continuous connection strengths (Fig. 4c), and a network with a hidden

layer (Fig. 4d).
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Such large fluctuations are observed in the region where the "Eureca”
learning transition takes place, a phenomenon reminiscent of the critical
fluctuations that are observed in the vicinity of phase transitions.

4. Discussion,

Generalization implies that one disregards some possibilities in
favor of other more "reasonable” hypotheses. The perceptron with
binary connection strengths can generalize because a large number of
input-output relations are completely "disregarded”, i.e. they cannot be
implemented at all. A more interesting situation arises in more
complicated networks: a scaling hierarchy of hypotheses with
decreasing a priori probability p; is established. By ecliminating
incompatible hypotheses with large a priori probability, the network
can select a hypotheses with comparatively small a priori probability pi.
To quantify these ideas, we have derived a rigorous lower bound for the
generalization probability Pi(L). This bound is valid if one assumes that
the teaching procedure is equivalent to a random search in the space of
compatible network configurations. The existence of a fractal-like
landseape (pi) leads to learning curves Pj(L) that can differ strongly
from one hypotheses i to another, with the average generalization curve
being of a rather mediocre value. To illustrate this point, we have
represented in Fig. 4 the “leamning capacity” of all 216 input-output
tables i for a 4-input Boolean network, in function of the a priori
probability pj. This "learning capacity”, taking values in the interval
[0,1), is defined as the surface below the leamning curve Pj(L), plotted in
function of the fraction of teaching L/2M (cf. cross-hatched region in Fig.
3a). As is clear from Fig. 4, a wide range of learning capacities are
obtained, substantiating our claim that the average learning curve,
apart from being of very mediocre value, does not reflect the typical
behavior of the network. Finally, we note that a large a priori
probability p;does not necessarily imply a large learning capacity. The
teaching ecliminates incompatible tables, and more likely so those that
are at a large Hamming distance from the table under consideration. As
a result, good generalization is observed for the tables that correspond
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to a local maximum of the a priori probability pj, local being defined
with respect to the Hamming distance (for more details, see (3)).
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Fig. 4
We evaluated numerically the capacity of all the 216 tables i in a 4-
input Boolean. network. A dot in this log-log plot corresponds to a
capacity plotted versus the corresponding pj.
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