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Abstract: An algorithm that can modify an existing pseudopotential plane-wave (PSPW)
ab initio molecular dynamics (AIMD) code (e.g. Car-Parrinello) to use free-space
boundary conditions, instead of periodic boundary conditions, is described. Equations
for representing pseudopotentials and the electron-electron Greens function kernel with
free-space boundary conditions are presented and demonstrated to be extremely accurate.
Using the atoms and dimers of aluminum and oxygen as examples, it is shown that a
modified free-space PSPW code can give total energies that are in good agreement with a
regular periodic PSPW code, but also allows for calculations of charged systems. ltis
also demonstrated that implementing free-space boundary conditions into an existing
parallel periodic PSPW code will not significantly degrade its parallel efficiency. In
addition, the free-space PSPW code is used to calculate non-trivial charged complexes.

Proton binding energies of a series of Group IlIB hexaqua complexes obtained with our

free-space PSPW code are shown to agree quite well with standard Gaussian basis set



methods. These results demonstate that free-space PSPW codes can provide accuracy
similar to more traditional Gaussian based first principles methods for non-trivial

charged complexes.

[. Introduction

In 1985, a breakthrough paper by Car and Parrinello demonstrated that ab initio

molecular dynamics (AIMD) was computationally possibl&ince that time AIMD
calculations have been applied to a variety of realistic systems, offering an alternative to
molecular dynamics simulations with empirical potentials. The majority of these

calculations have been based on the local-density approximation (LDA) of density-
functional theory (DFT}’Z, although gradient-corrected approximations (GGA) are
gaining popularit§,4 and the feasibility of higher-level ab initio approximations are

being investigate6. In the LDA and GGA calculations the one-electron orbitals are
expanded in terms of periodic plane-wave basis sets. Pseudopotentials are introduced to
represent the ion-electron interaction and the effects of the core electrons. To treat most
systems the plane-wave basis must be very large. However, the Fast Fourier Transform
(FFT) algorithm is used to make the calculations manageable. Describing the one-
electron orbitals with a periodic plane-wave basis set implies periodic replications of the
simulation cell. For non-periodic systems this construction is artificial. For neutral
isolated systems, a large simulation cell can be used to make the interactions between
periodic images negligible. For isolated molecular systems that are non-neutral or have

strong dipoles, corrections are required to remove the artificial forces generated by the



periodic image§’8. Furthermore, comparison of energies for systems having different
charges, such as might arise in models of acid/base and redox reactions, necessarily
involves an unphysical neutralizing charge, as the lattice energy of a charged system is

not defined.

In this article, we detail an algorithm that can be used to modify an existing
pseudopotential plane-wave (PSPW) code so that free-space boundary conditions are
used instead of periodic boundary conditions. This algorithm is thus applicable to the
calculation of isolated molecular and cluster systems. Although parts of this algorithm
have been presenl%‘éo, to our knowledge previous presentations have either been
incomplete or they have presented an algorithm that does not provide the required
accuracy. Secondly, we present equations for accurately representing pseudopotentials
and the electron-electron Greens function kernel, even when the simulations are in
irregular shaped boxes. We also discuss the issues involved with implementing this

algorithm on large MPP machines.

Il. Implementing Free-Space Boundary Conditions into PSPW Calculations

The total energy of a system of nuclei and electrons in DFT may be Wdtten

(1) E[p] =T p]+ [Ven(r) p(r)dr +3 [[ p(r)g(r.1)p(r Ydr ' + Ex]p]+ Eon - inf{R1}]
This energy contains five terms, the Kohn-Sham kinetic enerfg])Tthe ion-electron

energy, the electron-electron energy, the exchange-correlation engfg}),(&nd the

ion-ion energy. The density is given by



@ o= o)

In this equation i labels the orbital number, @andbels the spin. To make the PSPW

approximation to these DFT equations, one expands the one-electron orbitals in terms of

a discrete plane-wave basis set
(3) Yor)= Y Cic &
G

where the reciprocal lattice vectofS, are defined with respect to a defined lattice

vectors,a, a, a, and their corresponding reciprocal lattice vectoysb,, b, as

@) G = ki + kzb2 + ksbs, I ke, ks=0,£1,%£2,...
b =27,

and replaces the ion-electron potential,(¥), with non-local pseudopotentials

Vion(r) » Won(r, ') = Z wW*(r =Ry, r' =R1)
(5)

Imax |
Vs (TOES IR ) (R )
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where | labels the atom number, and indices | and m represent the angular projections.

The exact forms of the energy in PSPW DFT calculations and their implementation using

Fast Fourier Transforms (FFT) can be found in several ptdcé8 and will not be

repeated here.

' We note that external potentials that are non-local are not explicitly considered in the

Hohnberg-Kohn theore#?. However, since the external non-local potential is fixed, the

total energy of the system can still be considered as a functional of only the density.



To implement free-space boundary conditions into a PSPW DFT calculation only the
Coulombic interaction terms need to be modified. In the LDA and GGA calculations
both the Kohn-Sham kinetic energy{d] and exchange-correlation energy{f] are

basically local operators in real-space and hence do not contain interactions between
neighboring supercells. This is true because the density decays to zero at the supercell

edges in PSPW DFT calculations of isolated clusters and molecules.

Since we are interested in an isolated system the ion-ion Coulomb energy is written
simply as:

YAVA
6 Eion—ion:'1 P
© ZZZ|RI_RJ|

rather than as an Ewald summation used in typical PSPW DFT calculations. In this

equation | and J label the ions, anchdd Z label the ion valence charges.

The ion-electron Coulomb energy, within the pseudopotential approximation, can be

written as
Eion - electron = l[VIocal(r )n(r )hr + Z JJ [l,UI (r)W(r I )W(r ')]dr dr’

erf(ai |r =R )
Ir —Ri|

(7) Vlocal(l’) = Z (— ZI)

a = small constant
where \V_(r ) is the local part of the pseudopotential, ang W(r,r) is the non-local
part of the pseudopotential, corrected for the assumed form of the local potential in Eq.

7. EqQ. 7 is presented in this form so that the long-range behavior of the ion-electron



interaction is completely contained within the local part of the pseudopotential. In this
form, the non-local part of the pseudopotential only interacts around the localized region
of each atom, making it a local operator. Just as with the kinetic energy and exchange -
correlation terms the integration involving the non-local pseudopotential in Eq. 7 does

not have to be changed from a typical periodic PSPW DFT calculation.

The rest of the ion-electron Coulomb energy will obey free-space boundary conditions if
the integration is simply restricted to one isolated supercet:(\J rather than an

infinite collection of supercells in periodic boundary conditions. This integration must
be done carefully to prevent significant numerical errors from being introduced. We
have found that sufficiently high accuracy can be obtained by integrating this integral in

real space using the extended midpoint trapezoidal rule

[Vees o) = 355 Ve (. )0 0 I

i j k
r., =—Ua +—a +— [a
MU, N, N

8 i=012,..N-1)
j=0,1,2,...,N2-1)
k=0,12,...,N:-1)

provided that the decay of the Gaussian charge potentials are sufficiently smoath, i.e.
is chosen small enough. In EQN§ N,, andN, are the sizes of the first, second and third
FFT dimensions respectively, ahtlis the constant volume of subintervals defined by
the volume of the supercel] divided by the number of FFT grid pointd {N,*N,).

The accuracy of this integration clearly depends on the chomeiy,_(r).

Nevertheless, choosing V(r) is somewhat arbitrary and other atom based potentials can



be used, so long as they decay #-R | and they are sufficiently smooth for real-space

integration.

The remaining Coulomb interaction terms that need to be modified are the electron-
electron energy and the Hartree potential, given by

Eelectron- efectron = J’J’ p()a(r,r)p(r)drdr
(9) Vu(r)= [o(r . )olr)dr

g(r,r') =

Ir=r]
Again as with the other Coulomb interactions, free-space boundary conditions restricts

the integration to one isolated supercell.

Eelectron - electron = J’J’ e(Na(r,r)p(r)drdr!
(10) oY)
VH(r):t[g(r,r')p(r')dr'

This effectively defines a modified coulomb interaction

o1
, — forr,rdQ
(1) o(r,r)=0ar -r|
n o otherwise

Hockney and Eastwood showed that an interaction of the form of Eq. 11 could still be

used in conjunction with the Fast-Fourier Transform convolution thebtek In their
algorithm, the interaction between neighboring supercells is removed by padding the
density with an external region of zero density, or in the specific case of a density
defined in cubic supercell of length L, the density is extended to a cubic supercell of
length 2L, where the original density is defined as before on the fipbhjain and the

remainder of the [0,2C]domain is set to zero. The grid is 8 times larger than the



conventional grid. The Coulomb potential is calculated by convoluting the density with
the Green’s function kernel on the extended grid. The density on the extended grid is
defined by expanding the conventional grid to the extended grid and putting zeros where
the conventional grid is not defined. After the aperiodic convolution, the free-space

potential is obtained by restricting the extended grid to the conventional grid.

In his original work Hockney suggested that the cutoff Coulomb kernel could be defined
rconstant

T for |ri’j’k| =0

12)g(r. )=
( )g(ru,k) 01 otherwise

H |ri,j,k|

where R is the constant volume of subintervals, defined by the unit cell divided by the

number of conventional FFT grid points. Hockney suggested a constgdrDab|be

between 1 and 3. Barnett alin their implementation defined the constant tPbe

11 52.380077 for SC lattice
(13) Flndr = [0.910123 for FCC lattice
oI H.447944 for BCC lattice

Regardless of the choice of the constant, the singular nature)oh géal-space can lead

to significant numerical error (see Figure 1). James addressed this problem somewhat by

expanding the Coulomb kernel to higher orders in real dace

The convolution theorem suggests that definirg g( reciprocal space will lead to a

much higher accuracy. A straightforward definition in reciprocal space is



(14) g(r) = Z guniforn'(c;)eie‘.r

Gotorn(G) = 3 [

Q'

DHF]D
oo

whereQ’ is the volume of the extended unit cell aridshthe volume of the unit cell

divided by the number of conventional FFT grid points. The re ciprocal space definition
gains accuracy because the singularity=at in Eq. 9 is analytically integrated out.

Even when Eq. 14 is used to define the kernel, a slight inexactness in the calculated
electron-electron Coulomb energy will always present due to the discontinuity introduced
in the definition of the extended density where the extended density is forced to be zero
in the extended region outside@f However, this discontinuity is small, since the

densities we are interested in decay to zero wiihithus making the finite Fourier

expansion of the extended densities extremely close to zero in extended region outside of

Q.

Equation 14 could be calculated numerically, however we have found that alternative
definitions can be used with little loss of numerical accuracy. In our earlier work in

which the charged isomers of @ere calculated, we suggested that the cutoff Coulomb

kernel could be defined 4§



> 6:(G)e"®” for |r | Rmax—6

g(r)=0° 1 .
E ﬁ otherwise
]
0 27T( Rmax Y’
- § ﬂhs—)— for |GEO
0a(G)= [

3

4 5 :
o7 [L-cos(G I Rma)] ~ otherwise

(15) Rmax= L, (simple cubic)

V2

5 L, (face - centered cubic)

V3

5 L (body - centered cubic)

J0 = small constant
Figure 1 demonstrates that the error in calculating the electron-electron Coulomb energy

can be made very small when Eq. 15 is used to define the kernel. A similar kernel has

been more recently suggested by Jaeviaf
o) = F90) ¢
E m for |GEO

3
ga(G): 0 an h i
Hm[l—cosqm Rmax)] otherwise
(16)
Rma= /3L (simple cubic)

The kernel in Eq. 15 is more correct near the box edges than Eqg. 16. However, it is also
evident that other forms could also be used. The Fourier-represented kernels improve the
integration accuracy by removing the singularityrat’| in a trapezoidal integration. A

disadvantage of the kernels defined by Eqgs. 15-16 is that only regular shaped cells can be

10



used. To extend this method to irregular shaped cells, a short and long range
decomposition similar to what we used with pseudopotentials can be used

g(r) = (Qshort - rangé(r ) + Qlong - range(r)
Qshort - range(r) = Z Qshort - range(G)e(iG' r

U
an E‘_l_LED for |G| 20

(17) gshort range(G) ? |G |2 é D 4e ?

h3

et eIrI for|r|#20

ong - ran = |r|
Gorv-erel) E 2 for |r| =
Jm -

for |G| =

We have found that this kernel gives very high accuracy, even for highly non-cubic

supercells. Other kernel definitions are possible. Kawai, in his PSPW codes uses a short

and long range decomposition based on a Lorer#%ian

[ll. Accuracy of the Free-Space Algorithm

The free-space algorithm presented in the preceding section is an improvement over
other reported implementations because it is extremely accurate. A necessary (but not
sufficient) test of the free space algorithm is that, for a neutral centrosymmetric system,
the total energies produced from a modified free-space PSPW code and a regular

periodic PSPW code should be nearly the same.

To demonstrate this accuracy, we present in Table | total energies obtained from a
regular periodic PSPW code and a modified free-space PSPW code for atoms and dimers

of aluminum and oxygen. In these calculations the ion-electron energy parameters used

11



to define the local pseudopotential were chosen tw=ig1.65a," for Al anda=1/0.7a,

"O. Eg. 17 was used to represent the Coulomb kernekwitl0a,”. The ability to get

the same energies with these two different codes represents an important improvement
for PSPW algorithms because it allows systems calculated with a modified free-space
code to be directly compared to periodic systems such as slabs or bulk solids calculated

with a conventional periodic PSPW code.

IV. Parallel Performance of a Free-Space PSPW Code

The cost of typical PSPW calculations, as well as their inherent parallelism, makes them
suitable for running on parallel computers. As a result most PSPW codes in use today

are parallel codes. These codes are usually parallelized in two different ways. One way
is to distribute the one-electron orbitals across proce?slscaed the otheristo do a

spatial decompositi&?. The free-space algorithm can be implemented in either scheme.
However, the additional costs associated with calculating the electron-electron energy
and its associated Hartree potential are difficult to make parallel efficient. This is
especially true when parallelism is done via distributing one-electron orbitals in a
straightforward way, because the extra computations associated with calculating the
Hartree potential must be done sequentially. On the other hand, the extra computations
in a spatial decomposition algorithm do not have to be done sequentially. Nevertheless,
parallel efficiency is difficult to obtain, because the majority of time spent in calculating
Hartree potentials is in calculating fast-Fourier transforms on the extended grid, and

spatially decomposed fast Fourier transforms are hard to parallelize.

12



In Table Il the parallel performance of a regular periodic PSPW code and a modified
free-space PSPW code are shown. Both of these codes are written in Fortran 77 and
MPI, and are parallelized using a spatial decomposition algorithm. The required parallel
Fast Fourier Transform was implemented using a slab decomposition of the 3-

dimensional space.

V. Hexaqua Complexes of Al, Ga”, and In*": Comparison of PSPW and Gaussian

Basis Set Calculations

There are several contexts in which it is desirable to move smoothly between molecular
systems and periodic systems (such as slabs or bulk solids). For example, it has been
previously demonstrated that the first hydrolysis constant of a variety of aqueous metal

ions correlates well with the gas-phase deprotonation energy for some trivalent hexaaquo

complexes using Gaussian based DFT me#ddSuch a correlation serves as an
excellent validation of the particular combination of methods used, and would provide a
convincing basis for understanding the much more complex hydrolysis reactions
occurring on the surface functional groups of the analogous metal oxide minerals. It is
well known that Gaussian-based methods have very different basis set requirements for
gas and solid phase applicaticﬂfb complicating the transferability of these methods

PSPW methods, on the other hand, have been shown to work quite well on some of the
oxyhydroxide minerals of intered?, and have been recently applied to aqueous metal

complexe£6-28 |t is therefore of interest to test whether the PSPW methods are

13



capable of reproducing the gas-phase deprotonation energy vs. solutjobggfved in

referencé€3. The efficacy of molecular-solid state transferability will be crucial in the
investigation of oxide interfaces, which share both molecular and solid state

characteristics.

An additional aspect of the accuracy of the PSPW method is, of course, in the choice of

pseudopotential. Reliable pseudopotentials do not exist for the transition metal ions,

which comprise the bulk of the study in referefe To avoid complications due to the
pseudopotential and focus on the implementation of the free-space PSPW code, we have
restricted our calculations to AlG&", and Iri” hexaaqua species. The extent to which

the free-space PSPW method can reproduce the results of the Gaussian based calculations

is a stringent test of the accuracy of the method.

The free-space PSPW electronic structure calculations for the hexaaqua and

hydroxopentaaquo complexes were carried out using Hamann norm-conserving

pseudopotentia® in Kleinman-Bylander seperable fof and a plane-wave basis set
with a kinetic energy cutoff of 60 Ry and a 26 a.u. simple cubic supercell. The lattice
constant was chosen to be sufficiently large so as to ensure that the density decayed to

zero by the supercell edges. Here only the local density approximation (LDA)

parameterized by Vosket al31 was used. The Hamann pseudopotentials used in these
calculations have a single length parameter for each (I=s,p,d) angular compgnent, r

r, called core radii. The values used for these core radii can be found in Table IlI.

14



The Gaussian based electronic structure calculations were done using the NWChem
program packag:33 Again, only the local density approximation (LDA)
parameterized by Vosket al31was used for the exchange-correlation functional. The

Kohn-Sham orbitals were expanded using the DZVP DFT orbital basié séhe
exchange-correlation energy and potential were evaluated on a numerical grid. The

integration scheme that we chose to use partitions the density into atomic contributions
35 with the partitioned density integrated using an Euler-McLaurin radial quadrature and

a Gauss-Legendre angular quadrature as described in refffence

Both the hexaaqua and hydroxopentaaqua complexes were optimized and proton binding
energies were obtained by taking their total energy differences.

AE+" = E{MOH(H,0): "} - E{M(H,0);'} where M=Al, Ga, and In

Table IV shows that results for the proton binding energies of the hexaaqua species of

Al*, Ga", and Iri" are nearly identical between the two ab initio methods.

VI. Conclusion

In this paper, a method for implementing free-space boundary conditions into an existing
periodic PSPW code was described. Equations providing a highly accurate
implementation were given. It was shown for problems in which the choice of boundary
conditions was not important that the energies calculated using a modified free-space
PSPW code could be directly compared to a conventional periodic PSPW code.

Furthermore, it was shown that implementing free-space boundary conditions into an

15



existing parallel periodic PSPW code would not significantly degrade its parallel

efficiency.

The accuracy of our free-space PSPW code was also demonstrated by calculating the
proton binding energies of a series of Group IlIB hexaaqua complexes. The energies
obtained with our free-space PSPW code were shown to agree quite well with standard
Gaussian basis set methods. These simulations demonstrate that free-space PSPW codes
can provide accuracy similar to more traditional Gaussian based first principles methods

in non-trivial charged complexes. This accuracy lends further justification for using free-
space PSPW molecular dynamic codes to look at solvation and hydrolysis of highly

charged metal cation complexes.
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Table I: Total energies from a periodic PSPW code and a free-space PSPW code for an

oxygen atom and dimer. The distance of the aluminum dimer was fixed ata}.660d
the distance of the oxygen dimer was fixed at 2282All calculations in this table
were done in a simple cubic unit cell with a side length of 2Q.0All values are in a.u..

Periodic| Free-Space Cutoff Energy
Boundary Condition Boundary Condition
Al (P) -1.954609 -1.954688 25 Ry
-1.954675 -1.954754 57 Ry
-1.954676 -1.95475bp 101 Ry
Al, (%) -3.981827 -3.98193) 25 Ry
-3.981958 -3.982068 57 Ry
-3.981959 -3.98206P 101 Ry
O, CP) -15.725014 -15.725011 101 Ry
0, (’z) -31.724185 -31.724174 101 Ry
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Table II: Parallel performance of a periodic PSPW code and a free-space PSPW code on

PNNL’s IBM-SP. Results in this table are for 16 waters at a cutoff energy of 100 Ry.

# of processors

Periodic PSPW cade
Seconds per iteratign

Free-Space PSPW cogde
Seconds per iteration

105.4
54.0
30.9
16.4

8.4
4.9

42.4
23.3
9.8
5.8
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Table Ill: Hamann pseudopotential parameters. All values are in a.u..
Atom r. r. r.,

H 0.8 0.8

O 0.7 0.7 0.7

Al 1.214 1.549 1.549

Ga 1.128 1.506 2.118

In 1.285 1.690 1.690
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Table IV: Calculated Proton binding energies. Zero-point energies are not included. All
values are in kcal/mol.

AE, (kcal/mol)| Method

Al* 35.0] PSPW-LDA/60 Ry
34.5| LDA/DZVP

Ga” 31.7| PSPW-LDA/60 Ry
30.9| LDA/DZVP

In* 43.0| PSPW-LDA/60 Ry
42.3| LDA/DZVP

20



Figure 1: Error in calculating the electron-electron Coulomb energy for a test density
composed of 3 normalized Gaussian functions located at (8.0,8.0,10.0), (12.0,12.0,12.0),
and (8.0,13.0,10.0) on th2=[0.0,20.0j domain. The normalized Gaussians have decay
rates of 0.4, 0.4, and 0.5 respectively. The solid line used Eqg. 12 to represent the kernel,
and the dashed line used Eqg. 15 to represent the kernel.
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