
Project: Vibration of Diatomic Molecules

Objective: Find the vibration energies and the corresponding vibrational wavefunctions of
diatomic molecules H2 and I2 using the Morse potential.

Required Numerical Methods:

• Root finding

• Numerical Integration

• ODE - Eigenvalue problems

• Special Functions (Laguerre polynomials)

Tasks

1. Evaluate the analytic expression of energy eigenvalue and eigenfunction.

2. Find the energy eigenvalue using the Bohr-Somerfeld semi quantization rule.

3. Find the energy eigenvalue and wavefunction of the ground state by integrating Schrödinger
equation numerically. Choose one of the methods specified below.

1 Physical Background

The Hamiltonian for a diatomic molecule is given by
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where Ri, Pi, and Zi are the position, linear momentum, and charge of the nuclei, respectively,
and ri and pi are the position and momentum of electrons, respectively.

Since the nuclei are much heavier than the electrons, the electrons move fast enough to readjust
their wavefunctions instantaneously to the change of nuclear positions. In such a case, the electronic
state can be calculated by freezing nuclear motion (Born-Oppenheimer Approximation). Then, the
Schrödinger equation for the electrons is given by N∑
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}Φk(r1, · · · , rN ) = Ek(R1,R2)Φk(r1, · · · , rN )

(2)
Here the energy Ek is a function of the nuclear position. However, the nuclear positions are not
dynamical variables but merely parameters in this equation. Due to the cylindrical symmetry, Ek
depends only on the distance between the nuclei.
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Averaging the total Hamiltonian (1) over the electron coordinates, one can obtain the effective
Hamiltonian for the nuclei,

HN = 〈Φk | H | Φk〉 (3)

=
P 2

1

2M1
+

P 2
2

2M2
+ Uk(| R1 −R2 |) (4)

where Uk is an interaction potential defined as

Uk(R) =
Z1Z2e

2

R
+ Ek(R) (5)

Using the center-of-mass frame, the relative motion of the nuclei is described by the single-particle
Schrödinger equation [

P 2

2µ
+ Uk(R)

]
Φ(R) = λΦ(R). (6)

where µ is a reduced mass. Now, since this equation has spherical symmetry, the dimension of the
equation can be reduced by introducing a radial wave function χ(R) by Ψ(R) = χ(R)

R Y`,m(θ, φ).
The radial function satisfies the 1D Schrödinger equation

− h̄
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R

]
χ = λχ. (7)

Note that χ depends on both the electronic state k and the rotational motion `.
Since it is very hard to solve Eq. (2), an empirical form of Uk(R) is often used. The most

popular potentials are,

• Lennard-Jones Potential

U(R) = 4De

[( a
R

)12
−
( a
R

)6
]

(8)

• Morse Potential

U(R) = De [exp(−2α(R−R0))− 2 exp(−α(R−R0))] (9)

In this project, the Morse potential is used to calculate H2 and I2 molecules. The constants for
these molecules are given in Table 1.

Table 1: Values of the constants for the Morse potential.

Molecule R0(Å) De (eV) αR0

H2 0.742 4.75 1.44
I2 2.66 1.56 4.94
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2 Exact Analytical Solution

The Schrödinger equation for a particle bound in the Morse potential,

d2φ

dx2
+

2µ

h̄

(
λ−Dee

−2αx + 2Dee
−αx)ψ = 0,

can be solved analytically. Here x = R−R0. Introducing new variables,
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the Schrödinger equation is expressed as
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Taking into account the asymptotic solutions, e−ξ/2 for ξ →∞ and ξs for ξ → 0 a general solution
is conveniently written as

ψ = e−ξ/2ξ2w(ξ)

where w(ξ) should be a polynomial and satisfy the following equation:

ξw′′ + (2s+ 1− ξ)w′ + nw = 0

which is a Laguerre equation. Using proper boundary conditions, we find a solution,

w = L(2s)
n (ξ)

and an energy eigenvalue,

λn = −De

[
1− αh̄√

2µDe

(
n+

1

2
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.

where n is zero or a positive integer. The number of bound states can be obtained from the
inequality √

2µDe

αh̄
> n+

1

2

The Laguerre polynomials can be evaluated easily using The recursive equation

nL(α)
n (x) + (x− 2n− α+ 1)L
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(α)
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L
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(α)
1 (x) = 1 + α− x
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3 Bohr-Sommerfeld semiclassical quantization

We can find approximate quantum-mechanical energy using the Bohr-Sommerfeld semiclassical
quantization rule, which determines the energies by the equation

S(λn) = 2πh̄(n+
1

2
) (10)

where the action S is defined as

S(λ) =

∮
p(x)dx

and the momentum p is given as

p(x) = ±
√

2µ(λ− U(x))

For a one-dimensional system, we have the action integral

S(λ) = 2

∫ x2

x1

√
2µ(λ− U(x))dx (11)

where x1 and x2 are the inner and outer classical turning points given as roots of p(x) = 0.
Our purpose is to find λ that satisfies Eq (10). This can be considered as a root finding problem.

To solve this problem,

1. Guess λ (It does not have to be a good guess but it has to be between −De and 0. Why?)

2. Find classical turning points by solving p(x) = 0. This is also a root finding problem. It is
obvious that the inner turning point is negative and the outer is positive. We also know there
are only two roots. Therefore, it is easy to bracket the roots.

3. Compute the action integral (11) using a numerical quadrature. If you want to use the
Simpson method, watch out the boundary values.

4. Evaluate Eq (10) for a given n. If it is not satisfied, then the current λ is not a solution.
How do you want change λ? Remember this is a root finding problem. The bisection method
works but there are many roots depending on the potential depth and width. We must bracket
them. Fortunately, λ takes value between −De and 0. Therefore, we can use the exhaustive
searching method.

4 Numerical Integration of Schrödinger Equation

4.1 Numerov Method

See the lecture note.
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4.2 Steepest descent method

For a quantum system, | ψ〉, the energy, E, is given by the expectation value

E[ψ] = 〈ψ | H | ψ〉 (12)

with the normalization condition
〈ψ | ψ〉 = 1 (13)

An eigenstate of the system corresponds to a stationary point of the energy functional with respect
to ψ. Using the Lagrange’s multiplier, λ, for the normalization constraint (13, a stationary point
can be obtained by taking the variation of E[ψ] as follows:

0 =
δ

δψ∗
{E[ψ]− λ (〈ψ | ψ〉 − 1)} (14)

= H | ψ〉 − λ | ψ〉 (15)

which is nothing but a Schrödinger equation. Therefore, minimizing the energy functional (12) with
respect to ψ under the normalization constraint (13) is equivalent to solving a Schrödinger equation.
In practice, we can normalize ψ numerically and therefore, the Lagrange multiplier method is not
necessary.

Suppose that the state vector, | ψ〉, is expressed using a vector ~u = (u1u2 · · ·uN ) in a certain
representation. For example, when the finite difference method is used, ui = ψ(xi). Then, the
energy expectation value is a function of ~u. Starting with an initial vector ~u(0), the energy can be
minimized by the iterative procedure (the steepest descent method)

~u(n+1) = ~u(n) − ξ∇E(~u(n)) (16)

where ξ is a parameter to control the convergency. When ξ is too large, the iteration diverges. At
every iteration, ~u must be renormalized since this iteration not only its direction but also its norm.
Alternatively, when the Lagrange’s multiplier method is used,

~u(n+1) = ~u(n) − ξ∇E(~u(n)) + ξλ~u(n) (17)

where the Lagrange’s multiplier, λ, is determined by the normalization condition,

1 = ~u(n+1) · ~u(n+1) (18)

=
∣∣∣~u(n) − ξ∇E(~u(n)) + ξλ~n(n)

∣∣∣2 (19)

which guarantees that ~u is always normalized.
From the variational calculation (15), the gradient of E(~u) is given by

∂

∂ui
E(~u) =

∑
j

Hijuj (20)

where Hij is a matrix form of the Hamiltonian. For example, if the finite difference method is used,
it is a tridiagonal matrix used in the previous section. The iteration is repeated until ~u does not
change within a given tolerance.

The steepest descent method is simple and works. However, it is very often too slow depending
on the landscape of the the energy functional, especially it has a deep valley. There are quite few
other algorithms for minimization. The conjugate gradient method is one of them. The Lanczos
method is also popular for large eigenvalue problems.
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4.3 Imaginary time = Temperature

Consider a time-dependent Schrödinger equation

ıh̄
∂ψ(t)

∂t
= Hψ(t). (21)

A solution for an initial state, ψ(0), is given by

ψ(t) = e−ıHt/h̄ψ(0). (22)

Since this is a unitary transformation, the norm of ψ conserves. If the eigenvalues and eigenvectors
of the Hamiltonian are all known, then Eq (22) is written as

ψ(t) =
∑
n=1

eıEnt/h̄cnun (23)

where
Hun = Enun (24)

and the expansion coefficient is defined by cn = 〈un | ψ〉. Note that the probability of finding the
system in a state un does not change in time.

Now, let us replace time with an imaginary parameter, t = −ıh̄β (β > 0 ). Then, Eq (21)
becomes

∂ψ(β)

∂β
= −Hψ(β) (25)

and its solution is
ψ(β) =

∑
n=1

e−Enβcnun. (26)

Suppose that the energy measured from the lowest energy state, Ẽn = En − E1, then

ψ(β) = c1u1 +
∑
n=2

e−Ẽnβun (27)

Since Ẽn > 0, ψ → c1u1 as β goes to ∞. Therefore, ψ(∞)/c1 is the lowest eigenstate of the
Hamiltonian.

Unfortunately, this method is useless because we have to measure the energy from the lowest
eigenvalue which we are going to calculate. There is a way to get around this problem. If you mea-
sure the energy from an arbitrary origin, then | ψ(∞) | is either 0 or∞ because the transformation
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from ψ(0) to ψ(β) is no longer unitary. However, we can normalize ψ(β) at any β

ψ̃(β) =
e−Hβψ(0)√

〈ψ(β) | e−2Hβ | ψ(β)〉
(28)

=

∑
n=1

e−Enβcnun√∑
n=1

e−2Enβ | cn |2
(29)

=

c1u1 +
∑
n=2

e−Ẽnβcnun√
| c1 |2 +

∑
n=2

e−2Ẽnβ | cn |2
(30)

→ u1 (β →∞) (31)

Therefore, solving the differential equation (25) under the normalization constraint from β = 0 to
∞ gives the lowest-energy eigen state.

Using the Euler method, a numerical solution to Eq (25) is given by the recursive equation

ψ(βn+1) = ψ(βn)−∆βHψ(βn) (32)

where ∆β = βn+1 − βn. Compare this equation with Eqs (16 and (20). This method is nothing
but a steepest descent method!

Another trick to solve Eq (25) is to measure the energy from the mean value,

V =
〈ψ | H | ψ〉
〈ψ | ψ〉

(33)

=

∑
n=1

Ene
−2Enβ | cn |2∑

n=1

e−2Enβ | cn |2
(34)

> E1 (35)

Then,
Ẽn = En − V (36)

The states whose energy is higher than V vanish as β becomes large because their energies, Ẽn
are positive. On the other hand, the states below V grows exponentially because of the negative
energies. Since V approaches E0 as β →∞, only the lowest energy state survives at a large β. We
use this scheme later in the diffusion Monte Carlo method.

This steepest descent method has a non-trivial physical background. The exponential factor
exp(−Enβ) looks like a Boltzmann factor in the statistical mechanics if β = 1/kBT where T and
kB are temperature and the Boltzmann constant. At T = ∞ (β = 0 ), all eigenstates are mixed.
As the temperature goes down, only low-energy states are occupied and at T = 0 (β = ∞) the
system occupy only the lowest energy state. Therefore, the imaginary time can be interpreted as a
temperature.
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