
 Practical Introduction
to Numerical Methods for Physics

Ryoichi Kawai

Version 0.5

FIRST STEP TO COMPUTATIONAL PHYSICS

FIRST STEP TO COMPUTATIONAL PHYSICS
Learning Physics using MATLAB and Python

Ryoichi Kawai
Department of Physics, University of Alabama at Birmingham

Kawai Publiching Co.

Copyright ©2019 by Ryoichi Kawai All rights reserved.

Published by Ryoichi Kawai, Birmingham AL.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
Ryoichi Kawai Requests to the Publisher for permission should
be addressed to Ryoichi Kawai, 1300 University Blvd., Birmingham AL 35294.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data:

First Step to Computational Physics / Ryoichi Kawai
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To my family

CONTENTS IN BRIEF

PART I NUMERICAL EVALUATIONS OF MATHEMATICAL EXPRESSIONS

1 Numerical Values and Quantization Errors 3

2 Numerical Derivatives 25

3 Numerical Integration 37

4 Root Finding 65

5 Ordinary Differential Equations I:
Initial Value Problems 93

6 Ordinary Differential Equations II: Boundary Value Problems 143

7 Ordinary Differential Equations III: Eigenvalue Problems 169

8 Matrix I: Linear Algebraic Equations 197

9 Matrix II: Nonlinear Equations 241

10 Matrix III: Eigenvalue Problems 255

11 Discrete Fourier Transform 289

12 Data Fitting 317

13 Partial Differential Equations I: Parabolic Equations 351

14 Partial Differential Equations II: Schrödinger Equation 369

PART II COMPUTER SIMULATION

vii

viii CONTENTS IN BRIEF

15 Random Numbers 373

16 Random Walks 405

17 Metropolis Method 431

18 Langevin Equations 457

19 Optimization 491

CONTENTS

List of Figures xvii

List of Tables xxvii

Preface xxix

Acknowledgments xxxi

PART I NUMERICAL EVALUATIONS OF MATHEMATICAL EXPRESSIONS

1 Numerical Values and Quantization Errors 3

1.1 Bits 4
1.2 Integers 4
1.3 Characters 6
1.4 Floating Point Numbers 6
1.5 Overflow/Underflow 8
1.6 Machine Epsilon 10
1.7 Round-off Errors 11
1.8 Loss of Significance 12

Problems 14
Examples in Python 15
MATLAB Source Codes 21
Python Source Codes 22

ix

x CONTENTS

2 Numerical Derivatives 25

2.1 First order derivatives 25
2.2 Second order derivatives 30

Problems 30
MATLAB Source Codes 31
Python Source Codes 33

3 Numerical Integration 37

3.1 Rectangular rule 37
3.2 Trapezoidal rule 39
3.3 Simpson method 40

3.3.1 Adaptive quadrature 42
3.4 Improper Integrals 43

3.4.1 Improper Integrals: ∞ in Limits 43
3.4.2 Improper Integrals II: Integrable Singularities 44

3.5 Gaussian Quadrature 45
3.6 Applications in Physics 47

3.6.1 Period of Classical Oscillation I. 47
3.6.2 Scattering by Yukawa Potential: Part 1 48
3.6.3 Debye Model of Heat Capacity 50
3.6.4 Heat Capacity of Free Electron Gas 51
Problems 53
Appendix 54
MATLAB Source Codes 58
Examples in Python 60
Python Source Codes 61

4 Root Finding 65

4.1 Quadratic, Cubic, and Quartic Polynomials 65
4.1.1 Quadratic Polynomials 65
4.1.2 Cubic Polynomials 67
4.1.3 Quartic Polynomials 68

4.2 Iterative Methods 68
4.2.1 Bisection method 69
4.2.2 Newton-Raphson method 70
4.2.3 Secant method 71

4.3 Applications in Physics Problems 73
4.3.1 Magnetic Phase Transition 73
4.3.2 Energy of a Quantum Particle in a Square Potential 74
4.3.3 Classical Turning Points 75
4.3.4 Closest Approach in Scattering 75

CONTENTS xi

4.4 Problems 76
MATLAB Source Codes 77
Python Source Codes 83

5 Ordinary Differential Equations I:
Initial Value Problems 93

5.1 Standard forms of Initial Value Problems in Physics 93
5.2 First Order Differential Equations 94

5.2.1 Euler Method 94
5.2.2 Predictor-Corrector Method 96
5.2.3 2nd-Order Runge-Kutta Method 97
5.2.4 4th-Order Runge-Kutta Method 99
5.2.5 Adaptive Step: Runge-Kutta-Fehlberg Method 101

5.3 Coupled ODEs 102
5.4 Second-Order Differential Equations 104

5.4.1 Converting to a Coupled First-Order ODEs 104
5.4.2 Verlet Method 105

5.5 Applications in Physics 106
5.5.1 Nonlinear Chemical Dynamics: Brusselator 106
5.5.2 Nonlinear Dynamics in Laser: Maxwell-Bloch equation 108
5.5.3 Frequency Entrainment and Phase Synchronization 109
5.5.4 Period of Oscillation 110
5.5.5 Pendulum 111
5.5.6 Scattering Angle 112
5.5.7 Double Pendulum 113

5.6 Problems 115
MATLAB Source Codes 116
Python Source Codes 131

6 Ordinary Differential Equations II: Boundary Value Problems 143

6.1 Shooting method 143
6.2 Numerov method 145
6.3 Applications in Physics 148

6.3.1 Quantum Free Falling (See Problem 3.3) 148
6.3.2 Heating a rod 149

6.4 Problems 151
MATLAB Source Codes 152
Python Source Codes 159

7 Ordinary Differential Equations III: Eigenvalue Problems 169

7.1 Shooting Method for Eigenvalue Problems 170
7.2 Applications in Physical Problems 172

xii CONTENTS

7.2.1 Quamtum Harmonic Oscillator 172
7.2.2 Bouncing Quantum Particle 173
7.2.3 Diatomic Molecules 175

7.3 Problems 177
MATLAB Source Codes 178
Python Source Codes 186

8 Matrix I: Linear Algebraic Equations 197

8.1 Triangular Matrices 198
8.1.1 Forward/Back Substitutions 199

8.2 Gaussian Elimination 201
8.2.1 Elmination Procedures 201
8.2.2 Pivoting 203
8.2.3 Determinant 205
8.2.4 Matrix Inversion 206

8.3 LU Decomposition 207
8.3.1 Decomposition Algorithm 207
8.3.2 Linear equations 207
8.3.3 Matrix Inverse 208
8.3.4 Determinant 208

8.4 Tridiagonal Matrices 209
8.4.1 Linear Equations 209
8.4.2 Determinant and Inverse 210

8.5 Solving Linear Equations by Minimization 211
8.5.1 Steepest Descent Method 211
8.5.2 Conjugate Gradient Method 212

8.6 Applications in Physics 215
8.6.1 Multiloop circute: Kirchhoff rules 215
8.6.2 Coupled Harmonic Oscillators in a Uniform Gravity 215
8.6.3 Determinant of Tree Graphs: Graham-Pollack theorem 216

8.7 Problems 217
MATLAB Source Codes 218
Python Source Codes 227

9 Matrix II: Nonlinear Equations 241

9.0.1 Multi-Dimensional Newton-Raphson Methods 242
9.0.2 Broyden method: (Multidimentional Secant Method) 244

9.1 Minimization of Mutivariable Non-Linear Functions 245
9.2 Applications in Physics 245

9.2.1 Steady states in Laser Dynamics 245
MATLAB Source Codes 247
Python Source Codes 250

CONTENTS xiii

10 Matrix III: Eigenvalue Problems 255

10.1 The Power Method 256
10.2 Jacobi Transformation 261
10.3 Advanced Methods 264

10.3.1 Triangular Matrices 264
10.3.2 Tridiagonal Matrices 264
10.3.3 Householder Reduction 265
10.3.4 QR Method 265

10.4 Applications in Physics 266
10.4.1 Coupled Harmonic Oscillators 266
10.4.2 Chains of Atoms 267

10.5 Problems 271
MATLAB Source Codes 272
Python Source Codes 279

11 Discrete Fourier Transform 289

11.1 Discrete Fourier Transform 290
11.2 Fast Fourier Transform 292
11.3 Remarks on the use of canned routines in MATLAB and Python 294

11.3.1 Forward or Backward Transformation 295
11.3.2 Prefactor in front of the Summation 295
11.3.3 Input/Output Format: Bit Reversed or Not 295
11.3.4 Input/Output format: Periodicity 296

11.4 Applications in Physics 298
11.4.1 Laplacian operator 298
11.4.2 Correlation Functions 299
11.4.3 Spectral Analysis 300
11.4.4 Wave Function in Momentum Space 301

11.5 Problems 303
MATLAB Source Codes 304
Python Source Codes 309

12 Data Fitting 317

12.1 Spline 318
12.1.1 Linear Spline 318
12.1.2 Cubic Spline 319
12.1.3 Vandermonde matrix 320
12.1.4 Lagrange Polynomial 321

12.2 Least Square Fitting 322
12.2.1 General Theory 322
12.2.2 Linear Regression 324

xiv CONTENTS

12.2.3 General Linear Least Square Fitting 325
12.2.4 Nonlinear Least Square Fitting: Gauss-Newton method 326

12.3 Applications in Physics 328
12.3.1 Arrhenius Plot 328
12.3.2 Life Time Broadening in Optical Spectrum 328

12.4 Problems 330
Appendix 331
MATLAB Source Codes 332
Python Source Codes 339

13 Partial Differential Equations I: Parabolic Equations 351

13.1 Diffusion Equation 352
13.2 Boundary Conditions 353
13.3 Forward Time Centered Space method 355
13.4 Runge-Kutta time evolution 357
13.5 Higher spatial dimensions 357
13.6 Schrödinger Equations 358

13.6.1 Crank-Nicolson method 359
13.7 Applications in Physics 360

13.7.1 Quantum Tunneling 360
13.7.2 Pattern Formation 361
Program Lists 364

14 Partial Differential Equations II: Schrödinger Equation 369

PART II COMPUTER SIMULATION

15 Random Numbers 373

15.1 Stochastic Variables 373
15.2 Uniform Random Numbers 374
15.3 Non-uniform distributions 376
15.4 Gaussian random number 378

15.4.1 Exponential distributions 380
15.4.2 Evaluation of Mean 380

15.5 Applications in Physics 381
15.5.1 Thermal Speed 381
15.5.2 Sedimentation-diffusion equilibrium 382
15.5.3 Surface Growth: Random Deposition Models 382

15.6 Problems 386
MATLAB Source Codes 387
Python Source Codes 395

CONTENTS xv

16 Random Walks 405

16.1 One-dimensional Random Walk 405
16.2 Persistent Random Walk 407
16.3 Multi-dimensional Random Walk 408
16.4 Applications in Physics 409

16.4.1 Diffusion Limited Aggregates 409
16.4.2 Dendrites 411
16.4.3 Parrondo Paradox 413

16.5 Problems 414
MATLAB Source Codes 415
Python Source Codes 422

17 Metropolis Method 431

17.1 Metropolis Algorithm for Thermal Equilibrium 432
17.2 Applications in Physics 434

17.2.1 Ferromagnetic Phase Transition: 2D Ising Model 434
17.2.2 Percolation 436
MATLAB Source Codes 442
Python Source Codes 448

18 Langevin Equations 457

18.1 Langevin equation 458
18.1.1 Definition 458
18.1.2 Overdamped Langevin equations and Wiener Processes 459
18.1.3 Ornstein-Uhlenbeck process 460
18.1.4 Numerical Algorithm: the Heun method 460

18.2 Applications in Physics 467
18.2.1 Brownian Motors: Flashing Ratchet 467
18.2.2 Stochastic Resonance 468

18.3 Problems 470
MATLAB Source Codes 472
Python Source Codes 480

19 Optimization 491

19.1 Fitness Functions 492
19.2 Simulated Annealing 494
19.3 Genetic Algorithm 496
19.4 Applications in Physics 501

19.4.1 Fitting to Gaussian Distribution 501
19.4.2 Thomson problem 502

19.5 Problems 504

xvi CONTENTS

MATLAB Source Codes 505
Python Source Codes 514

LIST OF FIGURES

1.1 64-bit string for floating point expression. The last bit is used for the sign and 11 bits from b52 to
b62 express the exponent. The remaining 52 bits express the mantissa. 7

1.2 Discreteness of floating point numbers. ε is the machine epsilon discussed in Sec. 1.6. 7

2.1 Illustration of various numerical derivatives. The exact derivative is the slope of the curve at
x, which is shown as the dotted line. The forward finite difference method shown in green
underestimates the slop whereas the backward finite difference method shwon in blue overestimates
it. The mean finite different method shown in red looks very close to the exact derivative. 26

2.2 Output of Example 2.1. The left panel shows numerical derivatives for wide ranges of h. As h
decreases from h = 1 to h = 0.01, the derivative converges to 1 (at least in our eyes). As h further
decreases, the values of all methods remain the same until h ≈ εm. Below it, the derivative abruptly
goes to 0. The numerical method fails due to round-off error. To see more details, the right panel
plots the error. As h decreases, the error of the forward and backward finite difference methods
decreases in the same way as h until h ≈ 10−8 but the error increases when h is further reduced.
The mean finite difference method shows smaller error than the two other methods and the error
decreases as h2 up to h ∼ 10−5. The best result is given by the mean finite difference method with
h ≈ 10−5. 28

3.1 Illustration of simple numerical integration methods 38

3.2 Output of Example 3.1. 42

3.3 Due to the divergence at x = 0, it is difficult integrate the original function (black line). The blue
line has the same singularity at x = 0 but can be analytically integrate. The difference (red line)
does not have a singularity and hence common numerical integration works fine. 45

xvii

xviii LIST OF FIGURES

3.4 Classical Oscillation 47

3.5 Geometry of scattering in relative coordinate. 48

3.6 The left panel shows the original integrand. The green area need to be numerically integrated.
The right panel shows the integrand after the singularity is removed. The blue area need to be
integrated. Note the difference in scale between two plots. The blue area is much smaller than the
green area. Parameter values k = a = E = 1 are used. 49

3.7 Correction term, the integral in Eq. (3.50). 52

4.1 A root of the quadratic equation εx2 + x+ 1/4 = 0 is evaluated with two different methods with
ε < 1. The left hand side of Eq. (4.4) is initially approaching to the correct limit as ε decreases.
However, it goes erroneous below ε = 10−5. On the other hand, the right hand side steadily
converges to the right answer. 66

4.2 Bisection method. Starting with initial bracket (x0, x1), the bracket is at each iteration halved to
(x2, x1), (x2, x3), (x2, x4), (x5, x4), · · · . 69

4.3 Newton-Raphson method. Starting with initial guess x0, the line tangent to the curve at the current
point xn is used to find a new imroved root xn+1. If the initial guess x0 is close enough to the true
root, this procedure rapidly converges to it. 69

4.4 The function used in Example 4.4. The smallest positive root is bracketed between 0.2 and 0.8
(between the dashed lines) by visual inspection. 72

4.5 Ferromagnetic Phase Transition 74

4.6 Quantum particle in a finite suare well 75

5.1 Illustration of the Euler method 95

5.2 Illustration of the Predictor-Corrector Method 97

5.3 Output of Example 5.1. The left panel shows the velocity as a function of time. All three lines look
identical. The right panel shows the absolute errors. The error in the predictor-corrector method is
clearly square of the error in the Euler method. 98

5.4 Illustration of the second order Runge-Kutta Method. 98

5.5 Output of Example 5.2. The left panel shows the velocity as a function of time. All three lines look
identical. The right panel shows the absolute errors. The 4th order Runge-Kutta method is clearly
more accurate than the 2nd order method. 101

5.6 Output of Example 5.3. The left panel shows the velocity as a function of time. The circles on the
top indicates the time step. The right panel shows the absolute errors which remains below the
tolerance 10−3. 103

5.7 Output of Example 5.4. Left: The velocity of each car. At the end two cars travel at the same
velocity. Right: The difference in velocities. The velocity difference decreases exponentially. The
2nd order Runge-Kutta method with h = 0.02 is used. 104

5.8 Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion is
integrated with 4th order Runge-Kutta method (h = 0.05). Right: Absolute error. The error is very
small but gradually increasing as the number of iterations increase. 105

LIST OF FIGURES xix

5.9 Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion
is integrated with Verlet method (h = 0.05). Right: Absolute error. The error is small but
considerably larger that of 4th-order Runge-Kutta method in Fig. 5.8. 107

5.10 Limit cycle in the Brusselator dynamics. Parameter values: a = 1 and b = 2.3 107

5.11 Left: Erroneous oscillation in the magnitude of electric field. Right: Three–dimensional phase plot
of E, P and D showing a strange attractor. Parameter values: Type C in Table 5.1 and λ = 23 109

5.12 Left: The trajectory of the oscillators. Each oscillator has its own natural frequency ω1 = 1.0
and ω2 = 1.2. Initially the two oscillators are out of phase. Despite of these differences, they
are quickly synchronized and oscillate at the same frequency. Left: the phase difference rapidly
changes at the beginning but settles to a constant phase difference. [The 2nd-order Runge-Kutta is
used with h = 0.01.] 110

5.13 The numerical instability with the Euler method. Left: Time evolution of angular coordinate θ.
The result of the Verlet method oscillates periodically as expected. However, the output of the
Euler method oscillates with increasing amplitude and diverges at the end. Right: Mechanical
energy. The energy with the Verlet method conserves but that of the Euler method keeps increasing.
Integration step size h = 0.01 is used. 112

5.14 Scattering by a screened Coulomb force. Left: trajectories with different impact parameters.
Notice the shadow cone behind the target where the particle cannot enter. Right: Scattering angle
θ determined by the simulation. 113

5.15 Chaotic motion of a double pendulum. Left: Two angular coordinates are randomly drifting.
Right: The trajectory of the bottom bob shows chaotic motion. Parameter values: m1 = 2 kg,
m2 = 1 kg, L1 = 1m, L2 = 2m, h = 0.02.] 114

5.16 A spring pendulum for Problem 5.3. 116

6.1 The output of Example 6.1. Improvement of the solution as the secant method is iterated. Initial
guesses (step 1 and 2) are far from the correct answer but the iteration quickly converges to the
right answer. 145

6.2 The output of Example 6.2. Left: The profile of the charge density (black), the numerical potential
(red) and exact solution (blue). Right: The boundary value of the derivative is iteratively optimized
to the correct boundary condition. 147

6.3 The numerical solution (red) to Eq. (6.13) is compared with the airy function (blue) provided by
MATLAB. Two curves are normalized at x = 0. 149

6.4 Left: The numerical solution to Eq. (6.19). Right: Error after each secant iteration. 151

7.1 Illustration of the shooting method. Equation (7.4) is integrated with three different values of λ.
When λ = −9 (blue) , the solution overshoots the target boundary. On the other hand, when
λ = −11 (turquoise), the solution undershoots it. Therefore, the correct answer should be between
the two values. When λ = −9.8696044 (red), the solution hits the target and thus it is the eigenvalue.172

7.2 Wave functions of quantum harmonic oscillator. Left: Symmetric state. When the value of λ is not
right (blue and turquoise), the wave function is not smoothly connected at x = 0. When λ is the
correct eigenvalue, the curve is smooth everywhere. Right: Anti-symmetric state. Similarly to the
symmetric function, when the value of λ is not right (blue and turquoise), the wave function jumps
at x = 0. 173

xx LIST OF FIGURES

7.3 Wavefuntions and eigenvalues of a quantum bouncing particle. Left: The energy eigenfunctions of
the lowest three states. Right: The levels of the three lowest energy eigenstates. 174

7.4 Left: The Morse potential and the three lowest eigenvalues. Right: Wavefuntions corresponding
toe the three eigenvalues shown in the left panel. 176

8.1 After two steps of forward elimination, 3-by-3 submatrix remains non-triangular. To find the next
pivot, find the maximum of A33/S3, A43/S4, and A53/S5. The row carrying the maximum goes
to the top of the submatrix. 204

8.3 A small example of tree graph. It has 10 vertices and 9 edges.However, there is no loop. 217

9.1 Diagram of 2D Newton-Raphson step. Left: The landscape of f1(x). The thick line indicates
the nullcline f1(x) = 0. Starting at the initial guess (circle), −∇f1(x) (arrow) tells the steepest
descent toward the nullcline. Center : The landscape for f2(x). Similar to the left panel, the arrow
point to the nullcline f2(x) = 0. Right: The superimpose of the left and center panel. The crossing
points of two nullclines are the solutions. The vector sum of two steepest descent direction (black
arrow) approximately points the solution. 242

9.2 Convergence of Example 9.1. Starting at x = 1 and y = 0, the Newton-Raphson procedure
gradually improves the output toward the root of nonlinear equation (9.14). The step factor α = 0.1
is used in this case. 245

9.3 Fixed points of the Maxwell-Bloch equations for typa A laser. (See Section 4.3.2 for parameter
values.) After several iteration, the Newton-Raphson method converges to the solution. 246

10.1 Two different boundary conditions for the chain of atoms. 268

10.2 Tight binfing model of atomic chains with two different boundary conditions. The wavefunctions
corresponding to the lowest three energy are plotted. 269

10.3 A chain of atoms with an impurity at K = 3. The wavefunctions of lowest three energy states
are plotted. Note that electrons in the lowest two energy states do not hop to atom 1 and 2. The
impurity seems blocking it. 270

11.1 Bit reversed order for N = 8. 295

11.2 Fast Fourier transform of a gaussian function. Top left: The original function value centered
around t = 0. The dashed lines indicate the lower and upper bounds at ±T/2. Bottom left: The
lower half (t < 0) of the function is shifted by T . Now the bounds are (0, T) indicaed by the dashed
line. Top right: Fourier transform of the Gaussian generated by MATLAB function ifft(). The
lower and upper bounds of the frequency is 0, Ω = 2πN/T indicated by the dashed line. Bottom
right: The upper half of the data is shifted by −Ω. Now, the Fourier transform is peaked around
ω = 0. 297

11.3 Fourier transform of the Gaussian distribution, which is again Gaussian in the Fourier space. The
output of FFT agrees well with the exact solution. 298

11.4 Laplacian by FFT: Output of Example 11.1. 299

11.5 Normal modes of coupled oscillators by spectral analysis. Left: Trajectories of each oscillators. It
looks quite random. However, they are just a combination of three periodic motion. Right Power
spectrum of the trajectory. Three peaks corresponding to eigenfrequencies are sharp and clear. The
dashed lines indicates the eigenfrequencies obtained by eigenvalue anaysis in Sec. 9.3.1. They all
match to the peak positions. 301

LIST OF FIGURES xxi

11.6 The probability density in momentum space for a quantum harmonic oscillator 302

12.1 Linear and cubic spline of the data given in Exampel 12.1. The dashed curve is the original function
from which the data set was generated. 320

12.2 Polynomial Fitting of random data given in Table 12.1. The open circles show the original data and
the line plots the interpolation by the polynomial obtained by the Vandermonde matrix. 321

12.3 Linear regression: The solid line is obtained by the linear regression formula (12.28) with σi = 1.
Despite that the data is noisy, the fitted line represents the data set very well. 325

12.4 Least square fitting of the data set in Table 12.3 with a quadratic function. THe error bar is large
where the data is close to zero. The χ2 function allows those points to stay off the curve but not
too far. 326

12.5 The least square fitting of the reaction rate. (a) The fitting is done with variables log k and β sicne
the theory perdict a straight line with those variables. The fitted line (solid line) matches well to the
data set (open circle). (b) The fitted curve is shown in the original variable k and T . The cureve is
no longer a straight line but represent the data set quite well. 329

12.6 Nonlinear least square fitting of the noisy data set in Table 12.5 with a Lorentzian function. Left;
Depite of the error bars, the Gauss-Newton method managed to fit the data to the desired function.
Right: The χ2 decreases as the iteration proceeds. 330

13.1 Three different types of boundary conditions for diffusion equations. (a) The particle is reflected
by the wall [Neumann boundary]. (b) The particle is perfectly absorbed on the wall [Dirichlet
boundary]. (c) Some particles are reflected and others absorbed on the wall with a transition rate
kon. The particles on the wall can desorb with a transition rate koff. This situation can be dealt with
the Robin boundary condition. 353

13.2 A solution to the diffusion equation with the Neumann boundary at x = ±10. The left panel shows
the time-evolution of the density at from t = 10 to t = 100, starting with an initial condition,
ρ(x, 0) = δ(x). The right panel shows the density at t = 20, which is in good agreement with the
exact solution. 356

13.3 Quantum tunneling through the square potential barrier. The left panel shows the probability
density of the initial wave packet moving toward the potential barrier. The right panel shows the
probability density after the collision with the potential barrier. A broad peak in the right side of
the potential barrier indicates that the fraction of the packet tunnels through the barrier. 360

13.4 Time evolution of pattern formation. Initially, the chemicals are randomly distributed. As time
goes, a pattern begins to appear. By t = 100, a two dimensional crystal like structure is formed.
However, the pattern does not have a precise periodicity or symmetry yet. At t = 2000, the system
reaches a steady state. The spot size is now identical and they form a hexagonal close-packing
structure. Parameter values are a = 2.5, b = 5.0, Du = 0.2, and Dw = 1.6. Periodic boundary
condition with L = 20 is used. The discretization parameters are h = 1, and ∆t = 0.125× 10−2. 362

15.1 Virtual Die 375

15.2 Monte Carlo method to evaluate the area inside a circle. The area inside the circle equals
4Nred/(Nblue +Nred) where the factor 4 is the area of the square. 376

15.3 Monte Carlo evaluation of the volume of hypersphere. As the number of sampling points increases,
the result approaches to the exact value. 377

xxii LIST OF FIGURES

15.4 Mapping from random number x uniformly distributed between 0 and 1 to y exponentially
distributed from 0 to∞. The transformation function is y = − ln(x). 378

15.5 Two generators of normally distributed random generator. The distribution is constructed from
100,000 realizations. The distribution of S12 is strictly zero for |x| > 6 and thus rare events are not
included. In principle, the Box-Muller method can generate rare random numbers. However, it is
so rare that |x| > 6 is not realized with this 100,000 sampling. 379

15.6 Generating histogram from continuous random numbers. Circles indicate the random numbers.
The number of the circles in a bin corresponds to the height of the bar above it. 380

15.7 Snapshot of the sedimentation diffusion equilibrium 382

15.8 A random deposition model with surface relaxation. The lateral position is randomly selected and
a particle is placed on the surface particle from the above. Then, it steps down to the local minimum. 383

15.9 Surface growth with the ballistic deposition model without surface relaxation. 384

15.10 Surface growth with the ballistic deposition model with surface relaxation. 385

15.11 Growth of a surface based on a ballistic deposition model with possibility of overhang structures. 386

16.1 One-dimensional discrete random walk. The blue arrows indicate a realization of 6-steps trajectory,
RRLRRL 406

16.2 Monte Carlo simulation of discrete random walk. 100000 trajectories are used to get the statistics.
Left: The solid and dashed red lines show the mean trajectory and the deviation from the mean.
Thin solid lines are individual trajectories. Right: The distribution at step N = 1000. It fits exactly
to the Gaussian distribution (red line) with variance σ2 = N . 407

16.3 Simulation of persistent random walk. 100000 trajectories are sampled with a persistent jump
probability p = 0.75. The left panel shows that the mean position remains zero but the variance
grows faster than that of the normal random walk. The right panel shows the distribution of the
particles. The red line indicates the distribution of the normal random walk (Gaussian). 408

16.4 Simulation of two-dimensional discrete random walk. Statistics is taken over 100000 trajectories. 409

16.5 Two deposition models: In the ballistic deposition model, the particles do not diffuse. The lateral
position is randomly selected and stick to the first particle in a cluster. In the diffusion limited
model, on the other hand, the particles diffuse laterally as well as vertically. They stick to the first
particle they hit. Due to the random walk, they can attached to the cluster at any location. 410

16.6 Diffusion limited aggregates (DLA) 412

16.7 Dendrite Crystals 412

16.8 Simulation of Parrondo Game. 50000 people played Games in a Casino. When they play only
Game A, on average people lose their money. Similarly, only Game B is played, again on average
people lose their money. Now they play Game A for several times and switch to Game B. After
playing Game B for several times switch back to Game A. Then, repeat this many times. You
always win! 413

17.1 Velocity distribution generated by the Metoropolis method. The red line plots the Maxwell
distribution. 434

LIST OF FIGURES xxiii

17.2 Examples of coupling energy. Left: Each f the four pairs has energy −J and thus the total energy
is −4J . Right: Two pairs have energy −J each and the other two pairs have +J each. Therefore,
the total energy is zero. 436

17.3 Snapshot of the microscopic states. Blue sites indicate spin-up and yellow spin-down. When
temperature is well below the critical temperature (a), one color dominates. This sample happens
to be dominated by yeallow but states dominated by blue also happens with the equal probability.
Well above the critical temperature (c), blue and yellow are scatted evenly. Although a large
clusters are sill seen, they should disappear as temperature goes up further. Near the critical
temperature (b), blue and yellow are equally likely but each color forms a large cluster. along with
many smaller clusters. 437

17.4 Sampling of magnetization. The horizontal axis indicates the individual sample. When
temperature is well below the critical temperature (a), all sampled state have similar large negative
magnetization. The flusctuation is rather small. Well above the critical temperature (c), all sampled
state have small magnetization close to zero. The fluctuation is bigger than that of (a) due to
higher temperature. Near the critical temperature (b), each sample has quite different value of the
magnetization. The fluctuation of (b) is even larger than that of the higher temperature state (c). 437

17.5 Monte Carlo Simulation of Ising model. The dashed line indicates the theoretical prediction of
the critical temperature. The top panel shows the spontaneous magnetization below a critical
temperature around T = 2.4. The heat capacity has a sharp peak at the critical temperature as
shown in the middle panel. On the other hand, the energy plotted in the bottom panel does not
show any dramatic change across the transition points. 438

17.6 Realization of clusters on the 32× 32 lattice. No percolation is observed for p = 0.50. Increasing
the probability to p = 0.58, a large cluster (red) shows percolation in the horizontal direction. 439

17.7 Hoshen-Kopelman cluster labeling scheme. (a) Inspect each site from the bottom left corner along
each column. Supposed that all sites upto the red one is already inspected and a label is assigned to
each cluster. In this example, there are four clusters labeled 1 through 4. Now we inspect if the red
site is a part of the previously known cluster. There are four five possibilities shown in (b) – (f). 440

18.1 A heavy particle experiences many collisions with smaller particles but its velocity remains the
same for a certain short period of time. The force exerted on the particle is the sum of the forces
by individual collisions over a period of time. In most times, the net force is nearly zero because
collisions take place on every direction. However, the number of collisions is finite and fluctuates
from time to time. Therefore, the net force also fluctuates and occasionally it is big enough to
change the velocity of the particle appreciatively. 458

18.2 Diffusion of the one-dimensional Brownian motion modeled by the overdamped Langevin equation.
Parameter values are T = 1, γ = 0.1, and thus D = 10. 463

18.3 Diffusion of the two-dimensional Brownian motion modeled by the overdamped Langevin
equations. Parameter values are T = 1, γ = 0.1, and thus D = 10. 463

18.4 Ornstein-Uhlenbeck process is simulated with the langevin equation. The parameter values M = 1
and γ = 0.1 is used. The theoretical correlation time is τc = 10. 466

18.5 Brownian harmonic oscillator. Parameter values M = 1, γ = 0.1, and k = 1 are used. The
Overdumpled Langevin equation (18.14) is integrated with ∆t = 0.005. 466

xxiv LIST OF FIGURES

18.6 Mechanism of a flashing ratchet. When the potential is on, the particles are localized near the
bottom of the potential. As soon as the potential is turned off, the particles diffuse. If there is an
external force, they also drift (to the left in this setting). By the time when the potential is turned
on again, the distribution is wide enough to reach adjacent potential minima. However, due to
the asymmetry in the potential, the chance that the particles go to the right is higher against the
external force. In this model the Brownian particles rectified the thermal fluctuation and move to
the right on average. 467

18.7 Langevin simulation of the flashing ratchet. The inset in the left panel shows the total potential
[Eq. (18.39)]. The solid line indicates the potential due to the external force to the right. Parameter
values kBT = 1, γ = 0.1, L = 1, U0 = 10, and Fext = 2 are used. The corresponding diffusion
constant is D = 10. The potential is alternatively on for τon = 10 and off for τoff = 10. The left
panel shows that the particles are moving to the left despite that the external force is applied to the
right. The mean position shown in the right panel indicates that the particles move to the left with
constant velocity on average. 469

18.8 Bistable potentials used in the stochastic resonance model. 469

18.9 Stochastic Resonance. The upper panels show the trajectories of the Brownian particle and
the lower panels plot the power spectrum of the corresponding trajectories. Parameter values
U0 = 10, A = 1,Ω = 0.5 are fixed. There different noise intensity, D = 0.5 (left), D = 1.2
(center) and D = 2.0 (right) are used. The trajectory in the center panel shows that the Brownian
particle roughly flows the input signal. The power spectrum clearly shos a peak at ω = Ω,
indicating that the input and output signals are in resonance. 471

19.1 Local minimization along the downhill goes down to the local minimum. The global optimization
must find the global minimum and thus the search method must be able to go over the barriers
between minimums. 492

19.2 The particles can jump between two minimums over the barrier. The transition rate k→. from the
deeper minimum at x1 to the shallow minimum at x2 is smaller than the other direction of transition
rate k←. Its ratio is given by k→/k← = e−∆F/T . The particle current is N1k→ −N2k← where
Ni is the number of particle in the basin of i-th minimum. At thermal equilibrium particle current
must vanish (detailed balance). Therefore, N1/N2 = k←/k→ > 1. At thermal equilibrium, more
particles are found in the deeper minimum than the other. 494

19.3 Searching a global minimum by the simulated annealing method. Eight samplers explore the
landscape of the fitness function based on Metropolis method. (a) The fitness landscape shows
several local minimums and the rather high barrier between minimums. At the end of the annealing
three out of eight samplers are trapped in the basin of the global minimum. The remaining samplers
are trapped in local minimums. (b) The evolution of the temperature indicates the exponential
cooling schedule. The lowest fitness values among the population randomly changes when the
temperature is high. As temperature is reduced, the samples are trapped in basins of minimums
and the lowest fitness value no longer changes significantly. 496

19.4 Schematic diagram of genetic algorithm. Evolution of a species which has only one gene. The
population consists of four individuals. The horizontal axis indicates genotype. The genes of the
first generation are chosen at random. A half of the population die due to the high fitness values.
The remaining two individuals become a bleeding pair and generate two children whose genotype
is between parent’s gene. Now the size of population is back to four. The same process is repeated.
The third and forth generations are shown. The unfit individuals die and the survived individuals
are localized near the global minimum. 497

LIST OF FIGURES xxv

19.5 Effects of mutation: The left panel shows that all four individuals are trapped in the basin of a
local minimum. Their children will be also in the same basin. To avoid this situation, an individual
jumps to a random location (pink). This is the mutation. After the mutation, the individuals with
higher fitness values die. If the mutated individual happened to fit better than others, it survives.
The children born from the mutant are now outside of the basin of the local minimum. Now the
four individuals are spread over three different minimums and thus the diversity of the population
increased by the mutation. 497

19.6 Knuth shuffle algorithm 499

19.7 The evolution of the best fitness value. The best gene of the population gradually improves as the
generation moves on. After 20th generation, the best fitness stays almost constant, indicating that
the global minimum is discovered. 501

19.8 The noisy data (Table 19.1) is plotted with red circles with the error bars. The solid line is the result
of the optimization using the genetic algorithm. 502

19.9 Thomson problem: Place N point charges on the surface of a sphere such that the electrostatic
potential energy is at the global minimum. 503

LIST OF TABLES

1.1 Common binary strings and their capacity 4

1.2 The range of unsigned and signed integers in MATLAB 5

3.1 Weights and Abscissas for Gaussian-Laguerre quadrature 55

3.2 Weights and Abscissas for Gaussian-Hermite Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative
abscissas are shown. 56

3.3 Weights and Abscissas for Gaussian-Legendre Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative
abscissas are shown. 57

5.1 Parameter sets for Maxwell-Bloch equation. 109

7.1 The first five roots of airy function Ai(x) and eigenvalues by numerically solving the Schrödinger
equation (7.8). 174

7.2 Values of the constants for the Morse potential. 175

12.1 Data for polynomial fitting 319

12.2 Data set for Example 12.5. 324

12.3 Data set for Example 12.5. 326

12.4 Reaction rate k as a function of absolute temperature T . The reaction rate is in an arbitrary unit.
The bottom two rows show log k as a function pf β = 1/kbT . 328

xxvii

xxviii LIST OF TABLES

12.5 Data set for Lorentzian 329

12.6 Decay rate of a radioactive nuclide. 330

19.1 Data set for Gaussian distribution 501

PREFACE

To be written.

R. Kawai

Birmingham, Alabama

January 2018

xxix

ACKNOWLEDGMENTS

Many thanks to students in PH423 and PH762

R.K.

xxxi

PART I

NUMERICAL EVALUATIONS OF
MATHEMATICAL EXPRESSIONS

CHAPTER 1

NUMERICAL VALUES AND QUANTIZATION ERRORS

Human brains understand conceptually continuous quantities such as real numbers as well as discrete quanti-
ties such as integers and characters. On the other hand, if you are asked to write down a continuous number
explicitly, you quickly realize that it is not possible. For example, we cannot write down the exact value of
π as a string of numbers. We can write it only approximately like 3.14. When we calculate mathematical
expressions symbolically, we don’t have to worry about errors caused by such approximation.. However,
when we calculate numerically, we use such approximation unless the number is integer or exact fraction.
The situation is similar to hand calculation we do regularly. When we carry out a lengthy calculation, we
often write down intermediate values temporarily on the back of envelope with only finite figures and use
them at a later time. They are not exact numbers but we hope accurate enough in practice. The current
digital computers work essentially in the same manner. We must keep it in our mind that digital computers
can understand only very limited numbers as we discuss in this chapter. We have to ask computers only
what they can understand. When we force computers to do something beyond their capabilities, they often
pretend that they understood it and give us an answer, but a wrong one. At present computers are not
smart enough to tell what they can do and what they cannot do. Therefore, we first need to understand
how the digital computers handle numerical quantities and their limitation.

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

3

4 NUMERICAL VALUES AND QUANTIZATION ERRORS

Table 1.1: Common binary strings and their capacity

Size in bits Size in bytes number of different expressions
8 1 28=256
16 2 216=65536
32 4 232=4,294,967,296
64 8 264=18,446,744,073,709,551,616

1.1 Bits

The current digital computers are mostly binary machines∗ and use a bit b as the smallest unit of information
where b = 0 or 1 (or we write it equivalently as b = {0, 1}). Inside a computer, information is generally
encoded in a string of bits such as 01100101000101100 · · · . The number of unique expressions depends on
the length of the string, which is measured as the number of bits. An N -bit string

N -bit string = bN−1bN−2 · · · b2b1b0

can express 2N different values. For instance, there are only four possible realizations of a 2-bit string: 00,
01, 10, 11. N can be very large but always finite and limited by the size of hardware.† The common lengths
of the binary string in the present computers are 8, 16, 32, and 64. The string of 8 bit is called a byte. The
number of different expressions these strings can have is shown in Table 1.1.

We encode numbers and characters in binary strings and decode binary strings to get human-readable
information. Encoding/decoding is not a one-to-one map. The same one byte of string may correspond to
multiple different things, integer, character, and others as shown in the following sections. Some computer
languages (dynamical language) choose an appropriate encoding scheme based on the context but in compiler-
based languages, programmers must declare the type of quantity before using it or otherwise computer issues
an error message.

1.2 Integers

Since integers are discrete and exact enumeration is possible, computers usually treat integers differently
from continuous numbers. That means 1 and ”1.0” are expressed in different binary strings. Encoding
integers are relatively simple. If an integer expressed in binary form

I =
N−1∑
k=0

2kbk

then the corresponding binary string
[bN−1 · · · b2b1b0]

For example, binary number 101 corresponds to integer 1 × 1 + 2 × 0 + 4 × 1 = 5. Noting that an 8-bit
binary string can express 256 different integers, it can express integers from 0 to 255. In general, an N -bit
string encodes integers from 0 to 2N − 1. Since negative integer is not included, this type of integer is called
unsigned integer.

∗We don’t consider q-bit used in quantum computers.
†Our brain also consists of a finite number of neurons but it is huge (about 1011). Despite of that, humans are able to develop
the concept of infinity and continuous numbers!

INTEGERS 5

Table 1.2: The range of unsigned and signed integers in MATLAB

unsigned signed
bits min max min max

8 0 255 -128 +127
16 0 65535 -32768 +32767
32 0 4294967295 -2147483648 +2147483647
64 0 18446744073709551615 -9223372036854775808 9223372036854775807

If a signed integer is needed, one bit of the binary string is used to specifies the sign, 0 for + and 1 for
−, and remaining bits are used for the magnitude. An 8-bit binary string spans from −128 to +127. Table
1.2 shows the range of other integer types. The default size of signed integer is 32 bit in most computer
languages. However, 64-bit integer is used for large scale calculation. Mots common CPUs cannot handle
integer larger than 64 bit. If more than 64 bit is needed, you must use a special numerical library.

MATLAB has 4 classes of unsigned integer, uint8, uint16, uint32, and uint64. Similarly, there are 4
classes of signed integer, int8, int16, int32, and int64. Functions intmax() and intmin() return the
smallest and largest integer values for a specified class. See Example 1.2.

EXAMPLE 1.1 Maximum and minimum of integers

>> intmax('int16')
ans =

32767
>> intmin('int16')
ans =

-32768

Exercise 1.1 Verify the data given in Table 1.2 using intmax and intmin.

If you don’t remember the type of variable, you can use MATLAB function class() to find it out. In
MATLAB the default type is real64.

EXAMPLE 1.2 Identify the type

>> y=int32(2);
>> class(y)
ans =

int32

6 NUMERICAL VALUES AND QUANTIZATION ERRORS

1.3 Characters

In English or most of western languages, the number of alphanumeric characters is less than 256. Hence, all
characters can be encoded in one byte (8-bit) binary string. In US, the encoding map is known as ASCII
(American Standard Code for Information Interchange)[1] and lower and upper cases of all letters and various
symbols are encoded in 7-bit strings. For example, ’A’=1000001B and ’a’=1100001B. (B at the end indicates
that the string is a binary code.) Note that integer 1=00000001B and character ’1’=00110001B in ASCII
are two different things. Sending 00000001B to a printer does not print 1. You need to convert number to
character string. When you type ’1’ on a keyboard, you are sending character ’1’ to computer. You need to
convert it to integer. I/O functions do that automatically. If you want to convert manually, use num2str()
and str2num. See Example 1.3.

Some languages use a lot more characters than 256. For example, Chinese uses a few thousand characters.
Therefore, 8-bit string is not large enough. Two-byte (16-bit) strings can encode 65536 characters, which
seems long enough for all languages.

EXAMPLE 1.3 Character-number conversion

>> num2str(12)
ans =

'12'
>> str2num('12')
ans =

12

1.4 Floating Point Numbers

There is no way to express real numbers in discrete systems. For example, we cannot express any irrational
number using a finite number of letters 0-9. Therefore, we express real number approximately using scientific
notation such as 1.32567 × 1012. Similarly digital computers use so-called floating point representation. A
single precision floating point stores a real number in a 32-bit string, of which 24 bits are used for mantissa.
The corresponding significant figure is log10 224 ≈ 7. The exponent part is 227 = 2−128 to 227−1 = 2127 which
is approximately 10−38 to 10+38. Usually, the single precision is not accurate enough for computational
physics. A double precision floating point uses a 64-bit string, 54 bits for mantissa and 10 bits for exponent.
The largest value the mantissa can express is 253 = 9007, 199, 254, 740, 992, which corresponds to significant
figure 16. The maximum exponent part is between 2−29 = 2−512 ≈ 10−308 and 229−1 = 2511 ≈ 10308.‡
Floating point encoding uses two different zeros, −0 6= +0.

Since the floating point numbers are quantized, there is always a gap between the nearest two floating
point numbers. Any values inside the gap cannot be expressed in standard computer languages, which may
causes inaccurate results due to quantization error.[2] The positive value next to zero is 1.1754944 × 10−38

for single precision. If we try to use a number between zero and the smallest floating point value, underflow
error occurs. We will discuss it in the next section.

‡The actual smallest value in many languages is 4.9406564584124654 × 10−324 for double and 1.401298 × 10−45 for single
because there is a better way (denormalized float) to handle small values. We do not discuss it here.

FLOATING POINT NUMBERS 7

sign exponent mantissa

b63 b52 b0

Figure 1.1: 64-bit string for floating point expression. The last bit is used for the sign and 11 bits from b52
to b62 express the exponent. The remaining 52 bits express the mantissa.

1

Figure 1.2: Discreteness of floating point numbers. ε is the machine epsilon discussed in Sec. 1.6.

Another gap we should pay attention to is the machine epsilon ε, the gap between 1 and next number
1 + ε (see Fig. 1.2). We will write a code to find the machine epsilon in the later section.

Some of floating point values are assigned to special meaning ±Inf = ±∞ and NaN = ”Not a Number”.
See Example 1.5.

EXAMPLE 1.4 Range of floating point numbers

% Print the smallest and largest double precision value.
>> fprintf('%25.16e, %25.16e\n',realmin(),realmax());

2.2250738585072014e-308, 1.7976931348623157e+308

Exercise 1.2 Find the largest and smallest values of single precision floating point numbers.

EXAMPLE 1.5 Special floating point numbers, Inf and NaN

Anyhing bigger than realmax is Inf (”infinity”) in the computer world. Undefined number such as 0/0
is NaN (”Not a Number”).

8 NUMERICAL VALUES AND QUANTIZATION ERRORS

>> realmax * 10
ans =

Inf
>> 0/0
ans =

NaN

Exercise 1.3 Evaluate 1/0 and 1/Inf. Are the outputs consistent with common mathematics?

1.5 Overflow/Underflow

If we try to use a value bigger than the computer can understand, what will happen? It results in Overflow
error. For example, if you try to store 1.0× 1060 into a single precision floating point variable, the value is
replaced by Inf. Similarly, if the value is too small, it is replaced with 0. For example, 1.0 × 10−60 is too
small for a single precision floating point. The zero may cause a problem later such as divided by zero.

In most cases, we can avoid the range errors at least for physics problems. Many quantities have dimension
and their values depend on the choice of units. Fortunately, dimensionless constants in physics are usually
order of 1 or close to it. Therefore, we can avoid the range error using appropriate units. However, there are
problems which contain intrinsically large numbers without units. For example, in statistical mechanics we
often evaluate N ! where N=number particles at the order of Avogadro constant NA = 6.02214129 × 1023.
There is no way to compute N ! directly. Even then there are tricks to calculate such large values (with help
of mathematics).

We can avoid the range error in the following ways:
1. Change the order of calculation so that large values do not appear during the
calculation.

2. Use different units so that numbers are not very large or small. For example,
if atomic unit is used, ~ = e = m = 1, and ε0 = 1

4π . The Bohr radius is simply
a0 = 1!. In the atomic world, it is better to measure distance using the radius of
hydrogen atom as a unit. See Example 1.6 for the calculation of a0 in SI units.

3. If x is too large, evaluate y = ln(x). Then, x = ey or if base 10 is used, x = 10y.
See Example 1.7.

EXAMPLE 1.6 Evaluation of Bohr radius

Evaluate the Bohr radius (the radius of a hydrogen atom)[3] in SI unit. The Bohr radius is given by

a0 = 4πε0~2

me2 where

ε0 (vacuum permittivity) = 8.854187817× 10−12F/m

~ (Planck constant) = 6.62606957× 10−34/2π,m2 kg/s

m (electron mass) = 9.10938291× 10−31 kg

e (elementary charge) = 1.602176565× 10−19C

OVERFLOW/UNDERFLOW 9

If you evaluate the numerator and denominator independently, each values may cause overflow error.
By grouping the numbers in an appropriate way, you can avoid the overflow error.

>> epsilon=single(8.854187817e-12);
>> hbar=single(6.62606957e-34/(2*pi));
>> mass=single(9.10938291e-31);
>> e=single(1.602176565e-19);
>> a=4*pi*epsilon*hbarˆ2/(mass*eˆ2)
a =

NaN

>> a=4*pi*(epsilon/mass)*(hbar/e)ˆ2
a =

5.2918e-11

Exercise 1.4 Evaluate the Bohr radius using double precision. Confirm that even the dumb method
causing the range error in the example is OK with double precision.

EXAMPLE 1.7 Factorial of large number

Factorial of a large integer is astronomically large. It is obviously an integer but too long to write it
down. For example, 1000! is as long as

4023872600770937735437024339230039857193748642107146325437999104299385123986290205920442084869694048004799886101971960586316668729948085589013238
2966994459099742450408707375991882362772718873251977950595099527612087497546249704360141827809464649629105639388743788648733711918104582578364784
9977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731
7461360853795345242215865932019280908782973084313928444032812315586110369768013573042161687476096758713483120254785893207671691324484262361314125
0878020800026168315102734182797770478463586817016436502415369139828126481021309276124489635992870511496497541990934222156683257208082133318611681
1553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837
6153071277619268490343526252000158885351473316117021039681759215109077880193931781141945452572238655414610628921879602238389714760885062768629671
4667469756291123408243920816015378088989396451826324367161676217916890977991190375403127462228998800519544441428201218736174599264295658174662830
2955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769
9586526822728070757813918581788896522081643483448259932660433676601769996128318607883861502794659551311565520360939881806121385586003014356945272
2420634463179746059468257310379008402443243846565724501440282188525247093519062092902313649327349756551395872055965422874977401141334696271542284
5862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021
1712298459016419210688843871218556461249607987229085192968193723886426148396573822911231250241866493531439701374285319266498753372189406942814341
1852015801412334482801505139969429015348307764456909907315243327828826986460278986432113908350621709500259738986355427719674282224875758676575234
4220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748
9980942547421735824010636774045957417851608292301353580818400969963725242305608559037006242712434169090041536901059339838357779394109700277534720
000
000

which is practically useless. In fact, MATLAB retuns Inf for 1000!. Therefore, we want to write it
approximately in scientific notation a× 10b.

In order to find the mantissa a and exponent b, first we evaluate logN ! as follows.

y = log(N !) = log(1 · 2 · 3 · · ·N − 1 ·N)
= log(1) + log(2) + log(3) + · · ·+ log(N − 1) + log(N) (1.1)

Once you found y, n! = ey. However, it is still not in scientific notation. First we change the base from
e to 10 as ey = 10z, where z = y log10(e). Then, n! = 10z. Next we split z to the floor k=bzc and the
residual δ = z−bzc. Now, we have n! = 10k+δ = 10δ × 10k and thus the mantissa is 10δ and power is k.
Using this method, 1000! ≈ 4.0239× 102567. The mantissa and the power are obtained in the following
way.

10 NUMERICAL VALUES AND QUANTIZATION ERRORS

>> factorial(1000)
ans =

Inf

>> y=sum(log(1:1000))
y =

5.9121e+03

>> z=log10(exp(1))*y
z =

2.5676e+03

>> power=floor(z)
power =

2567

>> mantissa=10ˆ(z-power)
mantissa =

4.0239

Exercise 1.5 Express 10000! in scientific notation.

1.6 Machine Epsilon

Although a double precision number covers from a small number 2.2250738585072014 × 10−308 to a large
number 1.7976931348623157× 10+308, it can distinguish only 18446744073709551616 values. There is a gap
between two closest floating point numbers. A floating point number next to 1 is 1 + ε where ε is called
machine epsilon, whose value depends on the systems. If you add a half of ε to 1, there is no floating point
expression to the answer. So what will happen if you try to calculate 1 + ε

2 . The computer thinks 1 + ε

2 = 1.
In the following example, you can find the machine epsilon of your computer.

EXAMPLE 1.8 Machine epsilon built in computer language

Most of computer languages have a function which returns the value of machine epsilon. Confirm that
1 + ε

2 = 1 using MATLAB command eps().

>> fprintf('%25.16e\n%25.16e\n%25.16e\n', eps(), 1+eps(), 1+eps()/2);
2.2204460492503131e-16
1.0000000000000002e+00
1.0000000000000000e+00

ROUND-OFF ERRORS 11

EXAMPLE 1.9 Machine epsilon appears even in a simple arithmetic calculation

It is easy to see that 5
3 −

2
3 − 1 and 7

3 −
4
3 − 1 are both exactly zero. However, computers don’t think

so. The former vanishes as expected but the latter equals to the machine epsilon.

]
>> 5/3-2/3-1
ans = 0
>> 7/3-4/3-1
ans = 2.2204e-16

EXAMPLE 1.10 Finding machine epsilon

To find machine epsilon, we check if 1 + 2−n is bigger than 1 for positive integer n. As n increases, 2−n
gets smaller and smaller. At a certain value of n, it becomes too small and computer thinks 1+2−n = 1.
Then, the machine epsilon is ε = 2−(n−1). Program 1.1§ finds the machine epsilon using this method.
The output is

32 bit floating point
Stopped after 24 iterations
machine epsilon by computation = 1.1920929e-07
machine epsilon by MATLAB = 1.1920929e-07
1 + epsilon = 1.00000012e+00
1 + epsilon/2 = 1.00000000e+00

The value agrees with the machine epsilon obtained by MATLAB command eps().

Exercise 1.6 Modify Program 1.1 and find the machine epsilon for double precision floating point.

1.7 Round-off Errors

When you apply some operation to two numbers such as addition, the resulting number may not exist in
floating point expression. The machine picks a nearest number. Therefore, every operation induces some
error called round-off error. Such an error is small but accumulates over many operations and significant
figures decreases after many operations. Such an error causes a fatal error when you subtract a number from
a very similar number. Suppose that two single floating point numbers have exactly the same first 5 digits.
The last two digits are not reliable due to the round-off error. Now you subtract one from the other, only
the last two digits remain in the outcome. Therefore, the outcome is not reliable at all. You must avoid the
such subtraction.

§Example codes are listed at the end of each chapter.

12 NUMERICAL VALUES AND QUANTIZATION ERRORS

The round-off error is an serious issue for digital computers. On February 25, 1991, during the Gulf War,
an American Patriot Missile battery in Dharan, Saudi Arabia, failed to track and intercept an incoming
Iraqi Scud missile. The Scud struck an American Army barracks, killing 28 soldiers and injuring around 100
other people. Patriot missile. Round-off error is suspected to have caused this tragedy.[4]

EXAMPLE 1.11 Accumulation of Round-off Error

For x = 1.2, add x 100000 times and compare the result with 100000× x. Mathematically speaking the
two calculation should give the same answer. See what your computer says.

>> x=single(1.2);
>> xsum=single(0);
>>for i=1:100000
xsum=xsum+x;
end
>>xmul=single(100000)*x;
>> fprintf('Iteration=%14.7e, Multiplication=%14.7e\n',xsum,xmul);
Iteration= 1.2011162e+05, Multiplication= 1.2000001e+05

Exercise 1.7

(a) Repeat Example 1.11 with x = 2. The error disappears. Why?

(b) Repeat Example 1.11 using double precision. Do you still see the round-off error?

1.8 Loss of Significance

Since the floating point expression of real numbers can keep only finite digits, we need to pay attention to the
significant figures like we do for hand calculation with approximate numbers. The error can be very severe
particularly when two similar numbers are subtracted from one another (known as catastrophic cancellation).
Foe examp,e let us calculate 0.123456789×10−5−0.123456700×10−5 using 32-bit floating point. The exact
value is 0.89× 10−12. Here is the MATLAB output:

>> x=single(0.123456789e-5)-single(0.123456700e-5);
>> fprintf('%16.7e',x)
9.0949470e-13

The significant figure is only one. The other digits ’949470’ has no significance but MATLAB prints them
out as if they are a part of the answer. If you use this number for other calculation, significant figures may
be reduces to none. The number you get may have no significance. We need to try to avoid subtraction of
similar numbers to keep the significant figures. Note that addition has no such problem.

LOSS OF SIGNIFICANCE 13

EXAMPLE 1.12 Catastrophic cancellation

Evaluate (x+ 1)2 − 1
x

for x from 10−1 to 10−17. Compare the numerical results with the exact solution,
x+ 2, which is always bigger than 2 for positive x. When x is smaller than machine epsilon, computer
thinks that x+ 1 = 1 and thus the result is zero!

Script:
for i=1:17
y(i)=((x(i)+1)ˆ2-1)/x(i);
z(i)=x(i)+2;
fprintf('x=%8.1e, direct=%10.7f, exact= %10.7f\n', x(i),y(i),z(i));
end

Output:

x= 1.0e-01, direct= 2.1000000, exact= 2.1000000
x= 1.0e-02, direct= 2.0100000, exact= 2.0100000
x= 1.0e-03, direct= 2.0010000, exact= 2.0010000
x= 1.0e-04, direct= 2.0001000, exact= 2.0001000
x= 1.0e-05, direct= 2.0000100, exact= 2.0000100
x= 1.0e-06, direct= 2.0000010, exact= 2.0000010
x= 1.0e-07, direct= 2.0000001, exact= 2.0000001
x= 1.0e-08, direct= 2.0000000, exact= 2.0000000
x= 1.0e-09, direct= 2.0000002, exact= 2.0000000
x= 1.0e-10, direct= 2.0000001, exact= 2.0000000
x= 1.0e-11, direct= 2.0000002, exact= 2.0000000
x= 1.0e-12, direct= 2.0001778, exact= 2.0000000
x= 1.0e-13, direct= 1.9984015, exact= 2.0000000
x= 1.0e-14, direct= 1.9984015, exact= 2.0000000
x= 1.0e-15, direct= 2.2204460, exact= 2.0000000
x= 1.0e-16, direct= 0.0000000, exact= 2.0000000
x= 1.0e-17, direct= 0.0000000, exact= 2.0000000

Exercise 1.8 Repeat Exercise 1.12 using double precision. Reduce the value x until the result deviate
significantly from the exact value.

EXAMPLE 1.13 Roots of Quadratic Equation

The solutions to quadratic equation ax2 + bx+ c = 0 are well-known:

x1 = −b−
√
b2 − 4ac

2a (1.2a)

x2 = −b+
√
b2 − 4ac

2a (1.2b)

For simplicity, we assume b > 0. Solution x1 does not cause a serious round-off error. However, when
b2 � ac, the other solution x2 involves subtraction of two similar numbers and thus it is vulnerable to

14 NUMERICAL VALUES AND QUANTIZATION ERRORS

catastrophic cancellation. The error is especially severe when a � b because the denominator is very
small and the situation is close to 0/0. Fortunately, there is a simple way to avoid this loss of significance.
Using the equality

x2 = −b+
√
b2 − 4ac

2a = −2c
b+
√
b2 − 4ac

= c

ax1
(1.3)

the subtraction causing catastrophic cancellation disappears. Similarly for b < 0, Eq. (1.2a) which may
cause catastrophic cancellation can be evaluated by

x1 = −b−
√
b2 − 4ac

2a = −2c
−b+

√
b2 − 4ac

= c

ax2
. (1.4)

There are many pitfalls with the floating point numbers. See more examples in Ref. [5].

Algorithm 1.1 Roots of Quadratic Equation

Roots of ax2 + bx+ c = 0 (a 6= 0 and b 6= 0).

x1 = −b− sgn(b)
√
b2 − 4ac

2a (1.5)

x2 = c

ax1
(1.6)

where

sgn(b) =
{

+1 b > 0
−1 b < 0

Problems

1.1 Evaluate the roots of ax2 + x+ 1
4 = 0 using the original formula Eqs. (1.2) and Algorithm 1.1. Reduce

the value of a as 0.1, 0.01, 0.001, · · · until it hits the machine epsilon. Note that the exact answer for
a = 0 is x = −1

4 . Observe that the original formula fails but the improved one works.

1.2 In statistical mechanics, factorial n! of huge integer n such as the Avogadro number often appears. It is
difficult to manage such a huge number even analytically. A common method to deal with such problem
is to use the Stirling formula[6]:

ln(n!) ≈ n ln(n)− n+ 1
2 ln(2πn) (1.7)

Then, the factorial can be approximated by

n! ≈
√

2πn
(n

e

)n
. (1.8)

LOSS OF SIGNIFICANCE 15

To verify the accuracy of this formula, compute the ratio R = n!√
2πn

(
n
e
)n for n = 10, 100, and 1000.

Verify that formula (1.8) approaches the exact value as n increases. Note that direct calculation of R is
hard but lnR can be easily evaluated.

Examples in Python

The core of Python does not have much of mathematical capabilities. It relies on modules. Here we use a
popular mathematical module, NumPy. You need to load the module before using mathematical objects. In
this lecture note, it is assumed that NumPy is loaded in the following way.

>>> import numpy as np

Hereafter it is assumed that numpy is imported as np.

1.2 Integer

Python has 4 classes of unsigned integer, uint8, uint16, uint32, and uint64. Similarly, there are 4 classes
of signed integer, int8, int16, int32, and int64. In NumPy functions iinfo().max and iinfo().min return
the smallest and largest integer values of the specified class.

EXAMPLE 1.1 Maximum and minimum of integers

In: np.iinfo(np.int16).max
Out: 32767
In: np.iinfo(np.int16).min
Out: -32768

EXAMPLE 1.2 Identify the type

16 NUMERICAL VALUES AND QUANTIZATION ERRORS

In: y=2
In: type(y)
Out: int

In: y=2.
In: type(y)
Out: float

1.3 Characters

EXAMPLE 1.3 Character-number conversion

In: str(12)
Out: '12'
In: int('12')
Out: 12

1.4 Floating Point Numbers

Python has 4 classes of floating point number. float16, float32, float64 and float128. The true
float128 is not available on common computers. If it is used, float128 is actually mapped to 80-bit float
on common 64-bit hardware. (Math co-processor on Intel 64-bit CPU uses 80-Bit floating point number.)
In NumPy functions finfo().max and finfo().min return the smallest and largest integer values of the
specified class.

EXAMPLE 1.4 Range of floating point numbers

Print the smallest and largest double precision value.
In: print("{0:25.16e},{1:25.16e}".format(np.finfo(float).min),np.finfo(float).max)
Out: -1.7976931348623157e+308, 1.7976931348623157e+308

LOSS OF SIGNIFICANCE 17

EXAMPLE 1.5 Special floating point numbers, Inf and NaN

If numpy is not used, Python returns an error message instead of inf.

In: x=np.finfo(float).max
In: x*10
__main__:1: RuntimeWarning: overflow encountered in double_scalars
Out: inf

In: np.float64(1.0)/0.0
__main__:1: RuntimeWarning: divide by zero encountered in double_scalars
Out: inf

In: np.float64(0.0)/0.0
__main__:1: RuntimeWarning: invalid value encountered in double_scalars
Out: nan

In: 1.0/0.0
Traceback (most recent call last):
File "<ipython-input-34-0dda708f6d03>", line 1, in <module>
1.0/0.0
ZeroDivisionError: float division by zero

1.5 Overflow/Underflow

EXAMPLE 1.6 Evaluation of Bohr radius

Python behaves quite differently from other languages. The product of two numbers in float32 is usually
again a number in float32. In most languages this is a strict rule. Python observes the same rule unless
the outcome causes underflow error. When the underflow happened, Python automatically switches to
float64. This may be a convenient feature but it is also annoying as well since the programmer cannot
control it. In the following, we force output to the float32 type.

18 NUMERICAL VALUES AND QUANTIZATION ERRORS

Script:
import numpy as np

Set the parameter values
pi=np.float32(np.pi)
epsilon=np.float32(8.854187817e-12)
hbar=np.float32(6.62606957e-34/(2*pi))
mass=np.float32(9.10938291e-31)
e=np.float32(1.602176565e-19)

Evaluate the denominator and numerator separately.
y=np.float32(mass*e**2)
x=np.float32(4.*pi*epsilon*hbar**2)
print("a=",np.float32(x/y))

Output:

a= nan

Script:

Evaluate them in a different order
>>> x=4.*pi*(epsilon/mass)
>>> y=np.float32((hbar/e)**2)
>>> print("a=",np.float32(x*y))

Output:

a= 5.29177e-11

LOSS OF SIGNIFICANCE 19

EXAMPLE 1.7 Factorial of large number

In: np.float(np.math.factorial(1000))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
OverflowError: int too large to convert to float

In: y=np.log(np.arange(1,1001)).sum();y
Out: 5912.128178488163

In: z=np.log10(np.exp(1))*y; z
Out: 2567.6046442221327

In: power=np.int(np.floor(z)); power
Out: 2567

In: mantissa=10**(z-power); mantissa
Out: 4.0238726007697423

Hence, 1000! ≈ 4.0238726008× 102567.

1.6 Machine Epsilon

EXAMPLE 1.8 Machine epsilon built in computer language

>>> print("{0:25.16e}\n{1:25.16e}\n{2:25.16e}".format(np.finfo(float).eps,
... 1+np.finfo(float).eps,1+np.finfo(float).eps/2))

2.2204460492503131e-16
1.0000000000000002e+00
1.0000000000000000e+00

EXAMPLE 1.9 Machine epsilon appears even in a simple arithmetic calculation

In: 5./3.-2./3.-1.
Out: 0.0
In: 7./3.-4./3.-1.
Out: 2.220446049250313e-16

20 NUMERICAL VALUES AND QUANTIZATION ERRORS

EXAMPLE 1.10 Finding machine epsilon

Output from example code: ch01pr01.py.

Machine epsilon for 64 bit floating point
Stopped after 53 itersations
machine epsilon by computation = 2.2204460e-16
machine epsilon by Numpy = 2.2204460e-16
1+epsilon = 1.00000000000000022204e+00
1+epsilon/2 = 1.00000000000000000000e+00

1.7 Round-off Error

EXAMPLE 1.11 Accumulation of Round-off Error

Script:
x=np.float32(1.2)
xsum=np.float32(0.0)
for i in range(1,100001):
xsum=xsum+x

xmul=np.float32(100000.)*x
print("Iteration={0:14.7e}, Multiplication={1:14.7e}".format(xsum,xmul))

Output:

Iteration= 1.2011162e+05, Multiplication= 1.2000001e+05

1.8 Loss of Significance

In: np.float32(0.123456789e-5)-np.float32(0.123456700e-5)
Out: 9.094947e-13

LOSS OF SIGNIFICANCE 21

EXAMPLE 1.12 Catastrophic cancellation

Script:
x=np.float32(10**(-i))
y=((x+1)**2-1)/x
z=x+2
print("x={0:8.1e}, direct={1:10.7f}, exact={2:10.7f}".format(x,y,z))

Output:

x= 1.0e-01, direct= 2.1000000, exact= 2.1000000
x= 1.0e-02, direct= 2.0100000, exact= 2.0100000
x= 1.0e-03, direct= 2.0010000, exact= 2.0010000
x= 1.0e-04, direct= 2.0001000, exact= 2.0001000
x= 1.0e-05, direct= 2.0000100, exact= 2.0000100
x= 1.0e-06, direct= 2.0000010, exact= 2.0000010
x= 1.0e-07, direct= 2.0000001, exact= 2.0000001
x= 1.0e-08, direct= 2.0000000, exact= 2.0000000
x= 1.0e-09, direct= 2.0000002, exact= 2.0000000
x= 1.0e-10, direct= 2.0000001, exact= 2.0000000
x= 1.0e-11, direct= 2.0000002, exact= 2.0000000
x= 1.0e-12, direct= 2.0001778, exact= 2.0000000
x= 1.0e-13, direct= 1.9984015, exact= 2.0000000
x= 1.0e-14, direct= 1.9984015, exact= 2.0000000
x= 1.0e-15, direct= 2.2204460, exact= 2.0000000
x= 1.0e-16, direct= 0.0000000, exact= 2.0000000
x= 1.0e-17, direct= 0.0000000, exact= 2.0000000

MATLAB Source Codes

Program 1.1

%***
%* Example 1.7 *
%* filename: ch01pr01.m *
%* program listing number: 1.1 *
%* *
%* This program finds a machine epsilon by evaluating *
%* *
%* 1 + 2ˆ(-n) > 1 *
%* *
%* At a certain positive n, this inequality becomes false. *
%* Then, the machine epsilon is 2ˆ(n-1). *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 10/13/2013 *
%***

22 NUMERICAL VALUES AND QUANTIZATION ERRORS

clear all; help ch01pr01;

%* Find the single precision machine epsilon
epsilon = single(1); % create a single precision variable
n = int8(0); % reset a counter

%* Reduce the value of epsilon until epsilon becomes too small
while 1+epsilon > 1

epsilon = epsilon/2;
n = n+1;

end

%* The smallest single floating value which can be added to one.
epsilon = epsilon+epsilon;

%* Show the results
fprintf('\n32 bit floating point\n');
fprintf('Stopped after %3d iterations \n',n);
fprintf('machine epsilon by computation = %16.7e \n',epsilon);
fprintf('machine epsilon by MATLAB = %16.7e \n',eps(single(1.0)));
fprintf('1 + epsilon = %16.8e \n',1+epsilon);
fprintf('1 + epsilon/2 = %16.8e \n',1+epsilon/2);

Python Source Codes

Program 1.1

"""
%***
%* Example 1.7 *
%* filename: ch01pr01.py *
%* program listing number: 1.1 *
%* *
%* This program finds a machine epsilon by evaluating *
%* *
%* 1 + 2ˆ(-n) > 1 *
%* *
%* At a certain positive n, this inenqualty becomes false. *
%* Then, the machine epsilon is 2ˆ(n-1). *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 12/27/2016 *
%***
"""

Find the machine epsilon for 64 bit float
epsilon = 1.0 # create a float64 variable
n = 0 # reset a counter

Reduce the value of epsilon until it becomes too small
while 1.0+epsilon > 1.0:

epsilon = epsilon/2.0
n = n+1

The smallest single floating value which can be added to one.
epsilon = epsilon+epsilon

Show the results
print("Machine epsilon for 64 bit floating point")
print("Stopped after {0:3d} itersations".format(n))
print("machine epsilon by computation = {0:16.7e}".format(epsilon))
print("machine epsilon by Numpy = {0:16.7e}".format(np.finfo(np.float).eps))
print("1+epsilon = {0:24.20e}".format(1+epsilon))
print("1+epsilon/2 = {0:24.20e}".format(1+epsilon/2.0))

Bibliography

[1] See for example Wikipedia. https://en.wikipedia.org/wiki/ascii.

[2] Bernard Widrow and István Kollár. Quantization Noise: Roundoff Error in Digital Computation, Signal
Processing, Control, and Communications. Cambridge University Press, 2008.

[3] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005.

[4] Robert Skeel. Roundoff error and the patriot missile. SIAM News, 25:11, nov 1992.

[5] David Goldberg. What every computer scientist should know about floating point arithmetic. ACM
Computing Surveys, 23(1):5–48, 1991.

[6] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.

23

CHAPTER 2

NUMERICAL DERIVATIVES

When we study physics, we often investigate the change of certain quantities. That is why basic calculus
plays a major role in physics. Evaluating the derivative of a function f(x) is an ubiquitous operation in
physics. However, an analytical expression of the derivative is not always available. Then, a numerical
method must be deployed to evaluate it. That is not only the reason we need numerical derivative. In
some cases an analytical expression of the function itself is not available. For example, when a function
is experimentally obtained by measurement, it is given as a set of numerical data, (xi, fi), i = 1, · · · , N .
Then, analysis of such data is always numerical. There are many algorithms for numerical derivative. In
this chapter, we study some of well-known algorithms useful for studying physics.

Numerical methods are in general not exact and involve systematic errors. Understanding the source of
errors and their magnitude is very important. It is possible to estimate the magnitude of expected errors
based on mathematical analysis and the study of numerical error is an important part of numerical analysis.
We will investigate the degrees of errors through theory and examples.

In this section, we assume that an analytical expression of function f(x) is given and that we can numer-
ically evaluate it at any point x. Furthermore, we assume that the numerical error in the evaluation of the
function is negligiblly small. In other words, the main errors occur when the derivative is evaluated.

2.1 First order derivatives

Let us look at the mathematical definition of derivative:
d

dxf(x) = lim
h↘0

f(x+ h)− f(x)
h

= lim
h↘0

f(x)− f(x− h)
h

(2.1)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

25

26 NUMERICAL DERIVATIVES

x−h x+hx

exact

Figure 2.1: Illustration of various numerical derivatives. The exact derivative is the slope of the curve at x,
which is shown as the dotted line. The forward finite difference method shown in green underestimates the
slop whereas the backward finite difference method shwon in blue overestimates it. The mean finite different
method shown in red looks very close to the exact derivative.

which involves limit operation which floating point calculation cannot not perform due to the quantization
(See Chap. 1). If h = 0 is used, we have 0/0=NaN. If h=realmin is used, f(x+ h)− f(x) is very inaccurate
due to round-off error as discussed in Chapter 1. If 1 � h > realmin is used, the both numerator and
denominator are finite but the ratio is not exactly the limit.

It is clear that direct numerical evaluation of Eq (2.1) is not possible. However, it is expected to be close
to the limit if an appropriately small value of h is used. Based on this naive argument, we hope that the
following forward finite difference method is close to the actual derivative with a certain small value of h.

d
dxf(x) ≈ ∆Ff(x) ≡ f(x+ h)− f(x)

h
. (2.2)

where ∆F is the forward finite difference operator. Similarly, we define the backward finite difference method

d
dxf(x) ≈ ∆Bf(x) ≡ f(x)− f(x− h)

h
. (2.3)

where ∆B is the backward finite difference operator. Unlike the exact limit (2.1) the forward and backward
finite difference methods do not agree each other due to the finite h. As illustrated in Fig. 2.1, one of them
overestimates and the other underestimates.

Now, we investigate how accurate the forward and backward finite difference methods are. We estimate
the order of error using Taylor expansion[1],

f(x+ h) = f(x) + h f ′(x) + h2

2 f
′′(x) + h3

3! f
(3)(x) +O

(
h4) (2.4a)

f(x− h) = f(x)− h f ′(x) + h2

2 f
′′(x)− h3

3! f
(3)(x) +O

(
h4) (2.4b)

FIRST ORDER DERIVATIVES 27

where O
(
h4) mean that the remaining terms with h4 and higher order.

Substituting the expansions (2.4) to Eqs. (2.2) and (2.3)), we find

∆Ff(x) = f ′(x) + h

2 f
′′(x) +O

(
h2) (2.5a)

∆Bf(x) = f ′(x)− h

2 f
′′(x) +O

(
h2) (2.5b)

where f ′ and f ′′ indicate the first and second order derivatives of f . The leading term in the error ∆F,Bf(x)−
f ′(x) is ±h2 f ′′(x), which is the order of h. This means that if h is small enough, the numerical methods
agree with the exact derivative. However, the error decreases only linearly with h. We need to remember
that if h is too small, the round-off error kills the accuracy. Hence, h cannot be too small. Error at the order
h is in general not acceptable and these methods are not accurate enough for practical applications.

There is a better method. Noting that the error in the forward and backward finite difference method is
exactly the same in magnitude but has opposite sign, we can get rid of the error at the order of h. Taking
the mean of the two approximations, we obtain

∆Mf(x) ≡ ∆Ff(x) + ∆Bf(x)
2 = f(x+ h)− f(x− h)

2h . (2.6)

where ∆M is a mean finite difference operator.
Substituting the expansions (2.4) to (2.6), we find

∆Mf(x) = f ′(x) + h2

3! f
(3)(x) +O

(
h4) (2.7)

Now, the error is at the order of h2 which is smaller than the previous error at h. The improvement is clearly
visible in Fig. 2.1.

Mathematically speaking, the small error in the mean finite difference method is related to the mean value
theorem[2] which states that there is at least one number c between a and b such that

f ′(c) = f(b)− f(a)
b− a

(2.8)

Let b = x+h and a = x−h, the right hand side of Eq (2.8) mathces to ∆Mf(x). Therefore, the mean finite
different method gives the slope of the curve at some point c between x+ h and x− h. When h is small, c
is apprximately x. Then, we obtain the mean finite difference formula (2.6).

The mean finite element method (2.6) is good enough for most application. If even a higher degree of
accuracy is needed, use the symmetric four-point method[3]

∆S4f(x) ≡ f(x+ 2h)− 8f(x+ h) + 8f(x− h)− f(x− 2h)
12h . (2.9)

Its error is at the order of h4.

Exercise 2.1 Using the Taylor expansion, verify that the error of symmetric four-point method is order
of h4.

How do we find an appropriate value of h? Considering the definition of derivative (2.1), one might expect
that smaller h provides more accurate result. However, when h is too small, the finite different methods

28 NUMERICAL DERIVATIVES

h
10 -20 10 -15 10 -10 10 -5 100

D
er

iv
at

iv
e

0

0.5

1

1.5

2

2.5
Numerical Derivative

forward

backward

mean

h
10 -20 10 -15 10 -10 10 -5 100

ab
so

lu
te

 e
rr

or

10 -20

10 -15

10 -10

10 -5

100

105
Errors in the finite difference methods

forward
backward
mean
h
h2

Figure 2.2: Output of Example 2.1. The left panel shows numerical derivatives for wide ranges of h. As h
decreases from h = 1 to h = 0.01, the derivative converges to 1 (at least in our eyes). As h further decreases,
the values of all methods remain the same until h ≈ εm. Below it, the derivative abruptly goes to 0. The
numerical method fails due to round-off error. To see more details, the right panel plots the error. As h
decreases, the error of the forward and backward finite difference methods decreases in the same way as h
until h ≈ 10−8 but the error increases when h is further reduced. The mean finite difference method shows
smaller error than the two other methods and the error decreases as h2 up to h ∼ 10−5. The best result is
given by the mean finite difference method with h ≈ 10−5.

suffer from the round-off error. Therefore, we must choose the value of h carefully, not too big and not too
small. Noting that x+ h = x(1 + x/h), it is pointless to use h < εm x where εm is the machine epsilon. (See
Section 1.6). Example 2.1 illustrates that the finite difference method fails when h is too small.

EXAMPLE 2.1 Round-off errors in finite difference methods

Let’s numerically evaluate the derivative of f(x) = 1
3x

3 at x = 1 and compare the results with the
exact value. The analytic form of derivative is f ′(x) = x2 and thus the exact value is f ′(1) = 1.
Program 2.1 computes the derivative using the forward, backward and mean finite difference methods
for h = 1, 0.1, 0.01, · · · , 10−19. The error is measured by δ = |f ′(1) − ∆f(1)|. The results are plotted
in Fig. 2.2. The error of forward and backward methods is almost the same and decreases in the same
way as h. However, the improvement stop at h ∼ 10−8 and the error increases for smaller h due to the
round-off error. The best answer is obtained with h = 10−8. The mean difference method shows much
better result. The error decreases with h2. The best value is obtained at h = 10−5 and the result is
better than the best value obtained by the forward or backward method. It is quite clear that the mean
difference method is much better than the two others.

In practice, we don’t know the actual error and therefore we cannot use a plot like the right panel of Fig. 2.2
to find an appropriate value for h. However, the left panel of Fig. 2.2 shows that the numerical derivative

FIRST ORDER DERIVATIVES 29

approaches a certain value and the output does not change much when h is smaller than a certain value
until it hits the limit of round-off error. Suppose that we calculate the derivative using h and h′ = h/2.
We expect that the output is more accurate with h′ than h. Using Eq. (2.7), the change of the mean finite
difference is given by

|∆Mf(x)−∆′Mf(x)| = |f
(3)|
3!

3
4h

2 = 3
4 × [error in ∆Mf(x)] (2.10)

which suggests that the error is estimated by

Error in ∆Mf(x) ≈ |∆Mf(x)−∆′Mf(x)| (2.11)

. Note that the exact value of f ′(x) is not needed to find the error. Now we have an algorithm to find
numerical derivative with a desired accuracy using this error estimate.

Algorithm 2.1 Numerical derivative with tolerance

1. Set a value of tolerance (allowed error).

2. Set a reference step size h1 and evaluate a reference derivative g1 = ∆Mf(x) using h1.

3. Set a new step size h2 = h1/2 and evaluate a new derivative g2 = ∆Mf(x) using h2.

4. Evaluate error δ = |g2 − g1|.

5. If δ < tolerance, g2 is the desired result. Stop the loop.

6. If not, let g1 = g2 and h1 = h2 (previous g2 and h2 are now the reference).

7. Go back to Step 3.

Here the absolute error is used. We can also use a relative error
∣∣∣∣g2 − g1

g1

∣∣∣∣ instead. Then, the tolerance
specifies a desired relative error.

EXAMPLE 2.2 Automatic adjustment of the step size h.

We numerically evaluate the derivative of f(x) = 1
3x

3 at x = 1 again. This time, we do not specify the
step length h. Instead we specify a tolerance and the program will automatically find an appropriate h
for the given tolerance. Program 2.2 implements Algorithm 2.1. When the tolerance is 0.001, we obtain
the following output. It appears that h = 0.03125 is good enough for this problem.

Enter tolerance =0.001
h derivative error

5.000e-01 1.0833333333e+00 2.5000000000e-01
2.500e-01 1.0208333333e+00 6.2500000000e-02
1.250e-01 1.0052083333e+00 1.5625000000e-02
6.250e-02 1.0013020833e+00 3.9062500000e-03
3.125e-02 1.0003255208e+00 9.7656250000e-04

Tolerance is OK.

30 NUMERICAL DERIVATIVES

Exercise 2.2 Evaluate of the derivative of sin(x) at x = π/4 using the mean finite difference method. The
first three digits of the answer should be correct.

2.2 Second order derivatives

We can evaluated the second order derivative using the mean value method twice. First, we pretend that
the first order derivative is given. Using the mean value method with step size h/2, we obtain

f ′′(x) ≈ ∆Mf
′(x) =

f ′(x+ h
2)− f ′(x− h

2)
h

(2.12)

Then, we replace the first order derivatives with approximated ones using the mean value method again.

f ′(x+ h

2)→ ∆Mf(x+ h

2) = f(x+ h)− f(x)
h

(2.13a)

f ′(x− h

2)→ ∆Mf(x− h

2) = f(x)− f(x− h)
h

. (2.13b)

The result is

f ′′(x) ≈ ∆(2)
M f(x) ≡ f(x+ h) + f(x− h)− 2f(x)

h2 . (2.14)

where ∆(2)
M is the second order mean finite difference operator. Substituting Eqs. (2.4a) and (2.4b) into

(2.14), we find that the error of this approximation is order of h2.

Exercise 2.3 The second order derivative of sin(x) is − sin(x). Evaluate the second order derivative of
sin(x) at x = 2nπ/N where n = 0, 1, · · · , N . Use N = 100 and plot the result. Verify that it is − sin(x) at
least within the accuracy of the numerical method.

If a higher accuracy is needed, use the symmetric five-point method

f ′′(x) ≈ ∆(2)
S5f(x) ≡ −f(x+ 2h) + 16f(x+ h)− 30f(x) + 16f(x− h)− f(x− 2h)

12h2 (2.15)

whose error is the order of h4.[4]

Exercise 2.4 Using the Taylor expansion, verify that the error of symmetric five-point method is order of
h4.

Problems

2.1 Evaluate the first order derivative of sin(x) for interval (0, 2π) with tolerance 0.0001. What value of h is
needed to satisfy the tolerance? Compare the numerical derivative with the exact one cos(x) and check
if the tolerance is indeed satisfied.

SECOND ORDER DERIVATIVES 31

2.2 Evaluate the second order derivative of f(x) = 1
12x

4 at x = 1 using h = 1, 0.1, 0.01, · · · , 10−10. Plot the
error as a function of h. Plot also the theoretical error h2 for the three-point method (2.14). [Optional:
Try also the five-point method (2.15) and check how the error increases. Unexpectedly, the larger h gives
better answer. The symmetric five-point formula takes into account up to the fourth order derivative.
The fifth and higher order derivative of x4 vanishes and thus the five-point formula is theoretically exact
for x4. Nevertheless, you encounter numerical errors due to the loss of significance. Therefore, the larger
h is better for this particular function. Try the same calculation with f(x) = 1

20x
5. You will see the

usual error profile.]

MATLAB Source Codes

Program 2.1

%**
%* Example 2.1 *
%* filename: ch02pr01.m *
%* program listing number: 2.1 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the three finite difference methods. *
%* Errors in forward, backward and mean value methods are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 12/25/2013. *
%**
clear all;

% define the function
func = @(x) xˆ3/3;

x=1; % the point at which derivative is evaluated.
imax=20; % number of different displacements

% title and headers
display('Absolute Errors')
fprintf('%4s %16s %18s %20s\n','h','forward','backward','mean value')

for i=1:imax

% Small displacement
h(i)=10ˆ(-i+1);

% Evaluation of numerical derivative
d_f(i)=(func(x+h(i))-func(x))/h(i); % Forward diffrence
d_b(i)=(func(x)-func(x-h(i)))/h(i); % Backward diffrence

32 NUMERICAL DERIVATIVES

d_m(i)=(func(x+h(i))-func(x-h(i)))/(2*h(i)); % Mean value

% Errors
err_f(i)=abs(1-d_f(i));
err_b(i)=abs(1-d_b(i));
err_m(i)=abs(1-d_m(i));

% Display the errors
fprintf('%6.1e %18.10e %18.10e %18.10e\n',...

h(i),err_f(i),err_b(i),err_m(i));
end

hh = h.*h; % hˆ2 (the error of the mean value formula is order of hˆ2)

% Plot data
subplot(1,2,1) % left panel
q=semilogx(h(1:imax),d_b(1:imax),'-o',...

h(1:imax),d_f(1:imax),'-d',...
h(1:imax),d_m(1:imax),'-s');

title('Numerical Derivative');
xlabel('h','fontsize',14);
ylabel('Derivative','fontsize',14);
set(q(1),'Color','blue');
set(q(2),'Color','green');
set(q(3),'Color','red');
legend(q,{'forward','backward','mean'});
legend(q,'Location','NorthWest');

subplot(1,2,2) % right panel
p=loglog(h(1:imax),err_b(1:imax),'o',...

h(1:imax),err_f(1:imax),'d',...
h(1:imax),err_m(1:imax),'s',...
h(1:imax/2),h(1:imax/2),'--',h(1:imax/2),hh(1:imax/2),'--');

title('Errors in the finite difference methods');
xlabel('h','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue');
set(p(2),'Color','green');
set(p(3),'Color','red');
set(p(4),'Color','blue','LineWidth',2);
set(p(5),'Color','red','LineWidth',2);
legend(p,{'forward','backward','mean','h','hˆ2'});
legend(p,'Location','SouthWest');

NNN

Program 2.2

%**
%* Example 2.2 *
%* filename: ch02pr02.m *
%* program listing number: 2.2 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the mean finite difference method with the accuracy *
%* specified by tolerance. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
clear all;

SECOND ORDER DERIVATIVES 33

% define the function
func = @(x) xˆ3/3;

% Read tolerance from keyboard.
tol=input('Enter tolerance ='); %

x=1; % point where derivative is evaluated
h=1; % initial interval
diff_old=(func(x+h)-func(x-h))/(2*h); % initial numerical derivative

% any value bigger than tol is OK here.
delta = tol+1;

fprintf('%5s %18s %14s\n','h','derivative','error')

% Repeat until error is smaller than tolerance.
while delta>tol

h=h/2;
diff_new=(func(x+h)-func(x-h))/(2*h);
delta=abs(diff_new-diff_old);
fprintf('%10.3e %16.10e %16.10e\n',h,diff_new,delta)
diff_old=diff_new;

end
fprintf('Tolerance is OK.\n')

NNN

Python Source Codes

Program 2.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 2.1 *
%* filename: ch02pr01.py *
%* program listing number: 2.1 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the three finite difference methods. *
%* Errors in forward, backward and mean value methods are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

def func(x):
return x**3/3

def main():

34 NUMERICAL DERIVATIVES

x=1.0
imax=20
h=np.zeros(imax)
d_f=np.zeros(imax)
d_b=np.zeros(imax)
d_m=np.zeros(imax)
err_f=np.zeros(imax)
err_b=np.zeros(imax)
err_m=np.zeros(imax)
i=0
print("{0:ˆ62}".format('Absolute Errors'))
print("{0:ˆ6} {1:ˆ18} {2:ˆ18} {3:ˆ20}"

.format('h','forward','backward','mean value'))
while(i<imax):
Small displacement

h[i]=10**(-i)

Evaluation of numerical derivative
d_f[i]=(func(x+h[i])-func(x))/h[i] # Forward diffrence
d_b[i]=(func(x)-func(x-h[i]))/h[i] # Backward diffrence
d_m[i]=(func(x+h[i])-func(x-h[i]))/(2*h[i]) # Mean value

Errors
err_f[i]=abs(1.-d_f[i])
err_b[i]=abs(1.-d_b[i])
err_m[i]=abs(1.-d_m[i])
print("{0:6.1e} {1:18.10e} {2:18.10e} {3:18.10e}"

.format(h[i],err_f[i],err_b[i],err_m[i]))
i=i+1

Plot data
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.semilogx(h,d_f, '--ob', label='forward')
plt.semilogx(h,d_b, '--dg', label='backword')
plt.semilogx(h,d_m, '--sr', label='mean')
plt.legend(loc=2)
plt.xlabel('h')
plt.ylabel('Derivative')

plt.subplot(1,2,2)
plt.loglog(h,err_f, '--ob', label='forward')
plt.loglog(h,err_b, '--dg', label='backword')
plt.loglog(h,err_m, '--sr', label='mean')
plt.legend(loc=3)
plt.xlabel('h')
plt.ylabel('Absolute error')
plt.show()

if __name__ == "__main__":
main()

NNN

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 2.2 *
%* filename: ch02pr02.py *
%* program listing number: 2.2 *

%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the mean finite difference method with the accuracy *
%* specified by tolerance. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
"""

import numpy as np
import matplotlib.pyplot as plt

def func(x): # define a function
return x**3/3

def main():
tol=input("Enter tolerance =") # Read a tolerabce from the console
tol=np.float(tol)
x=1.0
h=1.0 # initial interval
diff_old=(func(x+h)-func(x-h))/(2.0*h) # derivative first try
delta=np.finfo(float).max # any value bigger than tol is OK.

print("{0:ˆ10} {1:ˆ16} {2:ˆ16}"
.format('h','derivative','error'))

while (delta>tol):
h=h/2.0
diff_new=(func(x+h)-func(x-h))/(2.0*h) # improved derivative
delta=np.abs(diff_new-diff_old)
print("{0:10.3e} {1:16.10e} {2:16.10e}"

.format(h,diff_new,delta))
diff_old=diff_new

print("Tolerance is OK.")

if __name__ == "__main__":
main()

Bibliography

35

36 BIBLIOGRAPHY

[1] Mary L. Boas. Mathematical Methods in the Physical Sciences. Wiley, 3rd edition, 2006.

[2] James Stewart. Essential Calculus. Cengage Learning, 2nd edition, 2012. Section 3.2.

[3] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.

[4] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover Publications, 1970. Table 25.2.

CHAPTER 3

NUMERICAL INTEGRATION

Like derivatives, integrals are also common mathematical tools used in physics. Derivatives involve subtrac-
tion of similar values and suffer from bit-off errors. Integration is essentially addition and thus numerical
integration is a bit more robust than numerical derivative. However, lots of addition incur significant round-
off errors. A good algorithm uses less addition without the expense of accuracy. First, a simple method
(rectangle rule) is used to demonstrate a basic idea of numerical integration. Like forward finite difference
method of numerical derivative, this method is not accurate enough for practical use. However, a simple
modification (trapezoidal rule), similar to mean finite difference method of numerical derivative, improves
the accuracy. More advanced methods (Simpson rule) will be introduced.

Improper integral needs special attention. For example, when integral limits involve infinity like
∫ ∞

0
f(x) dx,

most numerical integration methods require infinitely many addition, which cannot be done. Another exam-
ple is the case where integrand has integrable singularities like 1√

x
. Since we cannot evaluate the function

value at x = 0, the common numerical methods fail. There is no systematic resolution to these problems. We
need to deal with them on case-by-case basis. Several common practices will be introduced in this chapter.
In addition, a magic method called Gaussian quadrature, which gives rather accurate results for certain
types of integrals just by computing several points, will be discussed.

3.1 Rectangular rule

We want to integrate a function f(x) from a to b. Similarly to the numerical derivative problems, there are
two different cases. In one case, a closed form expression of the function is known and we can evaluate the

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

37

38 NUMERICAL INTEGRATION

a x1 x2 x3 b

f (x)

h

x

(a) Forward rectangular method. The large errors
are clearly visible.

a x1 x2 x3 b

f (x)

h

x

(b) Trapezoidal method. The errors are much smaller
than those in the rectangular method.

Figure 3.1: Illustration of simple numerical integration methods

function value at any point of x ∈ [a, b]. In the other case, the function values are given as a finite sequence
fn = f(xn), n = 0, · · · , N and the analytical expression of the function is unknown. In this section, we focus
on the former case and the latter case will be discussed in a later chapter.

We begin with the Rieman’s definition of integral:

∫ b

a

f(x) dx = lim
N→∞

N−1∑
n=0

f(xn)h = lim
N→∞

N∑
n=1

f(xn)h (3.1)

where h = (b− a)/N and xn = a+ nh. Note that h depends on N . Numerical methods do not understand
this kind of limit since it ends up with ∞× 0. Beside, summing infinitely many terms costs infinite CPU
time. We hope that sufficiently large N (i.e., sufficiently small h > 0) gives a value close to the exact integral.
This is the rectangular rule: ∫ b

a

f(x) dx ≈ ÎFf(x) ≡
N−1∑
n=0

f(xn)h (3.2a)

∫ b

a

f(x) dx ≈ ÎBf(x) ≡
N∑
n=1

f(xn)h (3.2b)

where ÎF and ÎB are forward and backward rectangular rule operator, respectively.

TRAPEZOIDAL RULE 39

Algorithm 3.1 Integration by the forward rectangular rule

The following steps evaluate Eq. 3.2a.

1. Set the step length: h = b− a
N

2. Set s = 0.0 where s should be double (float64).

3. Repeat steps 4-6 for n = 0 to n = N − 1:

4. x = a+ n ∗ h.

5. s = s+ f(x). [where f(x) can be inline function or funtion subprogram.]

6. Go back to step 4 and repeat with new n.

7. The integral is given by s ∗ h.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

The forward rectangular rule is illustrated in Fig 3.1a. The integral [the area below the curve f(x)]
is approximated by the sum of many small rectangles. However, the large errors are clearly seen in the
illustration where the slope of curve is steep.

To investigate the error in the rectangular rule, we consider the small integral interval from xn to xn+1 =
xn + h. Expanding the integral with respect to h (See Appendix 3.I), the integral is expressed as power
series of h: ∫ xn+h

xn

f(x) dx = f(xn)h+ f ′(xn)h
2

2 + f ′′(xn)h
3

3! + +f (3)(xn)h
4

4! +O
(
h5). (3.3)

Then, the whole integral in the forward scheme is expressed as∫ b

a

f(x) dx =
N−1∑
n=0

∫ xn+h

xn

f(x) dx =
N−1∑
n=0

[
f(xn)h+ f ′(xn)h

2

2 +O
(
h3)] (3.4)

By neglecting h2 and higher orders, we obtain the rectangular rule. Therefore, the error of the rectangular
rule is the order of h2 per segment. Since there are N segments, the total error is order of h2N = (b− a)h.
Hence, the total error is the order of h. You might think that if a very small value of h is used the error
is negligible. Unfortunately, the round-off error gets too large when N is too large (See Example 1.8). In
practice, this method is rarely used.

3.2 Trapezoidal rule

It is better to approximate the area using trapezoids as shown in Fig 3.1b.∫ b

a

f(x) dx ≈ ÎT f(x) ≡
N−1∑
n=0

f(xn+1) + f(xn)
2 h (3.5)

= h

2 [f(a) + f(b)] +
N−1∑
n=1

f(xn)h (3.6)

40 NUMERICAL INTEGRATION

The trapezoidal rule is equivalent to the mean of the forward and backward rectangular rules, i.e., ÎTf(x) =
1
2

[
ÎF + ÎB

]
f(x). Note also that the difference between the trapezoidal rule and the rectangular rule is only

how the end points f(a) and f(b) are treated:

ÎTf(x) = ÎFf(x) + h

2 [f(a)− f(b)] = ÎBf(x)− h

2 [f(a)− f(b)] (3.7)

Nevertheless, this simple modification improve the accuracy significantly.
Let us find the order of error by substituting the forward finite difference method, f ′(xn) = f(xn + h)− f(xn)

h
+

O(h) into Eq. (3.3):∫ xn+h

xn

f(x) dx = f(xn)h+ f ′(xn)h
2

2 +O
(
h3) = f(xn) + f(xn+1)

2 h+O
(
h3). (3.8)

If h3 and higher orders is ignored, we obtain the trapezoid rule. Hence, the trapezoidal rule is locally
accurate up to h2, better than the rectangular rule. The total error is the order of h3N = (b − a)h2. The
trapezoidal method is commonly used due to its simplicity and reasonable accuracy. Interestingly, if the
function vanishes at the integral limits, f(a) = f(b) = 0, then the rectangular rule produces exactly the
same result as the trapezoidal rule.

Algorithm 3.2 Integration by the trapezoidal rule

The following steps evaluate Eq. 3.5.

1. Set the step length: h = b− a
N

2. Set s = 0.5 ∗ (f(a) + f(b)) where s should be double (float64).

3. Repeat steps 4-6 for n = 1 to n = N − 1:

4. x = a+ n ∗ h.

5. s = s+ f(x). [where f(x) can be inline function or funtion subprogram.]

6. Go back to step 4 and repeat with new n.

7. The integral is given by s ∗ h.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

3.3 Simpson method

There is an even better method. In Eq. (3.3) the rectangular method ignored f ′(x) and all higher order
derivatives. That means the function f(x) is approximated by piece-wise constant functions (no slope). Note
that you need only one function value f(xn) to calculate the area of the rectangle. To increase the accuracy,
the slope of the function, f ′(x) in Eq. (3.3), is taken into account in the trapezoidal method. That means
two function values f(xn) and f(xn−1) are needed to compute the area of the individual segment. Natural
extension to this line of approximation is to take into account the curvature or f ′′(x). Noting that the

SIMPSON METHOD 41

evaluation of f ′′(x) requires three data points, we utilize the another expansion similar to Eq. (3.3),∫ xn−h

xn

f(x) dx = −f(xn)h+ f ′(xn)h
2

2 − f
′′(xn)h

3

3! + +f (3)(xn)h
4

4! +O
(
h5) (3.9)

Using the expansions (3.3) and (3.9), we find the integral from xn−1 to xn+1 as∫ xn+h

xn−h
f(x) dx = 2f ′(xn)h+ 2f ′′(xn)h

3

3! +O
(
h5) (3.10)

Note that the fourth order term is canceled out, which makes this approximation accurate. Substituting the
finite difference formula of the second order derivative [Eq (2.14) in Chapter 2] into Eq. (3.10), we find the
integral ∫ xn+1

xn−1

f(x) dx =
[

1
3f(xn−1) + 4

3f(xn) + 1
3f(xn+1)

]
h+O

(
h5), (3.11)

which leads to local error at the order of h5. Repeating this formular, we obtain the Simpson rule

∫ b

a

f(x) dx ≈ ÎS ≡
N/2−1∑
j=0

[f(x2j) + 4f(x2j+1) + f(x2j+2)] h3 +O
(
h4) (3.12)

The error of the Simpson rule is the order of h5 per segment and thus h4 for the whole integral which is two
orders of magnitude better than that of the trapezoidal rule.

Algorithm 3.3 Integration by the Simpson rule

The following steps evaluate Eq. 3.12.
The number of points N should be even.

1. Set the step length: h = b− a
N

2. Set s = −f(a)− f(b) where s should be double (float64).

3. Repeat steps 4-6 for j = 0 to j = N/2− 1:

4. x = a+ 2 ∗ j ∗ h.

5. s = s+ 2.0 ∗ f(x) + 4.0 ∗ f(x+ h).

6. Go back to step 4 and repeat with new j.

7. The integral is given by s ∗ h/3.0.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

42 NUMERICAL INTEGRATION

EXAMPLE 3.1 Errors in various numerical integration methods

Let’s integrate sin(x) from x = 0 to x = π/2. The exact answer is cos(0) − cos(π/2) = 1. Program 3.1
computes the integral using the rectangular, trapezoidal, and Simpson rules. The error of each rule is
plotted in Fig. 3.2. As h decreases, the error also decreases with all methods. The Simpson rule has
small errors even at h = 0.1.

Exercise 3.1 Numerically integrate f(x) = sin(x)
1 + x2 from x = 0 to x = π.

Analytical solution by Mathematica is∫ π

0

sin(x)
1 + x2 dx = e

4 [−2Ci(i) + Ci(i− π) + Ci(i+ π) + 2Shi(1) + iSi(i− π) + iSi(i+ π)]

+ 1
4e [2Ci(i)− Ci(i− π)− Ci(i+ π) + 2Shi(1) + iSi(i− π) + iSi(i+ π)] (3.13)

where Ci, Si, and Shi are trigonometric integral functions. The answer should be real but Eq. 3.13 con-
tains imaginary unit. It is not obvious that the imaginary parts are canceled out. This expression is too
complicated to see the answer. Analytical solution is not always useful. Furthermore, these trigonometric
integrals must be numerically evaluated. So, why don’t we evaluate the original integral numerically from
the beginning?

3.3.1 Adaptive quadrature

As demonstrated above, the accuracy of numerical integration depends on the choice of the grid interval
h. In practice, finding an appropriate value for h is tedious. Especially when the integrand f(x) changes
rapidly in some region and smooth in other region (stiff function), a small value of h is necessary only for

10−3 10−2 10−1 100
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 Absolute errors in the various integration methods

h

ab
so

lu
te

 e
rr

or

rectangular
trapezoidal
simpson
h

h2

h4

Figure 3.2: Output of Example 3.1.

IMPROPER INTEGRALS 43

the rapidly changing region. If a constant h is used for the whole region, we may be wasting computer time.
Technically speaking, it is possible to use different h but it is quite cumbersome to do it manually. Therefore,
we ask computer to find the best value of h at each point, which is known as adaptive grid method.

The basic idea is simple. First, we integrate the function using three grid points x1 and x2 with interval
h(0). Here the index (0) indicates the depth of adaptivity. Let us call the result of the integration I(0). Then,
we integrate the function between x1 and x2 again using the interval h(1) = h(0)/2 and obtain a new result
I(1). If the difference between I(0) and I(1) is smaller than a specified tolerance, we accept I(1) as accurate
result and move on to the next segment. If not, we reduce the interval again as h(2) = h(1)/2. We repeat
this until the error becomes small enough.

EXAMPLE 3.2 Adaptive Quadrature

Let us numerically calculate the integral

I =
∫ 5

0
(4x− x2)e−2x dx

whose exact value is 3
4 + 17

4 e
−10 ∼ 0.75019294970149056062. The integrand rises very rapidly and

decreases to zero slowly. We will evaluate it using the adaptive quadrature. MATLAB has built-in
function integral(func,xmin,xmax) which uses adaptive quadrature with a default error tolerance
(Absolute error = 10−10 and relative error = 10−6). Instead of writing our own code, we will use it this
time.

>> fprintf('%24.16e\n',integral(@(x) (4*x-x.ˆ2).*exp(-2*x),0,5))
7.5019294970149075e-01

3.4 Improper Integrals

When the integral limit involves infinity, the numerical methods we discussed above won’t work since the
number of grid points become infinity. If the integrand is singular at a point within the integral limit, again
the regular method fails. We need special methods. In the following, we discuss some of simple ways to
avoid such difficulty.

3.4.1 Improper Integrals:∞ in Limits

If the upper limit is ∞ or the lower limit is −∞, for example,
∫ ∞

0
f(x) dx, all the methods we discussed so

far cannot be used. One way to overcome this problem is to split the integral to two parts∫ ∞
0

f(x) dx =
∫ a

0
f(x) dx+

∫ ∞
a

f(x) dx (3.14)

where a is a positive constant. The first term in the right hand side can be integrated by the trapezoidal or
simpson rule. The second term needs to be transformed to a numerically computable form by introducing a

44 NUMERICAL INTEGRATION

new variable t = 1
x

. Then, the integral we need to compute is

∫ ∞
a

f(x) dx =
∫ 1/a

0

1
t2
f

(
1
t

)
dt (3.15)

The integral in the right hand side can be integrated by a standard method. However, the new form is not
necessarily trouble free since the integrand is not defined at the lower bound (divided-by-zero error). If we
can evaluate limt→0 1/t2f(1/t) analytically by hand, then standard methods such as the Simpson method
works.

The following types of improper integral:∫ ∞
0

e−xf(x) dx Use Gauss-Laguerre quadrature. (3.16)∫ ∞
−∞

e−x
2
f(x) dx Use Gauss-Hermite quadrature. (3.17)

can be evaluated by the Gaussian quadrature which we will discuss in Section 3.5.

3.4.2 Improper Integrals II: Integrable Singularities

If the integrand has integrable singularities such as 1√
x

within the integral limits, the standard methods
fail. Such improper integrals are ubiquitous in physics. A common method is to isolate the singularity and
integrate it analytically. Then, we integrate the remaining part by a numerical method.

EXAMPLE 3.3 Removal of Integral Singularity

Consider an improper integral∫ a

0

1
(1 + x)

√
x

dx = π − 2 arctan
(

1√
a

)
(3.18)

where a is a positive constant. This integral is finite despite that the integrand diverges at x = 0. For
x = ε� 1, the integrand can be expanded as

1
(1 + ε)

√
ε
∼ 1− ε√

ε
∼ 1√

ε
(3.19)

Hence, the singularity is 1√
ε
. We split the integral in two parts as follows:

∫ a

0

1
(1 + x)

√
x

dx =
∫ a

0

1√
x

dx+
∫ a

0

[
1

(1 + x)
√
x
− 1√

x

]
dx

= 2
√
a−

∫ a

0

√
x

1 + x
dx (3.20)

The last integral is not improper and thus can be integrated by a standard method. Indeed, Fig. 3.3
shows that the new integrand has no singularity at x = 0 and the curve is very smooth. In addition the
integral of this function is small compared with the integral of the singular part. Hence, numerical error
is reduced.

GAUSSIAN QUADRATURE 45

1
(x+1)√ x

1

√ x

1

√ x
−

1
(x+1)√ x

Figure 3.3: Due to the divergence at x = 0, it is difficult integrate the original function (black line). The
blue line has the same singularity at x = 0 but can be analytically integrate. The difference (red line) does
not have a singularity and hence common numerical integration works fine.

Program 3.2 computes integral (3.18). The proper part of the integral is done with the trapezoidal
rule. The result is compared with the analytic solution. Using a = 1, h = 0.01, the program produces
the output

Numerical = 1.571003957326e+00
Exact = 1.570796326795e+00

Only the first three figures are correct, but which is acceptable in most cases.

3.5 Gaussian Quadrature

The Gaussian quadrature magically evaluates improper integrals utilizing the properties of orthogonal poly-
nomials such as Legendre and Laguerre polynomials. Despite the integral limit is infinity, you need to
evaluate the integrand only at several points. The theoretical justification of the Gaussian quadrature needs
knowledge of special functions. Here we show only the formulas. See Appendix 3.II for the theory behind
the Gaussian quadrature.

Gaussian-Laguerre Quadrature ∫ ∞
0

f(x)e−x dx =
N∑
i=1

wif(xi) (3.21)

where weight wi and abscissa xi are given in Table 3.1.

46 NUMERICAL INTEGRATION

Gaussian-Hermite Quadrature ∫ ∞
−∞

f(x) e−x
2

dx =
N∑
i=1

wif(xi) (3.22)

where weight wi and abscissa xi are given in Table 3.2.

Gaussian-Legendre Quadrature ∫ 1

−1
f(x) dx =

N∑
i=1

wif(xi) (3.23)

where weight wi and abscissa xi are given in Table 3.3.

These formula work well if f(x) behaves like a polynomial as x → ∞. It fails if f(x) behaves like an
exponential function.

EXAMPLE 3.4 Magical Gaussian Quadrature

The energy density of blackbody radiation at temperature T is given by

u(T) = 8π(kT)4

(hc)3 J (3.24)

where h, c, and k are Plank constant[1], speed of light, and Boltzmann constant[2]. The factor J is a
dimensionless constant determined by integral:

J =
∫ ∞

0

x3

ex − 1 dx = π4

15 (3.25)

Let us try to integrate it numerically and compare the result with the exact value. Since the integral
bounds are 0 and ∞, we use the Gaussian-Laguerre quadrature. To use the Gaussian-Laguerre quadra-
ture, the integrand must have e−x. We can always create e−x by multiplying ex e−x to the integrand.
Now we have the desired exponential function e−x, but as a penalty another exponential function ex is

introduced in the integrand which is now f(x) = x3ex
ex − 1 . We need to make it sure that the extra ex does

not cause a problem. Since f(x) → x3 as x → ∞, f(x) behaves like a polynomial and thus the Gaus-
sian quadrature is expected to give a good result. Program 3.3 calculate J using the Gauss-Laguerre
quadrature. The output is

8 points Gaussian Laguerre Quadrature
Exact= 6.493939402267e+00
Gauss= 6.493935665353e+00
Error= 3.736914144348e-06

Despite that we evaluated the integrand only at 8 points, the agreement with the exact value is remark-
able.

APPLICATIONS IN PHYSICS 47

U (x)

x

E

x1 x2

Figure 3.4: Classical Oscillation

3.6 Applications in Physics

3.6.1 Period of Classical Oscillation I.

A classical particle with energy E is confined in a potential U(x). (See Fig 3.4.) The particle oscillates
between turning points x1 and x2. The period of oscillation[3] is given by

T = 2
∫ x2

x1

1
v(x) dx (3.26)

where the speed of the particle at x is given by

v(x) =
√

2(E − U(x))
m

(3.27)

The integral bounds are determined by solving v(x) = 0, which requires numerical root finding discussed in
next Chapter.

The integral in Eq. (3.26) is improper since v(x1) = v(x2) = 0. We need to remove the integral
singularities. First we expand the potential around the turning points:

U(x) = U(xi) + U ′(xi)(x− xi) + o(x2) = E + U ′(xi)(x− xi) + o(x2), i = 1, 2 (3.28)

If the potential is approximated by Ui(x) = E + U ′(xi)(x− xi), the speed becomes

vi(x) =
√
−2U ′(xi)(x− xi)

m
(3.29)

48 NUMERICAL INTEGRATION

r0

Figure 3.5: Geometry of scattering in relative coordinate.

Note that this approximated speed approaches to the correct speed as x → xi. Utilizing it, we remove the
singularities as follows. ∫ x2

x1

1
v(x) dx =

∫ x0

x1

[
1

v(x) −
1

v1(x)

]
dx+

∫ x0

x1

1
v1(x) dx (3.30)

+
∫ x2

x0

[
1

v(x) −
1

v2(x)

]
dx+

∫ x2

x0

1
v2(x) dx (3.31)

(3.32)

where x0 is any point between x1 and x2. A good choice would be a point where the potential is minimum.
The integrands inside the square brackets have no singularity and thus can be integrated using a common
numerical method. The remaining integral can be easily evaluated analytically:

∫ x0

x1

1
v1(x) dx =

√
m

−2U ′(x1)

∫ x0

x1

1√
x− x1

dx =
√

2mx0
|U ′(x1)| (3.33)

∫ x2

x0

1
v2(x) dx =

√
m

2U ′(x2)

∫ x2

x0

1√
x2 − x

dx . =
√

2mx0
|U ′(x2)| (3.34)

3.6.2 Scattering by Yukawa Potential: Part 1

A particle of mass m1 elastically collides with another particle of mass m2 through a spherical potential
U(r) where r is the distance between the particles. The scattering angle θ defined in Fig. 3.5 depends on
the impact parameter b and the energy of the system E. For mathematical convenience, we introduce a new
angle φ as shown in Fig. 3.5. Note that θ = π − 2φ. This scattering problem can be analytically solved up
to the following integral[4]:

φ =
∫ ∞
r0

b

r2
1√

1− b2

r2 −
U(r)
E

dr . (3.35)

APPLICATIONS IN PHYSICS 49

0 0.2 0.4 0.6 0.8
u

0

2

4

6

8
in

te
gr

an
d

0 0.2 0.4 0.6 0.8
u

-0.25

-0.2

-0.15

-0.1

-0.05

0

in
te

gr
an

d
u

0u
0

Figure 3.6: The left panel shows the original integrand. The green area need to be numerically integrated.
The right panel shows the integrand after the singularity is removed. The blue area need to be integrated.
Note the difference in scale between two plots. The blue area is much smaller than the green area. Parameter
values k = a = E = 1 are used.

The lower integral limit r0 is the closest distance between two particles determined by the equation

1− b2

r2
0
− U(r0)

E
= 0 . (3.36)

For the Coulomb potential this integral can be analytically carried out.(Rathurford scattering).[4] We want
to find the scattering angle for Yukawai potential (screened Coulomb potential):

U(r) = k

r
e−r/a

where k and a > 0 are constant.
This integral is improper in two reasons. One is that the upper integral limit is infinity. The other is that

the integrand diverges at r = r0. See the singularity in Fig. 3.6. The first difficulty can be easily resolved.
Introducing a variable u = 1

r
. Eqs. (3.35) and (3.36) are respectively transformed to

φ =
∫ u0

0

b√
1− b2u2 − U(1/u)

E

du (3.37)

and

1− b2u2
0 −

U(1/u0)
E

= 0 . (3.38)

Removing the singularity is a bit more difficult. The method used in Example 3.3 is helpful. Noting
that the Rutherford scattering can be solved analytically, we consider scattering by Coulomb potential

50 NUMERICAL INTEGRATION

UC(r) = ke−r0/a

r
. Expressing in variable u, the scattering angle by UC is analytically obtained:

φC =
∫ u0

0
du

b√
1− b2u2 − c u

(3.39)

= sin−1
(

2b2u0 + c√
c2 + 4b2

)
− sin−1

(
c√

c2 + 4b2

)
. (3.40)

where c = ke−r0/a

E
. Now the scattering angle by the Yukawa potential is given by φ = φC + ∆φ where

∆φ = φ− φC (3.41)

=
∫ u0

0
du

[
b√

1− b2u2 − c u e−(1/u−1/u0)/a
− b√

1− b2u2 − c u

]
(3.42)

The integrand in the square bracket is no loner singular at u = u0 because the singularity in the two terms
is exactly canceled. Hence, ∆φ can be evaluated by a standard numerical integral. Figure 3.6 shows that
the integrand of Eq. (3.42) does not have the divergence any more. We can use simple numerical integration
algorithms such as the trapezoidal or the Simpson rule to integrate Eq. (3.42). One issue is that the
integrand has sharp change near u0. Try N=100, 500, 1000 in the Simpson rules. If the results do not
change significantly, you have sufficiently accurate results.∗

We are still not ready to write a program yet. We must find r0 by solving Eq. (3.36) or (3.38). Unfortu-
nately, there is no analytical solution for the Yukawa potential. We need a numerical root finding method,
which we will discuss in next chapter.

3.6.3 Debye Model of Heat Capacity

Based on Debye theory, the heat capacity of a solid at temperature T is given by

CV = 9kBN

(
T

θD

)3 ∫ θD/T

0

x4ex
(ex − 1)2 dx (3.43)

where θD is the Debye temperature, N is the number of atoms, and kB is Boltzmann’s constant.[5] Since
the upper limit of the integral depends on temperature, we may need to use different numerical methods for
different temperature.

(1) Before going to calculation, first we normalize quantities. The heat capacity of ideal gas consisting of N
particles is 3

2kBN . Using this as a unit of heat capacity, the heat capacity of the material is C̃V = 2Cv/3kBN .
We measure temperature using the Debye temperature as unit. The normalized temperature is T̃ = T/θD.
Now, the original expression is written as

C̃V = 6T̃ 3
∫ 1/T̃

0

x4ex
(ex − 1)2 dx (3.44)

which does not include very large number. More importantly, this expression does not depend on the actual
material (neither N nor θD). Therefore, the result is universal.

(2) When the temperature is similar or larger than the Debye temperature (T̃ & 1), the upper limit of the
integral is about 1 or smaller. There is no numerical difficulty to integrate it numerically. The Simpson or
trapezoidal rule is sufficient.

∗We investigate the same problem with a different method in Chapter 4

APPLICATIONS IN PHYSICS 51

(3) When the temperature is exactly zero, the upper limit of the integral is infinity. As x → ∞, the
integrand behaves as x4e−x. Hence, the integral is finite and the Gaussian-Laguerre quadrature should work
well. However, it is not necessary to calculate the integral since the factor T̃ 3 in front of the integral vanishes.
Thus, C̃V = 0.

(4) When the temperature is much lower than Debye temperature but still above zero, the upper limit of
the integrals can very large. The direct integration using the Simpson rule may fail. As we learned in part
(3), the Gaussian quadrature works well if the upper limit is infinity. Utilizing it we split the integral in two
parts. ∫ 1/T̃

0

x4ex
(ex − 1)2 dx =

∫ ∞
0

x4ex
(ex − 1)2 dx−

∫ ∞
1/T̃

x4ex
(ex − 1)2 dx (3.45)

= 4π4

15 +
∫ T̃

0

e1/s

s6(e1/s − 1)2 ds (3.46)

where s = 1/x is used in the second line. The first integral in the lhs is analytically calculated. In the second
integral, the upper limit is T̃ � 1 and the Simpson rules is sufficient. Note that when s→ 0, the integrand
vanishes.

3.6.4 Heat Capacity of Free Electron Gas

The heat capacity of free electron gas is given by

Ce = 3
2kBN

kBT

εF

∫ ∞
−εF /kBT

x2ex
(ex + 1)2 dx (3.47)

where εF is Fermi energy.[6] See Section 3.6.3 for the meaning of other symbols. Expressing the above
equation using the normalized heat capacity C̃ = 2C/3kBN and T̃ = kBT/εF . (see Section 3.6.3), Equation
(3.47) is simplied to

C̃

T̃
=
∫ ∞
−1/T̃

x2ex
(ex + 1)2 dx (3.48)

This integral is simpler than Eq. (3.44) since there is no singularity. On the other hand, the upper bound
is infinity. For a typical metal at a room temperature or lower, T̃ � 1 and thus the lower limit is often
replaced with −∞. Then, we find an analytical solution

C̃

T̃
≈
∫ ∞
−∞

x2ex
(ex + 1)2 dx = π2

3 (3.49)

If we want to know the heat capacity at a higher temperature we need to integrate the original equation
numerically. However, we don’t have to evaluate the whole integral. We just need to find the deviation from
the low temperature limit (3.49).

C̃

T̃
= π2

3 −
∫ −1/T̃

−∞

x2ex
(ex + 1)2 dx

= π2

3 −
∫ −1/T̃

−∞

x2ex
(ex + 1)2 dx

= π2

3 +
∫ T̃

0

e1/s

(e1/s + 1)2 ds

= π2

3 +
∫ T̃

0

e−1/s

(e−1/s + 1)2 ds (3.50)

52 NUMERICAL INTEGRATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T

C
or

re
ct

io
n

T
er

m

Figure 3.7: Correction term, the integral in Eq. (3.50).

In the last line, exp(−2/s) is multiplied to both the numerator and denominator so that no large number
appears. The integral in the last line can be estimated by a standard numerical method.

Figure 3.47 shows that the correction becomes significant only for T̃ > 0.2. The Fermi energy of a typical
material is about 1 eV to 10 eV , which corresponds to temperature 104K to 105K. Hence, the correction
term is not necessary until T = 2000K to 20000K. At this temperature, the metal is melt. Thus, the
correction term may be safely ignored.

APPLICATIONS IN PHYSICS 53

Problems

3.1 Integrate x cosx from x = 0 to x = π using Trapezoidal and Simpson rules. Compare the results with
the exact solution

∫
x cosxdx = cosx+ x sin x.

3.2 Plot the molar heat capacity of copper (θD = 309K) from T = 0K to T = 1083K using the Debye
theory shown in Section 3.6.3.

3.3 Write a code to produce Fig. 3.7.

54 NUMERICAL INTEGRATION

Appendix

3.I Expansion of Integral with h

Consider the integral as a function of h as

F (h) =
∫ xn+h

xn

f(x) dx (3.51)

and expand it in a McLaughlin series

F (h) = F (0) + F ′(0)h+ 1
2F
′′(0)h2 + 1

3!F
(3)(0)h3 + 1

4!F
(4)(0)h4 + o(h5) . (3.52)

Obviously, F (0) = 0. The first derivative of F (x) can be computed as

F ′(h) = d
dh

∫ xn+h

xn

f(x) dx = d
dz

∫ z

xn

f(x) dx = f(z) = f(xn + h) (3.53)

where z = xn + h. Higher order derivatives are now simply F (k)(h) = f (k−1)(xn + h). Substituting these
results into the expansion (3.52), we obtain Eq, (3.3).

3.II Justification of Gaussian Quadrature
To be written.

APPLICATIONS IN PHYSICS 55

3.III Gaussian Quadrature: Weights and Abscissas

Table 3.1: Weights and Abscissas for Gaussian-Laguerre quadrature

N x w

2 5.8578 6437 6269 0495×10−1 8.5355 3390 5932 7376×10−1

3.4142 1356 2373 0950 1.4644 6609 4067 2624×10−1

4 3.2254 7689 6193 9231×10−1 6.0315 4104 3416 3360×10−1

1.7457 6110 1158 3466 3.5741 8692 4377 9969×10−1

4.5366 2029 6921 1280 3.8887 9085 1500 5384×10−2

9.3950 7091 2301 1331 5.3929 4705 5613 2745×10−4

6 2.2284 6604 1792 6069×10−1 4.5896 4673 9499 6359×10−1

1.1889 3210 1672 6230 4.1700 0830 7721 2099×10−1

2.9927 3632 6059 3141 1.1337 3382 0740 4498×10−1

5.7751 4356 9104 5105 1.0399 1974 5314 9075×10−2

9.8374 6741 8382 5899 2.6101 7202 8149 3206×10−4

1.5982 8739 8060 1702×10+1 8.9854 7906 4296 2124×10−7

8 1.7027 9632 3051 0100×10−1 3.6918 8589 3416 3753×10−1

9.0370 1776 7993 7991×10−1 4.1878 6780 8143 4296×10−1

2.2510 8662 9866 1307 1.7579 4986 6371 7181×10−1

4.2667 0017 0287 6588 3.3343 4922 6121 5652×10−2

7.0459 0540 2393 4657 2.7945 3623 5225 6725×10−3

1.0758 5160 1018 0995×10+1 9.0765 0877 3358 2131×10−5

1.5740 6786 4127 8005×10+1 8.4857 4671 6272 5315×10−7

2.2863 1317 3688 9264×10+1 1.0480 0117 4871 5104×10−9

56 NUMERICAL INTEGRATION

Table 3.2: Weights and Abscissas for Gaussian-Hermite Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative abscissas are
shown.

N ±x w

2 0.7071067811 0.8862269254

3 0 1.1816359006

1.2247448713 0.2954089751

4 0.5246476232 0.8049140900

1.6506801238 0.0813128354

5 0 0.9453087204

0.9585724646 0.3936193231

2.0201828704 0.0199532420

6 0.4360774119 0.7246295952

1.3358490740 0.1570673203

2.3506049736 0.0045300099

7 0 0.8102646175

0.8162878828 0.4256072526

1.6735516287 0.0545155828

2.6519613568 0.0009717812

8 0.3811869902 0.6611470125

1.1571937124 0.2078023258

1.9816567566 0.0170779830

2.9306374202 0.0001996040

APPLICATIONS IN PHYSICS 57

Table 3.3: Weights and Abscissas for Gaussian-Legendre Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative abscissas are
shown.

N ±x w

2 0.5773502692 1

3 0 0.8888888889

0.7745966692 0.5555555556

4 0.3399810436 0.6521451549

0.8611363116 0.3478548451

5 0 0.5688888889

0.5384693101 0.4786286705

0.9061798459 0.2369268851

6 0.2386191861 0.4679139346

0.6612093865 0.3607615730

0.9324695142 0.1713244924

7 0 0.4179591837

0.4058451514 0.3818300505

0.7415311856 0.2797053915

0.9491079123 0.1294849662

8 0.1834346425 0.3626837834

0.5255324099 0.3137066459

0.7966664774 0.2223810345

0.9602898565 0.1012285363

58 NUMERICAL INTEGRATION

MATLAB Source Codes

Program 3.1

%**
%* Example 3.1 *
%* filename: ch03pr01.m *
%* program listing number: 3.1 *
%* *
%* This program integrate sin(x) from x=0 to x=pi using rectangular, *
%* trapezoidal and simpson methods. Absolute errors are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2019. *
%**

clear all;

% Set the lower and upper bound of the integration
a=0;
b=pi/2;

% Header of the output
display(' Absolute error in various numrical integration')
fprintf(' %3s %21s %24s %24s\n','N','Rectangular','Trapezoidal','Simpson');

% loop over different N
for k=1:10

N=2ˆk;
h(k)=(b-a)/N;

% evaluate the variable and function
for i=0:N

x(i+1)=a+i*h(k);
f(i+1)=sin(x(i+1));

end

% Rectangular rule
rect=sum(f(1:N))*h(k);

% Trapezoidal rule
trap=sum(f(2:N))*h(k) + (f(1)+f(N+1))*h(k)/2;

% Simpson rule
simp=(2*sum(f(1:2:N-1))+4*sum(f(2:2:N))-f(1)+f(N+1))*h(k)/3;

% Evaluation of errors (the exat answer is 1)
err_rect(k)=abs(1-rect);
err_trap(k)=abs(1-trap);
err_simp(k)=abs(1-simp);

%print out the results
fprintf(' %5d %24.16e %24.16e %24.16e \n',...

N,err_rect(k),err_trap(k),err_simp(k));
end

% Order of the errors
h2=h.ˆ2;
h3=h.ˆ3;
h4=h.ˆ4;

APPLICATIONS IN PHYSICS 59

% Plot the results
subplot(1,1,1)
p=loglog(h,err_rect,'d',h,err_trap,'o',h,err_simp,'s',...

h,h,'--',h,h2,'--',h,h4,'--');

% Format the plot
title('Absolute errors in the various integration methods');
xlabel('h');
ylabel('absolute error');
set(p(1),'Color','green');
set(p(2),'Color','blue');
set(p(3),'Color','red');
set(p(4),'Color','green','LineWidth',2);
set(p(5),'Color','blue','LineWidth',2);
set(p(6),'Color','red','LineWidth',2);
legend(p,{'rectangular','trapezoidal','simpson','h','hˆ2','hˆ4'});
legend(p,'Location','SouthEast');

NNN

Program 3.2

%***
%* Example 3.3 *
%* filename: ch03pr02.m *
%* program listing number: 3.2 *
%* *
%* This program integrates 1/(sqrt(x)*(1+x)) from x=0 to x=1 *
%* by removing singularity at x=0. Trapezoidal rule is used *
%* for the proper part of integral. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%***

clear all;
a = 1.0; % upper bound
N = 100; % number of segments
h = a/N; % width of segments

% integration of sqrt(x)/(1+x) with trapezoidal rule
S = sqrt(a)/(1+a)/2; %bundary value devided by 2
for i=1:N-1

x = i*h;
f = sqrt(x)/(1+x);
S = S +f;

end
proper = S*h; % integral of proper part

singular = 2*sqrt(a); % singular part

total = singular - proper;
exact = pi - 2*atan(1/sqrt(a));

fprintf('Numerical = %18.12e\n',total);
fprintf(' Exact = %18.12e\n',exact);

NNN

60 NUMERICAL INTEGRATION

Program 3.3

%**
%* Example 3.4 *
%* filename: ch03pr03.m *
%* program listing number: 3.3 *
%* *
%* This program numerically integrates xˆ3*exp(x)/(exp(x)-1) from *
%* x=0 to infinity using 8-point Gaussian Laguerre Quadrature. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/06/2014. *
%**
clear all;

N=8;

x=[1.7027963230510100e-1, 9.0370177679937991e-1,...
2.2510866298661307, 4.2667001702876588, ...
7.0459054023934657, 1.0758516010180995e+1,...
1.5740678641278005e+1, 2.2863131736889264e+1];

w=[3.6918858934163753e-1, 4.1878678081434296e-1,...
1.7579498663717181e-1, 3.3343492261215652e-2,...
2.7945362352256725e-3, 9.0765087733582131e-5,...
8.4857467162725315e-7, 1.0480011748715104e-9];

for i=1:N
f(i)=x(i)ˆ3*exp(x(i))/(exp(x(i))-1);

end

Gauss=sum(w.*f);
Exact=piˆ4/15;
fprintf('%i points Gaussian Laguerre Quadrature\n',N);
fprintf(' Exact=%18.12e\n Gauss=%18.12e\n Error=%18.12e\n',...
Exact,Gauss,abs(Exact-Gauss));

Examples in Python

EXAMPLE 3.2 Adaptive Quadrature

A Python package called SciPy has built-in function quad(func,xmin,xmax) which uses adaptive quadra-
ture with a default error tolerance.

>>> import numpy as np
>>> import scipy.integrate as spint
>>> y=spint.quad(lambda x: (4.0*x-x**2)*np.exp(-2.0*x),0.0,5.0)
>>> print(y)

You can create a function and pass it to a subprogram by ’lambda x: (4.0*x-x**2)*np.exp(-2.0*x)’. This
is a unique capability of Python.

APPLICATIONS IN PHYSICS 61

Python Source Codes

Program 3.1
-*- coding: utf-8 -*-
"""
%**
%* Example 3.1 *
%* filename: ch03pr01.py *
%* program listing number: 3.1 *
%* *
%* This program integrate sin(x) from x=0 to x=pi using rectangular, *
%* trapezoidal and simpson methods. Absolute errors are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2019. *
%**
"""

import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt

opt=input("Use SciPy [y/n] ")
if opt=='y':
print("SciPy integrate will be used.\n")
else:
print("SciPy will not be used.\n")

Set the lower and upper bound of the integration
a=0.
b=np.pi/2.
Header of the output
print("{0:ˆ75}".format('Absolute error in various numrical integration'))
print("{0:ˆ6} {1:ˆ23} {2:ˆ24} {3:ˆ24} \n"
.format('N','Rectangular','Trapezoidal','Simpson'))

kmax=10
h=np.zeros(kmax+1)
err_rect=np.zeros(kmax+1)
err_trap=np.zeros(kmax+1)
err_simp=np.zeros(kmax+1)

for k in range(0,kmax):
N=2**(k+1)
h[k]=(b-a)/N

x = a + np.linspace(a,b,N+1)
f = np.sin(x)

rect=f[0:N].sum()*h[k]

if opt=='y':
trap=integrate.trapz(f,x)
simp=integrate.simps(f,x)
else:
trap=f[1:N].sum()*h[k]+(f[0]+f[N])*h[k]/2.

62 NUMERICAL INTEGRATION

simp=(2.0*f[0:N-1:2].sum()+4.0*f[1:N:2].sum()-f[0]+f[N])*h[k]/3.

err_rect[k]=abs(1.-rect)
err_trap[k]=abs(1.-trap)
err_simp[k]=abs(1.-simp)

print("{0:5d} {1:24.16e} {2:24.16e} {3:24.16e}"
.format(N,err_rect[k],err_trap[k],err_simp[k]))

del x
del f

Plot data
h2=h**2
h3=h**3
h4=h**4

plt.ioff()
plt.figure(figsize=(6,5))
plt.loglog(h,err_rect, 'og', label='rectangular')
plt.loglog(h,err_trap, 'ob', label='trapezoidal')
plt.loglog(h,err_simp, 'or', label='simpson')
plt.loglog(h,h,'--g',label='h')
plt.loglog(h,h2,'--b',label='$hˆ2$')
plt.loglog(h,h4,'--r',label='$hˆ4$')
plt.legend(loc=4)
plt.xlabel('h')
plt.ylabel('Integral')
plt.show()

NNN

Program 3.2
#!/usr/bin/env python3
"""
%**
%* Example 3.3 *
%* filename: ch03pr02.py *
%* program listing number: 3.2 *
%* *
%* This program integrates 1/(sqrt(x)*(1+x)) from x=0 to x=1 *
%* by removing singularity at x=0. Trapezoidal rule is used *
%* for the proper part of integral. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/11/2017. *
%**
"""
import numpy as np

a = 1.0 # upper bound
N = 100 # number of segments
h = a/N # width of segments
integration of sqrt(x)/(1+x) with trapezoidal rule
S = np.sqrt(a)/(1.0+a)/2.0; # bundary value devided by 2
for i in range(1,N):

x = i*h
f = np.sqrt(x)/(1+x)
S = S +f

proper = S*h # integral of proper part

APPLICATIONS IN PHYSICS 63

singular = 2*np.sqrt(a)
singular part
total = singular - proper
exact = np.pi - 2*np.arctan(1/np.sqrt(a))
print("Numerical = {0:18.12e}".format(total))
print(" Exact = {0:18.12e}".format(exact))

NNN

Program 3.3

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 3.4 *
%* filename: ch03pr03.py *
%* program listing number: 3.3 *
%* *
%* This program numerically integrates xˆ3*exp(x)/(exp(x)-1) from *
%* x=0 to infinity using 8-point Gaussian Laguerre Quadrature. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/12/2019. *
%**
"""
import numpy as np

def f(x):
return x**3*np.exp(x)/(np.exp(x)-1.)

if __name__ == "__main__":
N=8

evaluation points and weights for 8 point Gaussian quadrature
x=np.array([1.7027963230510100e-1, 9.0370177679937991e-1,

2.2510866298661307, 4.2667001702876588,
7.0459054023934657, 1.0758516010180995e+1,
1.5740678641278005e+1, 2.2863131736889264e+1])

w=np.array([3.6918858934163753e-1, 4.1878678081434296e-1,
1.7579498663717181e-1, 3.3343492261215652e-2,
2.7945362352256725e-3, 9.0765087733582131e-5,
8.4857467162725315e-7, 1.0480011748715104e-9])

gauss=(w*f(x)).sum() #Gaussian quadrature
exact=np.pi**4/15.
print("{0:3d} point Gaussian Laguerre Quadrature".format(N))
print(" Exact={0:18.12e}\n Gauss={1:18.12e}\n Error={2:18.12e}"

.format(exact, gauss, abs(exact-gauss)))

Bibliography

[1] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005.

[2] Stephen J. Blundell and Katherine M. Blundell. Concepts in Thermal Physics. Oxford University Press,
2nd edition, 2010.

[3] John R. Taylor. Classical Mechanics. University Science Books, 2005.

[4] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3rd edition,
2002.

[5] Charles Kittel. Introduction o Solid State Physics. Wiley, 8th edition, 2004. Chapter 5.

[6] Charles Kittel. Introduction o Solid State Physics. Wiley, 8th edition, 2004. Chapter 6.

64

CHAPTER 4

ROOT FINDING

Finding roots of a function is a ubiquitous mathematical procedure in physics. For example, an equilibrium
position of a particle in a potential field is determined as the place where the net force is zero, i.e., U ′(x) = 0.
In many cases, the equation is transcendental and no analytical solution is available. Even when analytical
solutions are known, numerical evaluation of them may suffer from the round-off error. In this chapter, we
discuss how to find a root of a given equation f(x) within acceptable error ε (tolerance). There are various
methods depending on available information. If the derivative of the function is known, some methods
definitely utilize it. Other methods do not require the derivative and use other information. We need to
choose a good algorithm for a given situation.

4.1 Quadratic, Cubic, and Quartic Polynomials

The roots of quadratic, cubic and quartic polynomials can be expressed in analytic expressions and we just
evaluate them numerically. However, in some extreme cases, numerical errors become too large and a special
care must be taken.

4.1.1 Quadratic Polynomials

The roots of quadratic equation:
ax2 + bx+ c = 0, a 6= 0 (4.1)

are well known as
x1,2 = −b∓

√
b2 − 4ac

2a (4.2)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

65

66 ROOT FINDING

a
10 -15 10 -10 10 -5 10 0

|x
 -

 x
0
|

10 -20

10 -15

10 -10

10 -5

10 0

lhs
rhs

Figure 4.1: A root of the quadratic equation εx2 + x+ 1/4 = 0 is evaluated with two different methods with
ε < 1. The left hand side of Eq. (4.4) is initially approaching to the correct limit as ε decreases. However,
it goes erroneous below ε = 10−5. On the other hand, the right hand side steadily converges to the right
answer.

However, when ac� b2, one of the solution suffers from the bit-off error as discussed in Chapter 1. Instead,
the use of the following formula is recommended:

x1 = −b− sgn(b)
√
b2 − 4ac

2a (4.3a)

x2 = 2c
−b− sgn(b)

√
b2 − 4ac

= c

ax1
(4.3b)

where the signum function sgn(x) is defined by

sgn(x) =
{

+1 x > 0
−1 x < 0

As demonstrated in Example 4.1, these expressions do not suffer from the round-off error.

EXAMPLE 4.1 Root of quadratic polynomials

In Eq. (4.3a), we used the equality.

−b+
√
b2 − 4ac

2a = −2c
b+
√
b2 − 4ac

(4.4)

When |ac| � b2, the left hand side becomes numerically inaccurate. On the other hand, the right hand
side has no such problem. We want to know how bad the left hand side is. Evaluate the both sides of
the equality for εx2 + x+ 1

4 = 0 where ε = 0.1, 0.01, · · · . Reduce the value of ε until it hits the machine

epsilon. Note that the exact answer for ε = 0 is x = −1
4 . Which side of Eq. (4.4) approaches to the

correct limit? Program 4.1 evaluate the both sides of Eq. (4.4). The results are plotted in Fig. 4.1.

QUADRATIC, CUBIC, AND QUARTIC POLYNOMIALS 67

The left hand side of Eq. (4.4) is initially approaching to the correct limit as ε decreases. However, it
goes erroneous below ε = 10−5. On the other hand, the right hand side steadily converges to the correct
answer. (This example is a solution to Problem 1.1.)

4.1.2 Cubic Polynomials

The roots of cubic polynomial
ax3 + bx2 + cx+ d = 0, a 6= 0 (4.5)

can be obtain analytically. There are various mathematical descriptions of the solutions but most of them
are not convenient for numerical calculations. The following procedure is simple and does not use complex
numbers.[1] Without losing generality, we can assume a = 1. [The roots do not change if Eq (4.5) is divided
by a.]

First, we evaluate the following quantities:

F = 3c− b2
3 , G = 2b3 − 9bc+ 27d

27 , H = G2

4 + F 3

27 (4.6)

where H is a discriminant for Eq. (4.5). If H < 0, then there are three real roots:

x1 = P + 2JM, x2 = P − J(M +N), x3 = P − J(M −N) (4.7)

where

I =
√
G2

4 −H, J = 3
√
I, K = arccos(−G/2I)

M = cos(K/3), N =
√

3 sin(K/3), P = − b3 . (4.8)

If H = 0, the above solutions are still valid but two of solutions are degenerate. If H > 0, then there is one
real root and two others are complex:

x1 = S + U − b

3 , x2,3 = −S + U

2 − b

3 ± i
(S − U)

√
3

2 (4.9)

where
S = 3

√
√
H − G

2 , U = − 3

√
√
H + G

2 (4.10)

In some cases, we don’t get a good result due to the round-off error. Use an iterative method explained in
Section 4.2 to see if the round-off error is small enough. Since the numerical results obtained by the present
method is already close to the exact one, the iterative method should converge quickly (a few iterations are
enough for most cases).

EXAMPLE 4.2 Cubic Polynomials

Let’s try to find all roots of x3− 9x2 + 23x+ 15 = 0 using the formula given above. It can be factorized
to (x − 1)(x − 3)(x − 5) = 0 and thus the exact solution is x = 1, 3, and 5. Program 4.2 finds them
correctly.

Answer = 1.00000, 3.00000, 5.00000

68 ROOT FINDING

4.1.3 Quartic Polynomials

The roots of quartic polynomial
ax4 + bx3 + cx2 + dx+ e = 0 (4.11)

can be also solved analytically. Assuming a = 1 as before, we evaluate the following quantities:

F = −3b2
8 + c, G = b3

8 −
bc

2 + d, H = − b4

256 + b2c

16 −
bd

4 + e (4.12)

If G = 0, then the four roots are

x1,2,3,4 = − b4 ±

√
−F ±

√
F 2 − 4H
2 (4.13)

If G 6= 0, then

x1,2 = − b4 +
W ±

√
−
(
3F + 2Y + 2G

W

)
2 (4.14a)

x3,4 = − b4 −
W ±

√
−
(
3F + 2Y − 2G

W

)
2 (4.14b)

where

Y =

−5F

6 + U − P

3U if U 6= 0

−5F
6 −

3
√
Q if U = 0

, W =
√
H + 2Y (4.15)

P = −F
2

12 −H, Q = − F
3

108 + FH

3 − G2

8 , U =
3

√
−Q2 ±

√
Q2

4 + P 3

27 (4.16)

Similar to quadratic and cubic equations, sever round-off error can happen, for example, when H � F in
Eq (4.13). Use an iterative method to improve the results.

4.2 Iterative Methods

In this section, we solve f(x) = 0 for x where f(x) is a continuous function. There may be multiple solutions.
Any root finding method needs a rough idea of the location of root you are looking for. The first step is to
bracket the target root x∗ between xl and xu such that xl < x∗ < xu. It is important that there is only
one root between xl and xu. It turns out that this is not an easy task for computer. Searching is something
difficult even for computers to accomplish. On the other hand, human eyes can find the bracket easily if you
are able to plot the function. Computers do not have an eye to view the whole curve. Therefore, the best
practice is to plot the function and bracket the target root by visual inspection. However, in some cases it is
desirable to have a robust numerical method to find the bracket. For example, when root finding is required
many times during long computer simulation, you can’t stop the simulation to visually inspect the bracket.
There are simple algorithms of finding the bracket[2] but unfortunately no method guarantees the outcome.
In this chapter, we assume that the bracket is done by direct visual inspection.

Any iterative method needs a criteria to stop the iteration. Ultimately, we stop it when the error is smaller
than the tolerance. However, in practice we never know the exact error. If we knew it, we have the exact
root! Therefore, we must carefully choose an ending criteria.

ITERATIVE METHODS 69

x0

x1

x2

x3

root

x4

x5

Figure 4.2: Bisection method. Starting with ini-
tial bracket (x0, x1), the bracket is at each iteration
halved to (x2, x1), (x2, x3), (x2, x4), (x5, x4), · · · .

x0 x1 x2 x3

f ' (x1) root

f ' (x0)

f ' (x2)

Figure 4.3: Newton-Raphson method. Starting
with initial guess x0, the line tangent to the curve
at the current point xn is used to find a new im-
roved root xn+1. If the initial guess x0 is close
enough to the true root, this procedure rapidly con-
verges to it.

4.2.1 Bisection method

Suppose we evaluate the function at two different points xl and xu. If f(xl)f(xu) < 0, then we are sure that
there is at least one root between the two points. This is a sufficient condition but not a necessary condition.
When there is no root between the bracket, f(xl)f(xu) > 0. However, when there are even number of roots
in the bracket, the same inequality is valid. In the following we assume that a good bracket is found by
visual inspection or other means so that there is only one root within the bracket.

Consider a mid point xm between xl and xu. If f(xl)f(xm) < 0, the root must be between xl and xm. Now
we have a new bracket xl and xm. Otherwise, the root must be between xm and xu, which is the new bracket.
Repeating this procedure, the root is isolated in a small region. The error must be smaller than xu − xl
and thus the iteration is terminated when xu − xl < tolerence. This is the method of bisection. Figure 4.2
demonstrate how the bisection method works. The procedure of this iterative method is as follows.

Algorithm 4.1 Bisection method
1. Get a initial bracket xl and xu and a tolerance ε.

2. Make it sure that f(xl)f(xu) < 0. Otherwise, stop and check the initial bracket.

3. Evaluate the function at the mid point xm = 1
2 (xl + xu).

4. If xu − xl < ε, xm is the root and stop here. Otherwise continue.

5. If f(xl)f(xm) < 0, then the root is between xl and xm. Let xu = xm and go to step 3.
Otherwise continue.

6. The root must be between xm and xu. Let xl = xm and go to Step 3.

70 ROOT FINDING

This method is generally robust and steadily approaches to the root. However, it is not a smart one
and iterates many times before reaching the root. This method fails when the root is located at the edge
of support since the root cannot be bracketed. For example, the bisection method is not able to solve√
x− a = 0 simply because the function cannot be evaluated for x < a. It turns out that not only the

bisection method but many other methods also fail for this function.

EXAMPLE 4.3 Bisection Method

Find a root of x3− 9x2 + 23x+ 15 = 0 between x1 = 1.5 and x2 = 4. Program 4.3 implement the above
Bisection algorithm. With tolerance 10−6, the bisection method converges to a root after 20 iterations.
The root agrees with the exact answer. (See Example 4.2.)

Answer = 3.00000 (iteration= 20)

Exercise 4.1 Find two other roots.

Exercise 4.2 Find all roots using xU − xL as the measure of error.

4.2.2 Newton-Raphson method

If the derivative of the function is known, there are faster methods utilizing it. Newton-Raphson method is
one of those. Starting with an initial guess x0, we approximate the function using Taylor expansion

f(x) = f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2 + · · · (4.17)

If x0 is close to the root, we can ignore the higher order terms. Keeping only the first order term, the original
equation f(x) = 0 is replaced by

f(x0) + f ′(x0)(x− x0) = 0 (4.18)
and the root of this approximted equation is

x1 = x0 −
f(x0)
f ′(x0) (4.19)

which should be closer to the root than x0. Repeating this procedure, we have a recursive equation

xn+1 = xn −
f(xn)
f ′(xn) (4.20)

We stop the iteration when |xn+1−xn| < ε (tolerance). Is this a reasonable criteria? Using Taylor expansion
around xn,

f(x∗) = f(xn) + (x∗ − xn)f ′(xn) (4.21)

where x∗ is the exact root. By definition, f(x∗) = 0. Then, the error is given by |x∗ − xn| =
∣∣∣∣ f(xn)
f ′(xn)

∣∣∣∣ =

|xn+1 − xn|. As long as xn is close to x∗, the criteria measures the error correctly.
Note that this method does not require initial bracketing. However, this method works great only if

the initial point is sufficiently close to the root. Otherwise it is not guaranteed to converge to the target

ITERATIVE METHODS 71

root. It might reach another root which you are not looking for. In order to avoid this failure, find a
reasonably accurate root using the bisection method and switch to the Newton-Raphson method for the
further improvement. While the bisection method is relatively robust many iterations are needed. On the
other hand, the Newton-Raphson method converges faster. Therefore, such a hybrid method make a sense.

Algorithm 4.2 Newton-Raphson method
1. Set a tolerance ε.

2. Choose an initial guess x0 and let n = 0.

3. Estimate a new candidate by xn+1 = xn −
f(xn)
f ′(x) .

4. If |xn+1 − xn| < ε, then xn+1 is the root. Stop the iteration.

5. If not, increment n and go to step 3.

Exercise 4.3 The solution to
√
x− a = 0 is x = a. Can we find it by the Newton-Raphson method?

Starting with x0 > a, try to find x1 and x2. Verify that x2 does not exist.

4.2.3 Secant method

The Newton-Raphson method requires the analytic expression of the first order derivative, which limits the
range of applications. However, the same idea can be used without the analytic expression. If we replace
the analytic derivative with the numerical derivative, the Newton-Raphson procedure still works. Using the
backward finite difference method [Eq. (2.3)], the recursive equation (4.20) becomes

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)f(xn) (4.22)

This method is commonly known as the secant method. Use the bisection method before starting the secant
method to ensure the convergence.

One problem is that this method needs two points to start the iteration. However, this is not a big issue
since we can pick any point close to the initial guess. If the root is already bracketed between a and b, use
x1 = x0 +∆ with ∆� b−a. If the secant method is preceded by the bisection method, use the final bracket
from the bisection calculation. Then, ∆ = (b− a)/10 is good enough.

Algorithm 4.3 Secant method
1. Find bracket a and b. Set a tolerance ε.

2. Choose two initial points x0 and x1 = x0 + b− a
10 and let n = 1

3. Estimate a new candidate by xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)f(xn).

4. If |xn+1 − xn| < ε, then xn+1 is the root. Stop the iteration.

5. If not, increment n and go to step 3.

72 ROOT FINDING

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

Figure 4.4: The function used in Example 4.4. The smallest positive root is bracketed between 0.2 and 0.8
(between the dashed lines) by visual inspection.

EXAMPLE 4.4 Multiple roots

Find the smallest positive root of f(x) = cos 3x sin x. Since this function has infinitely many roots, we
have to be careful about choosing an initial guess. Figure 4.4 plots the function. By visual inspection, it
is safe to say that the smallest positive root is between 0.2 and 0.8. We seek the solution with tolerance
ε = 10−8. If only the bisection method were used, it takes 24 iterations and the answer is 0.52359877.

Program 4.4 runs 10 iterations of the bisection method and the Newton-Raphson and Secant meth-
ods follow. The output is shown below. The bisection method gets 0.52373047 which is close but not
sufficient. Subsequent Newton-Raphson method iterates only two times and obtained 0.52359878. Sim-
ilarly, the secant method also iterates twice and reaches the same answer as the Newton-Raphson. The
exact answer is π

6 ≈ 0.52359878. All methods arrive the correct answer. However, the total number of
iterations is 12 if the combination of the bisection and Newton-Raphson/secant methods is used, which
is a half of the steps needed by the bisection method only. For complicated equations, the time saving
can be significant.

Bisection = 0.52373047 (iteration= 10)
Newton-Raphson = 0.52359878 (iteration= 2)
Secant = 0.52359878 (iteration= 2)

Exercise 4.4 Find the second smallest positive root.

APPLICATIONS IN PHYSICS PROBLEMS 73

4.3 Applications in Physics Problems

4.3.1 Magnetic Phase Transition

The Ising model explains the ferromagnetic phase transition.[3] Using the mean field approximation, the
magnetization per atom satisfies the following transcendental equation

m = µ tanh
(
Cm

kBT

)
(4.23)

where C is a positive constant determined by the spin interaction between atoms, T is temperature, and µ
is the magnetic moment each spin carries. We want to know the magnetization as a function of temperature
by solving Eq. (4.23). By direct inspection m = 0 is always a solution. However, depending on temperature,
there are more solutions. We want to plot all roots as functions of temperature. First, we simplify the
expression by introducing normalized magnetization m̃ = m/µ and normalized temperature T̃ = kBT

µC . The
normalized quantities are dimensionless and various constants disappear. We omit tilde in the normalized
quantities to avoid cluttering. Then, we solve

f(m) ≡ m− tanh(m/T) = 0 (4.24)

utilizing its derivative

f ′(m) = 1− sech2(m/T)
T

(4.25)

To use the Newton-Raphson method, we need to start with a good initial guess. As Fig 4.5 shows,
tanh(m) → 1 for m � 1. Therefore, the root must be below m = 1. As T approaches zero, the root
approaches one. Therefore, m = 1 is a good starting point for low temperature case. As temperature
increases, the root gradually decreases toward zero. Therefore, when temperature is lowered a little bit, the
previous root can be a very good starting point of the next root finding process. We don’t have to bracket
the root in this case. The results are shown in Fig. 4.5b.

EXAMPLE 4.5 Bifurcation of magnetization

Program 17.2 finds the roots of Eq. (4.23) by Newton-Raphson method and plots them. The result is
shown in Fig. 4.5b. Above the critical temperature SC = 1, there is only one root and the magnetization
vanishes. Below SC, positive and negative magnetization spontaneously appear. The root at m = 0 still
exists but it is no thermodynamically not stable.

Exercise 4.5 Spontaneous vs induced magnetization
When external magnetic field H is applied, the mean-field equation becomes

m = µ tanh
(
µH + Cm

kBT

)
. (4.26)

Modify Program 17.2 and plot the magnetization as a function of temperature with a fixed value of H 6= 0.
Try various different values of H. How is the spontaneous magnetization shown in Fig. 4.5b modified by the
magnetic field? [Use the normalized magnetic field H̃ = H/C.]

74 ROOT FINDING

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y=tanh(a x)
y=x
y=a x

(a) The magnetization is determiend by the crossing
of y = x and y = tanh(ax) where a = 1/T . When
a < 1 x = 0 is only the solution. For a > 1, two more
solutions appear. a = 1 corresponds to the critical
point of the ferromagnetic transition.

T
0 0.5 1 1.5 2

m

-1

-0.5

0

0.5

1

(b) Bifurcation of magnetization. For T > 1 there is
only one magnetic state m = 0. When temperature
is lowered below a critical temperature TC = 1, two
stable states, one with positive m and the other with
negative m. m = 0 is still a solution but unstable
one. At T = 0, the magnetization reaches the maxi-
mum possible value m = ±1 where all electrons have
the same spin state.

Figure 4.5: Ferromagnetic Phase Transition

4.3.2 Energy of a Quantum Particle in a Square Potential

A particle of mass m is trapped in a square well potential of depth V0 and width 2a. Energy eigenvalue E
is determined by Schödinger equation[

− ~2

2m
d2

dx2 + V (x)
]
ψ(x) = Eψ(x) (4.27)

Analytical calculation ends up with the following transcendental equations[4]

z tan(z)−
√
z2

0 − z2 = 0 for symmetric states (4.28a)

z cot(z) +
√
z2

0 − z2 = 0 for anti-symmetric states (4.28b)

where

z =
√

2ma2E

~2 (4.29a)

z0 =
√

2ma2V0
~2 (4.29b)

The roots of Eqs (4.28) determines the energy eigenvalues. WE want to know all eigenvalues. However, the
number of roots depends on the system parameters, which makes it difficult to bracket a root. We need to
inspect the location of the roots. In Fig. the left hand side of Eq (4.28a) is plotted. First of all, we note that
the function is defined for z ∈ (0, z0) and thus all roots must be between 0 and z0. Considering tan x diverges
at 2π(n± 1/4), each root must be between the diverging points. Hence, we bracket the roots in (0, π2 − δ),
(π2 + δ, 3π

2 − δ), · · · , 2π(n+ 1
4) + δ, z0). Here δ is a small positive quantity to avoid the singularities. Program

APPLICATIONS IN PHYSICS PROBLEMS 75

n=1

n=2

n=3

n=4

-a +a0

V0

(a) A square well potential with depth V0 and width
2a. Two symmetric and two anti-symmetric energy
eigenstates are plotted.

0 1 2 3 4 5 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) The left hand side of Eq (4.28a) is plotted for
z0 = 6. There are two roots. Clearly the root is
bracketed by the dashed lines at x = π

2 and 3π
2 .

Figure 4.6: Quantum particle in a finite suare well

4.6 finds all roots for given z0. Ten iterations of the bisection methods followed by the secant method find
two roots.

root=1.34475105
root=3.98582621

4.3.3 Classical Turning Points

In Section 3.6.1, we tried to calculate the period of oscillation but we were not quite ready at that time
because we did not know how to find the turning points. Now we can find them using a numerical root
finding method. Suppose that a particle is bound in a potential

U(x) = U0

[
sin
(

2πx
L

)
− 1

4 sin
(

4πx
L

.

)]
(4.30)

We want to find the period of the bound motion using the formula (3.26). The turning points are the roots
of U(x) = E. The potential is simple and we can find the analytic expression of its derivative. Hence, the
Newton-Raphson method can be used to find the roots.

Exercise 4.6 Modify Program 4.4 and find a pair of the classical turning points of the potential (18.39).
Using the results, find the period of oscillation.

4.3.4 Closest Approach in Scattering

In Section 3.6.2, we discussed how to evaluate the scattering angle (3.35). In order to carry out the integral,
we still have to find the closest approach r0 determined by Eq. (3.36). For the screened Coulomb potential,
we are able to calculate the first order derivative of the equation. The Newton-Raphson method seems a
good choice.

76 ROOT FINDING

Exercise 4.7 Solve Eq. (3.36) for the Yukawa potential. Then, calculate the scattering angle, Eq. (3.35),
using the method discussed in Section 3.6.2.

4.4 Problems

4.1 The interaction energy between two atoms is often described by the Morse potential[5]

U(r) = De

[
e−2(r−r0)/a − 2e−α(r−r0)/a

]
(4.31)

where r is the distance between the atoms. The parameters, De. r0, and a are, dissociation energy,
equilibrium distance, and the range of interaction, respectively. To simplify numerical calculation, we
normalize energy and distance by De and a. In addition, we use the displacement from the equilibrium
position as the coordinate. Then, the potential is simply

U(x) = e−2x − 2e−x . (4.32)

were x = (r − r0)/a. Find the classical turning points for E = −0.5 (This means the actual energy is
E = −De/2 since we use De as the unit of energy.) Do not forget to plot the potential and visually
inspect the turning point before using numerical root finding methods.

4.2 Find the eigenvalue of all asymmetric state by solving Eq. (4.28b) for z0 = 6.

4.3 A quantum ball of mass m is bouncing on a hard floor under a uniform gravity g.[6] Schrödinger equation
for the particle is

− ~2

2m
d2ψ(y)

dy2 +mgy ψ(y) = Eψ(y). (4.33)

The wavefunction ψ must vanish at the floor (boundary condition). To find the energy eigenvalue, we
first simplify the Schrödinger equation. Introducing a new variable z = α(y − E/mg) where

α =
(

2m2g

~2

)1/3

(4.34)

Eq. (4.33) is rewritten as
d2ψ(z)

dz2 = zψ(z) (4.35)

This equation is known as Airy equation and its solution is Airy function Ai(z). Hence, the energy
eigenfunction is ψ(z) = N Ai(z) where N is a normalization constant. Now, we apply the boundary
condition. At y = 0. z = −αE/mg and thus Ai(−αE/mg) = 0. This boundary condition indicates that
the energy E is determined by the roots of the Airy function. Denoting the n-th root as zn, the energy
is En = −mgzn/α. The bouncing quantum ball has discrete energy! Find the smallest root of the Airy
function and corresponding energy E1. Use the built-in Airy function airy() in MATLAB. For C or
Fortran, GNU Scientific Library (GSL)∗ provides Airy function.

∗You can find GSL at https://www.gnu.org/software/gsl/.

PROBLEMS 77

MATLAB Source Codes

Program 4.1

%**
%* Example 4.1 *
%* filename: ch04pr01.m *
%* program listing number: 4.1 *
%* *
%* This program finds roots of a quadratic equation *
%* a xˆ2 + x + 1/4 = 0 *
%* for which the quadratic equation formula *
%* x = (-1 + sqrt(1 - a))/(2a) *
%* fails for small value of a. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

b=1; % fixed parameters
c=0.25;

n=1;
a(1)=1;
while (a>eps())

d = bˆ2-4*a(n)*c;
x1(n) = (-b+sqrt(d))/(2*a(n));
x2(n) = -2*c/(b+sqrt(d));
fprintf('a= %22.16e, lhs=%22.16e, rhs=%22.16e \n',a(n),x1(n),x2(n));
n=n+1;
a(n)=a(n-1)/10;

end

% plot the results
p=loglog(a(1:n-1),abs(x2+0.25),'o',a(1:n-1),abs(x1+0.25),'s');
set(p(1),'Linewidth',2,'Color','red')
set(p(2),'Linewidth',2,'Color','blue')
xlabel('a','Fontsize',14)
ylabel(texlabel('|x - x_0|'),'Fontsize',14) % x_0 = root at a=0
legend('lhs','rhs')
legend('Location','Southeast')

NNN

Program 4.2
%**
%* Example 4.2 *
%* filename: ch04pr02.m *
%* program listing number: 4.2 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

78 ROOT FINDING

% coefficients
b=-9; c=23; d=-15;

% formula for cubic polynomials
F=(3*c-bˆ2)/3;
G=(2*bˆ3 - 9*b*c + 27*d)/27;
H=Gˆ2/4 + Fˆ3/27;

yes = false;

if H>0
S= (sqrt(H)-G/2)ˆ(1./3.);
U=-(sqrt(H)+G/2)ˆ(1./3.);
x = S+U-b/3;
fprintf('Answer = %.5f\n',x);

else
I=sqrt(Gˆ2/4-H);
J=Iˆ(1./3.);
K=acos(-G/(2*I));
M=cos(K/3);
N=sqrt(3)*sin(K/3);
P=-b/3;
x(1) = P-J*(M+N);
x(2) = P-J*(M-N);
x(3) = P+2*J*M;
fprintf('Answer = %.5f, %.5f, %.5f \n',x);

end

NNN
Program 4.3

%**
%* Example 4.3 *
%* filename: ch04pr03.m *
%* program listing number: 4.3 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* using the bisection method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/24/2018. *
%**
clear all;

% define a cubic equation
b = -9;
c = 23;
d =-15;

f = @(x) xˆ3+b*xˆ2+c*x+d;

% tolerance
epsilon=input('Enter tolerance =');

% initial bracket
x1=1.5;
x2=4;
f1 = f(x1);
f2 = f(x2);

PROBLEMS 79

% iteration counter
n=0;

% mid point
xm = (x1+x2)/2;
fm = f(xm);
while abs(fm) > epsilon

if f1*fm < 0 % root in the lower half
x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;

end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

fprintf('Answer = %.5f (iteration= %i)\n',xm,n);

NNN

Program 4.4
%**
%* Example 4.4 *
%* filename: ch04pr04.m *
%* program listing number: 4.4 *
%* *
%* This program seeks the root of *
%* cos(3*x)*sin(x)=0 *
%* between x=0.2 and 0.8 using bisection, Newton-Raphson, and *
%* secant methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% define function and its derivative
f=@(x) cos(3*x)*sin(x);
df=@(x) -3*sin(3*x)*sin(x) + cos(3*x)*cos(x);

% initial bracket
x1=0.2;
x2=0.8;
f1=f(x1);
f2=f(x2);
if f1*f2 > 0

error('Bracket is incorrect');
end

% tolerance
epsilon=1e-8;

% bisection 10 iterations

% iteration counter
n=0;

80 ROOT FINDING

% Bisection method (10 iterations)
xm = (x1+x2)/2;
fm = f(xm);
while n<10

if f1*fm < 0 % root in the lower half
x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;

end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

fprintf('Bisection = %.8f (iteration= %i)\n',xm,n);

% Newton-Raphson method
x = xm;
fx = fm;
n = 0;
while abs(fx)> epsilon

dfx = df(x);
x = x - fx/dfx;
fx = f(x);
n = n+1;

end

fprintf('Newton-Raphson = %.8f (iteration= %i)\n',x,n);

% Secant method
dx = (x2-x1)/10;
x1 = xm;
f1 = fm;
x2 = x1 + dx;
f2 = f(x2);
n = 0;
while abs(f2)> epsilon

x = x2 - (x2-x1)/(f2-f1)*f2;
x1 = x2;
f1 = f2;
x2 = x;
f2 = f(x);
n = n+1;

end

fprintf('Secant = %.8f (iteration= %i)\n',x,n);

NNN

Program 4.5
%**
%* Example 4.5 *
%* filename: ch04pr05.m *
%* program listing number: 4.5 *
%* *
%* This program calculates magnetization as a function of *
%* temperature using the mean field Ising model: *
%* x = x tan(x/S) *
%* where the variables are normalized as *

PROBLEMS 81

%* x = m/m_0 and S=k*T/(C*m_0) . *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;
N=101; % number of data points
tol=10ˆ(-6); % tolerance

dS = 2/(N-1); % step size in temperature

for i=1:N
S=(i-1)*dS; % temperature
a=1/S;
f=@(x) x - tanh(a*x); % function
df=@(x) 1 - a*sech(a*x)ˆ2; % derivative
% Newton-Raphson method
x=2; % initial guess
fx=f(x);
while fx>tol

x=x-fx/df(x);
fx=f(x);

end
% store the magnetization and temperature
m(i)=x;
t(i)=S;

end

p=plot(t,m,t,-m,[0,1],[0,0]);
xlabel('T','fontsize',14);
ylabel('m','fontsize',14);
set(p(1),'linewidth',2,'color','blue');
set(p(2),'linewidth',2,'color','blue');
set(p(3),'linewidth',2,'color','red');
axis([0 2 -1.1 1.1]);

NNN

Program 4.6 (a)
%**
%* Secion 4.6. *
%* filename: ch04pr06.m *
%* program listing number: 4.6(a) *
%* *
%* Require: rootfinding.m *
%* *
%* This program finds trhe energy eigenvalues of a pqrticle *
%* in a finite square well potential using the secant root *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

z0=6; %system parameter

f=@(z) z*tan(z) - sqrt(z0*z0-z*z); %define function

%control parameters
N=100;

82 ROOT FINDING

K=ceil(z0/pi); %The number of roots

% initial bracket
z1=0;
z2=pi/2;

for k=1:K
dz = (z2-z1)/N; % small shit
z = rootfinding(f,z1+dz,z2-dz,10,10ˆ(-6));
fprintf('root=%.8f\n',z);
z1 = z2;
z2 = min([z0,z1 + pi]);

end

Program 4.7 (b)
%**
%* Secion 4.6. *
%* filename: rootfinding.m *
%* program listing number: 4.6(b) *
%* *
%* Inputs *
%* f = function name *
%* x1, x2 = bracket *
%* N = interations of bisection *
%* tol = tolerance for scant method *
%* Output: *
%* x = root *
%* *
%* This program find a root of a given funcion f(x)=0 *
%* using the bisection and secant root finding method *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**

function x=rootfinding(f,x1,x2,N,tol)

% check if the initial bracket satisfies the necessary condition.
f1=f(x1);
f2=f(x2);
if f1*f2 > 0

error('Bracket is incorrect');
display(x1,x2,f1,f2);

end

% Bisection method (N iteration)
n=0; % iteration counter

% mid point
xm = (x1+x2)/2;
fm = f(xm);
n=0;

while n<N
if f1*fm < 0 % root in the lower half

x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;

PROBLEMS 83

end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

% Secant method
dx = (x2-x1)/10;
x1 = xm;
f1 = fm;
x2 = x1 + dx;
f2 = f(x2);
n = 0;
while abs(f2)> tol

x = x2 - (x2-x1)/(f2-f1)*f2;
x1 = x2;
f1 = f2;
x2 = x;
f2 = f(x);
n = n+1;

end

Python Source Codes

Program 4.1
#!/usr/bin/env python3
"""
%**
%* Example 4.1 *
%* filename: ch04pr01.py *
%* program listing number: 4.1 *
%* *
%* This program finds roots of a quadratic equation *
%* a xˆ2 + x + 1/4 = 0 *
%* for which the quadratic equation formula *
%* x = (-1 + sqrt(1 - a))/(2a) *
%* fails for small value of a. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/07/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

b=1.0
c=0.25
a=1.0
x=np.zeros(50)
y1=np.zeros(50)
y2=np.zeros(50)
n=0
while a > np.finfo(float).eps:

x[n]=a
d=b**2-4*a*c
y1[n]=(-b+np.sqrt(d))/(2.0*a)
y2[n]=-2*c/(b+np.sqrt(d))
print("a={0:22.16e}, regular={1:22.16e}, smart={2:22.16e}"

84 ROOT FINDING

.format(x[n],y1[n],y2[n]))
n+=1
a=a/10.

plt.ioff()
plt.figure(figsize=(6,5))
plt.loglog(x[0:n],abs(y2[0:n]+0.25), 'ob', label='smart')
plt.loglog(x[0:n],abs(y1[0:n]+0.25), 'or', label='regular')
plt.legend(loc=4)
plt.xlabel('a')
plt.ylabel('x')
plt.show()

NNN

Program 4.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 4.2 *
%* filename: ch04pr02.py *
%* program listing number: 4.2 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2017. *
%**
"""
import numpy as np
coefficients
b=-9.0; c=23.0; d=-15.0
k=0

formula for cubic polynomials
F=(3.0*c-b**2)/3.0
G=(2.0*b**3 - 9.0*b*c + 27.0*d)/27.0
H=G**2/4.0 + F**3/27.0

yes = False

if H>0.0:
S= (np.sqrt(H)-G/2.0)**(1./3.)
U=-(np.sqrt(H)+G/2.0)**(1./3.)
x1 = S+U-b/3.0
print("Answer = {0:10.5f}".format(x1))

else:
I=np.sqrt(G**2/4.0-H)
J=I**(1./3.)
K=np.arccos(-G/(2.0*I))
M=np.cos(K/3.0)
N=np.sqrt(3)*np.sin(K/3.0)
P=-b/3.0
x3=np.zeros(3)
x3[0] = P-J*(M+N)
x3[1] = P-J*(M-N)
x3[2] = P+2.0*J*M
print("Answer = {0:10.5f}, {1:10.5f}, {2:10.5f}"

PROBLEMS 85

.format(x3[0],x3[1],x3[2]))

NNN

Program 4.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 4.3 *
%* filename: ch04pr03.m *
%* program listing number: 4.3 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* using the bisection method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
"""
import numpy as np

define a cubic equation
def f(x):

return x**3-9.0*x**2+23.0*x-15

if __name__ == "__main__":

tol=input("Enter tolerance =") # Read a tolerabce from the console
epsilon=np.float(tol)

initial bracket
x1=1.5
x2=4.0
f1 = f(x1)
f2 = f(x2)

iteration counter
n=0

mid point
xm = (x1+x2)/2.0
fm = f(xm)

while x2-x1 > epsilon:
if f1*fm < 0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

print("Answer = {0:7.5f}, (iteration = {1:3d})"
.format(xm,n))

NNN

86 ROOT FINDING

Program 4.4

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 4.4 *
%* filename: ch04pr04.m *
%* program listing number: 4.4 *
%* *
%* This program seeks the root of *
%* cos(3*x)*sin(x)=0 *
%* between x=0.2 and 0.8 using bisection, Newton-Raphson, and *
%* secant methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/14/2017. *
%**
"""
import sys
import numpy as np

define function and its derivative
def f(x):

return np.cos(3.0*x)*np.sin(x)

def df(x):
return -3.0*np.sin(3*x)*np.sin(x) + np.cos(3.0*x)*np.cos(x);

if __name__ == "__main__":
initial bracket
x1, x2 = input("Initial blacket (a pair o numbers) = ").split()
x1, x2 = [np.float(x1), np.float(x2)]

f1=f(x1)
f2=f(x2)
if f1*f2 > 0:

sys.exit('Bracket is incorrect')

tolerance
epsilon = input("Tolerance = ")
epsilon = np.float(epsilon)

bisection 10 iterations
n=0 # iteration counter

xm = (x1+x2)/2.0
fm = f(xm)

while n<10:
if f1*fm < 0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

print("Bisection = {0:12.8f} (iteration= {1:4d})"

PROBLEMS 87

.format(xm,n))

Newton-Raphson method
x = xm
fx = fm
n = 0
while abs(fx)> epsilon:

dfx = df(x)
x = x - fx/dfx
fx = f(x)
n+=1

print("Newton-Raphson = {0:12.8f} (iteration= {1:4d})"
.format(x,n))

Secant method
dx = (x2-x1)/10.
x1 = xm
f1 = fm
x2 = x1 + dx
f2 = f(x2)
n = 0
while abs(f2)> epsilon:

x = x2 - (x2-x1)/(f2-f1)*f2
x1 = x2
f1 = f2
x2 = x
f2 = f(x)
n+=1

print("Secant = {0:12.8f} (iteration= {1:4d})"
.format(x,n))

NNN

Program 4.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 4.5 *
%* filename: ch04pr05.py *
%* program listing number: 4.5 *
%* *
%* This program calculates magnetization as a function of *
%* temperature using the mean field Ising model: *
%* x = x tan(x/S) *
%* where the variables are normalized as *
%* x = m/m_0 and S=k*T/(C*m_0) . *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/14/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

def f(x,a):
return x - np.tanh(a*x)

def df(x,a):

88 ROOT FINDING

return 1.0 - a/np.cosh(a*x)**2

if __name__ == "__main__":
N=100 # number of data points
tol=1.0e-6 # tolerance

m=np.zeros(N+1)
t=np.zeros(N+1)
dS = 2.0/N # step size in temperature

for k in range(0,N):
S=(k+1)*dS # temperature
a=1.0/S
Newton-Raphson method
x=2.0 # initial guess
fx=f(x,a)
while fx>tol:

x=x-fx/df(x,a)
fx=f(x,a)

store the magnetization and temperature
m[k]=x
t[k]=S

plt.ioff()
plt.figure(figsize=(12,5))
plt.plot(t,m, '-r')
plt.plot(t,-m, '-r')
plt.plot([0,1],[0,0],'--w')
plt.ylim([-1.2,1.2])
plt.xlabel('T')
plt.ylabel('m')
plt.savefig('ch04r05.pdf')
plt.show()

NNN

Program 4.6 (a)
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Secion 4.6. *
%* filename: ch04pr06.py *
%* program listing number: 4.6-1 *
%* *
%* Require: rootfinding.py *
%* *
%* This program finds trhe energy eigenvalues of a pqrticle *
%* in a finite square well potential using the secant root *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
"""

import numpy as np
import rootfinding as rf

PROBLEMS 89

def f(z):
global z0
return z*np.tan(z) - np.sqrt(z0*z0-z*z)

if __name__ == "__main__":
global z0
z0=6 #system parameter
#control parameters
N=100
K=np.int(np.ceil(z0/np.pi)) #The number of roots

initial bracket
z1=0.0;
z2=np.pi/2.0

for k in range(1,K+1):
dz = (z2-z1)/N # small shit
z = rf.findaroot(f,z1+dz,z2-dz,10,1.0e-6)
print("root={0:12.8f}".format(z))
z1 = z2
z2 = min([z0,z1 + np.pi])

Program 4.7 (b)
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Secion 4.6. *
%* filename: rootfinding.py *
%* program listing number: 4.6-2 *
%* *
%* Inputs *
%* f = function name *
%* x1, x2 = bracket *
%* N = interations of bisection *
%* tol = tolerance for scant method *
%* Output: *
%* x = root *
%* *
%* This program find a root of a given funcion f(x)=0 *
%* using the bisection and secant root finding method *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
"""
def findaroot(f,x1,x2,N,tol):

f1=f(x1)
f2=f(x2)
if f1*f2 > 0:

exit('Bracket is incorrect')

Bisection method (N iteration)
n=0 # iteration counter

mid point
xm = (x1+x2)/2.0

90 ROOT FINDING

fm = f(xm)

while n<N+1:
if f1*fm < 0.0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

Secant method
dx = (x2-x1)/10.0
x1 = xm
f1 = fm
x2 = x1 + dx
f2 = f(x2)
n = 0
while abs(f2)> tol:

x = x2 - (x2-x1)/(f2-f1)*f2
x1 = x2
f1 = f2
x2 = x
f2 = f(x)
n+=1

return x

NNN

Bibliography

[1] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.
Chapter 2.

[2] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[3] David Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, 1987. Section
5.4.

[4] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005. Section
2.6.

[5] Donald A. McQuarrie. Physical Chemistry: A Molecular Approach. University Science Books, 1997.
Chapter 5.

[6] Julio Gea-Banacloche. A quantum bouncing ball. American Journal of Physics, 67:776, 1999. See also
references therein.

91

CHAPTER 5

ORDINARY DIFFERENTIAL EQUATIONS I:
INITIAL VALUE PROBLEMS

Many physics theories are expressed in various forms of ordinary differential equation(ODE). For example,
Newton’s equations of motion are written in ODE. In classical mechanics courses, we solve various example
problems analytically. In practice, however, the majority of problems cannot be solved analytically because
Newton’s equations are non-linear except for simple harmonic oscillators. The motion of a planet (Kepler
problem) is a very special case where analytical solution is possible despite of the non-linearity. We must
resort to numerical methods for almost all practical problems.

An ODE generally allows infinitely many different solutions. We want to find a solution that matches
to given conditions ODE alone cannot pick it. It is boundary conditions that determine a specific solution.
In physics there are two types of problems. When we want to find a time evolution of physical quantities,
we solve ODEs with initial conditions. Initial conditions are a kind of boundary condition given at a single
point (initial time). On the other hand, when we want to know a spatial profile of physical quantities, we
usually specify conditions at two different points. Eigenvalue problems expressed in differential equation
forms belong to the latter type of boundary conditions. The former is called initial value problem and the
latter boundary value problem. In numerical calculation, these two problems are quite different. In this
chapter we focus on initial value problems, boundary value problems are discussed in next chapter and
eigenvalue problems in the following chapter.

5.1 Standard forms of Initial Value Problems in Physics

A typical initial value problem in physics is a first order ODE expressed in a standard form,

ẋ = F (x, t) (5.1)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

93

94 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

or a set of second order ODEs
ẍ = F (x, ẋ, t) (5.2)

where x is a function of time. The functions x and F can be vector. For example, Newton’s equation of
motion

r̈ = 1
m

F(r,v, t). (5.3)

is a standard second order ODE with r = {x, y, z}, and F = {Fx, Fy, Fz}. In other words, Eq. (5.3) is a
set of coupled ODEs. In general, the second order ODEs of this kind can be transformed to another set of
first order ODEs. Therefore, numerical methods for the first order ODEs can be used to solve the second
order ODEs as well. However, there are also algorithms specific to the second order ODEs such as the Verlet
argorithm, which can be more efficient in certain applications.

5.2 First Order Differential Equations

For simplicity, we focus on the first order ODE of a single variable x for a while. Multivariable cases will be
discussed at the end of this section. More specifically, we want to solve the following type of ODE:

ẋ = F (x, t) (5.4)

for a given initial condition x(t0) and a function F (x, t). The exact solution is a continuous function x(t) for
time period from an initial time t0 to a final time tF . However, in the computer we work with discrete time
tn = t0 +nh, n = 0, · · · , N where h is a time step defined by h = tF − t0

N
. The numerical solution is obtained

as a sequence x(t0), x(t1), x(t2), · · · , x(tN). Our goal is to develop numerical algorithms to predict x(tn+1)
knowing the previous points x(tn), x(tn−1), · · ·x(t0). We can construct the whole sequence by repeating the
procedure. In the following subsections, we use simplified expressions, xn = x(tn) and Fn = F (x(tn), tn).

To begin with, we convert the ODE (5.4) to a recursive equation involving an integral. Integrating Eq.
(5.4) from tn to tn+1, we obtain

xn+1 = xn +
∫ tn+1

tn

F [x(t), t] dt . (5.5)

This expression is still mathematically exact. However, it is not a solution since the integrand depends on
the continuous solution x(t) which we don’t know. How can we evaluate the integral without knowing x(t)
for tn < t < tn+1? Nonetheless our numerical methods are derived from this recursive equation.

5.2.1 Euler Method

Now, we try to estimate the integral in Eq. (5.5) only with known values xn and Fn. Figure 5.1a shows
what we are trying to do. Recalling that the rectangle rule of numerical integration depends only on the
single point [see Eq. (3.2a)], we use the rectangular rule to approximate the integral in Eq. (5.5):∫ tn+1

tn

F [x(t), t] dt ≈ Fn h (5.6)

which leads to the Euler method:
xn+1 = xn + Fn h . (5.7)

Starting from the initial value, x0, we first evaluate F0 = F (x0, t0). Then, we obtain x1 by Eq. (eq:euler-
rule). Using this procedure recursively, we obtain the whole sequence from x0 to xN .

FIRST ORDER DIFFERENTIAL EQUATIONS 95

t n t n+1

this curve is
not known.

F n
 ∝h2

F (xn , t n)h

F (x , t)

t

F n+1

known

not known

(a) The curve in the figure represents the integrand of
Eq. (5.5), which is unknown to us. Knowing Fn and
h, we approximate the integral by the rectangular
rule. The unaccounted area is proportional to h2.

t n t n+ 1

xn

xn+1

error

x(t)

t

exact solution
(unknwon)

slope= ẋn=F n

(b) Using the slope of the curve Fn, we extrapo-
late next point xn+1 assuming the curve is close to a
straight line within a small step h.

Figure 5.1: Illustration of the Euler method

Algorithm 5.1 Euler method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times

6. Evaluate the function Fn = F (xn, tn).

7. Calculate a new point xn+1 = xn + Fnh.

8. Increment the step: n = n+ 1.

9. Go to Step 6.

The area omitted in Fig. 5.1a) is order of h2. Therefore the local error of the Euler method is the order
of h2. After N iteration, the global error becomes Nh2 ∼ O(h). If h is small enough, we hope that this is a
good approximation. In practice, the Euler method is not good enough for most applications.

96 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

5.2.2 Predictor-Corrector Method

The higher order of error in the Euler method is due to the inaccuracy of the rectangle rule (5.6) (See
Chapter 3). We expect that the trapezoidal rule∫ tn+1

tn

F [x(t), t] dt ≈ (Fn + Fn+1)h
2 (5.8)

provides a better estimate of the integral in (5.5). Then, Eq. (5.5) becomes

xn+1 = xn + h

2 [F (xn, tn) + F (xn+1, tn + h)] +O
(
h3). (5.9)

This expression is implicit with respect to xn+1 since the right hand side also depends on it. To find xn+1,
we must use a root-finding method, which is in principle possible but too time-consuming for practical
applications. A better way is to use an approximate value of xn+1 in the right hand side. We predict xn+1
using the Euler method and then correct it by Eq. (5.9). This is the ”predictor-corrector” method. The
above procedure is summarized in Algorithm 5.2, which looks different from the above method but more
convenient when you write a program.

Algorithm 5.2 Predictor-corrector method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Predictor: k1 = F (xn, tn)

8. Corrector: k2 = F (xn + k1h, tn+1).

9. New point: xn+1 = xn + h

2 (k1 + k2).

10. Increment the step: n = n+ 1.

11. Go to Step 6.

The above algorithm uses the Euler method as predictor. The local order of the error O
(
h3) is better

than that of the Euler method. Therefore, the corrector works. Figure 5.2 illustrates the improvement.
However, even higher accuracy can be attained if a better method such as the Adams-Bashforth method is
used as predictor and a higher order corrector is used. See Ref. [1] for the detailed description of advanced
predictor-corrector methods.

FIRST ORDER DIFFERENTIAL EQUATIONS 97

t n t n+1

this curve is
not known.

F n

F (x ,t)

t

F n+1

given

not knwon

(a) Fn+1 is linearly extrapolated from two previous
points Fn−1 and Fn. Then, trapezoidal rule is used
to integrate.

t n t n+1

xn

xn+1

x(t)

t

exact
solution

slope=k1

slope=k 2slope=
k1+k2
2

(b) The linear extrapolation in the left panel is equiv-
alent to assume that the change of the slope (∆) is
the same as that in the previous step.

Figure 5.2: Illustration of the Predictor-Corrector Method

EXAMPLE 5.1 Free Falling

A particle of 1 kg is dropped from rest in uniform gravity 9.8m/s2. The drag force due to the presence
of air is −γv where v is velocity and the frictional coefficient is γ = 1.0 kg/s. The equation of motion is
given by

mv̇ = −γv −mg (5.10)

ans its solution is
v(t) = mg

γ

(
e−γt − 1

)
. (5.11)

Let us integrate the Newton equations using Euler and Predictor-Corrector methods. Program 5.1
implements the methods. We integrate from t = 0 to t = 10 using the step size h = 0.01. In Fig.
5.3, the results of the two methods and the exact solution are plotted. From naked eyes, there is no
difference between them. However, if look at the absolute errors (right panel), the difference is clear.
The predictor-corrector method is much better. Note also that the error increases at the beginning
where the velocity changes very rapidly and decreases as the velocity approaches the terminal value.

5.2.3 2nd-Order Runge-Kutta Method

If the value of x at the mid point between xn and xn+1 is available, the higher accuracy may be obtained.
The integral in Eq (5.5) can be evaluated by a single point (see Fig. 5.4.):∫ tn+1

tn

F (x(t), t)dt = hFn+1/2.+O
(
h3) (5.12)

98 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 2 4 6 8 10

v(
t)

-10

-8

-6

-4

-2

0
Euler
Predictor-Corrector
Exact

t
0 5 10

ab
so

lu
te

 e
rr

or
10-8

10-6

10-4

10-2

100

Figure 5.3: Output of Example 5.1. The left panel shows the velocity as a function of time. All three lines
look identical. The right panel shows the absolute errors. The error in the predictor-corrector method is
clearly square of the error in the Euler method.

t n t n+1

this curve is
not known.

F n
 ∝(Δ t)2

F (x (tn), tn) Δ t

F (x ,t)

t

F n+1

given

not knwon

t
n+

1
2

F
n+

1
2

(a) Using the Euler method, Fn+1/2 is estimated.
Then, the integral is approximated by the area of
the rectangle.

t n t n+1

xn

xn+1

x(t)

t

exact
solution

t
n+
1
2

x
n+
1
2

slope=k 2

slope=k1

slope=k 2

(b) The slop at the mid point (k2) is estimate by the
Euler method . Then the new point is predicted with
the same slope (red line).

Figure 5.4: Illustration of the second order Runge-Kutta Method.

FIRST ORDER DIFFERENTIAL EQUATIONS 99

where Fn+1/2 ≡ F []x(tn + 1/2), tn + h/2], which is still unknown to us. We estimate it using the Euler
method and obtain

xn+1/2 = xn + h

2Fn (5.13)

which enables us to compute Fn+1/2 in Eq. (5.12). This is the second-order Runge-Kutta method.

Algorithm 5.3 Second-order Runge-Kutta method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Predictor: k1 = F (xn, tn)

8. Corrector: k2 = F (xn + k1h/2, tn + h/2).

9. New point: xn+1 = xn + k2h.

10. Increment the step: n = n+ 1.

11. Go to Step 6.

The 2nd order Runge-Kutta method has accuracy similar to the two-step Admas-Bashforth and Euler-
predictor-corrector methods. The two-step Adams-Bashforth method has a very good stability. If you need
to iterate many steps, the two-step Adms-Bashforth is better than the others. While the Runge-Kutta and
the Predictor corrector methods evaluate F multiple times per step, the Adams-Bashforth method evaluate
it only once per step. Therefore, the two-step Adams-Bashforth method is faster. Therefore, if the local
error O

(
h3) is sufficient, the two-step Adams-Bashforth method is superior. However, if higher accruacy

is needed, the three-steps Adams-Bashforth method is not necessarily the best. The following forth-order
Runge-Kutta is the winner.

5.2.4 4th-Order Runge-Kutta Method

The Euler and two-step Adams-Bashforth methods approximate the integral in Eq. (5.5) using the rectan-
gular and trapezoidal rule, respectively. The 2nd-order Runge-Kutta is also equivalent to the trapezoidal
rule. In order to improve accuracy, it is natural to use higher order integral methods. Here we apply the
Simpson rule: ∫ xn+h

xn

F []x(t), t] dt = h

6
(
Fn + 4Fn+1/2 + Fn+1

)
+O

(
h5) (5.14)

100 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

Since Fn+1/2 and Fn+1 are not known, we need to estimate them. k2 in the 2nd-order Runge-Kutta method
is already an estimate of Fn+1/2. Now we need to estimate Fn+1 from Fn+1/2. However, k2 is based on the
Euler method and not accurate enough to predict next step. So, we adopt the predictor-correct method to
improve Fn+1/2:

k3 ≡ F (xn + k2h

2 , tn + h

2) (5.15)

with which we estimate the final point

k4 ≡ F (xn + k3h, tn + h) (5.16)

Now both k2 and k3 are the estimates of Fn+1/2. Which one should we use? In general k3 should be better
since the predictor-corrector method is applied. However, traditionally the mean of k2 and k3 is used. The
local error is the order of h5. Here is the complete procedure:

Algorithm 5.4 Forth-order Runge-Kutta method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Euler step: k1 = F (xn, tn)

8. 2nd order Runge-Kutta step: k2 = F (xn + k1h/2, tn + h/2).

9. Predictor-corrector step: k3 = F (xn + k2h
2 , tn + h

2).

10. 4th order Runge-Kutta step: k4 = F (xn + k3h, tn + h).

11. New point: xn + h

6 (k1 + 2k2 + 2k3 + k4).

12. Increment the step: n = n+ 1.

13. Go to Step 6.

The 4th-order Runge-Kutta method is the most commonly used method in physics (or anywhere else).
Although in principle even higher order methods are possible, in practice the fourth order is the highest that
balances computing time and accuracy.

FIRST ORDER DIFFERENTIAL EQUATIONS 101

t
0 2 4 6 8 10

v(
t)

-10

-8

-6

-4

-2

0
RK2
RK4
Exact

t
0 2 4 6 8 10

ab
so

lu
te

 e
rr

or

10-15

10-10

10-5

100

RK2
RK4

Figure 5.5: Output of Example 5.2. The left panel shows the velocity as a function of time. All three lines
look identical. The right panel shows the absolute errors. The 4th order Runge-Kutta method is clearly
more accurate than the 2nd order method.

EXAMPLE 5.2 Free Falling Again

We solve the Newton’s equation in Example 5.1 using 2nd and 4th order Runge-Kutta methods.(Program
5.2) The results shown in Fig. 5.5 indicate that the 4th order Runge-Kutta is superior. Note also that the
error of the 2nd order Runge-Kutta is essentially identical to the predictor-corrector method in Example
5.1.

5.2.5 Adaptive Step: Runge-Kutta-Fehlberg Method

The solution to an ODE can be slowly changing in some parts and rapidly varying in other parts. If a constant
step h were used, it must be small enough for the rapid change. However, such a small h is not necessary in
the slowly changing region and thus we waist computer time. Furthermore, finding an appropriate step size
becomes difficult if we don’t know the rapidly changing part prior to the calculation. It is desired to have
an algorithm which automatically adjusts the step size as the solution is computed. Runge-Kutta-Felberg
method which is also known as RK45 finds appropriate step size so that the result is accurate to the given
tolerance.

Like regular Runge-Kutta method, we try to find solution xn+1 at tn+1 knowing the previous step xn at
tn where tn+1 = tn +h. Here we show the algorithm without proof. For a given h, we evaluate the following
six quantities,

k1 = hF (xn, tn) (5.17a)

k2 = hF

(
xn + 1

4k1, tn + 1
4h
)

(5.17b)

k3 = hF

(
xn + 3

32k1 + 9
32k2, tn + 3

8h
)

(5.17c)

102 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

k4 = hF

(
xn + 1932

2197k1 −
7200
2197k2 + 7296

2197k3, tn + 12
13h

)
(5.17d)

k5 = hF

(
xn + 439

216k1 − 8k2 + 3680
513 k3 −

845
4104k4, tn + h

)
(5.17e)

k6 = hF

(
xn −

8
27k1 + 2k2 −

3544
2565k3 + 1859

4104k4 −
11
40k5, tn + 1

2h
)

(5.17f)

Our first try is
xn+1 = xn + 25

216k1 + 1408
2565k3 + 2197

4101k4 −
1
5k5 (5.18)

which uses four points (k1, k3, k4, and k5). The second try is given by

x′n+1 = xn + 16
135k1 + 6656

12, 825k3 + 28, 561
56, 430k4 −

9
50k5 + 2

55k6. (5.19)

The second try is more accurate than the first try. Now, we estimate the error by

δ = 1
h
|x′n+1 − xn+1|. (5.20)

and

λ = 0.84
(

tol
δ

)1/4
(5.21)

where tol is a tolerance. If δ < tol, then we accept the solution and move to the next step with a new step
length λh. Since the original h gives the accurate result, we want to use a larger step size. In that case,
λ > 1. If δ > tol, then the present calculation is not accurate enough. Try again with the new step size
λh which is smaller than the original step size. Since the step size h varies as the calculation goes, tn is no
longer evenly spaced. If we need the solution with evenly spaced t, we can interpolate it from the RK45
solution.

EXAMPLE 5.3 Yet Another Free Falling

We solve the Newton’s equation in Example 5.1 using Runge-Kutta-Fehlberg Method methods. MAT-
LAB has a built-in function ode45() which uses the Runge-Kutta-Fehlberg algorithm. See Program 5.3.
The result shown in Fig. 5.6 indicates that the small step size is used at the beginning and gradually
increases as the magnitude of slope decreases. The figure also shows that the error remain below the
tolerance (default value in MATLAB is 10−3.).

.

5.3 Coupled ODEs

We now consider a set of ODEs. All methods we discussed in the present section can be used. Any of
algorithms for single ODEs can be extended to coupled ODEs. As an example, we solve two coupled ODEs,

ẋ(t) = F (x(t), y(t), t) (5.22a)
ẏ(t) = G(x(t), y(t), t) (5.22b)

COUPLED ODES 103

0 5 10
t

-10

-8

-6

-4

-2

0

v(
t)

RK45
Exact

0 5 10
t

10-20

10-10

100

ab
so

lu
te

 e
rr

or

Figure 5.6: Output of Example 5.3. The left panel shows the velocity as a function of time. The circles on
the top indicates the time step. The right panel shows the absolute errors which remains below the tolerance
10−3.

using the following 4th order Runge-Kutta method:

k1 = F (xn, yn, tn) (5.23a)
`1 = G(xn, yn, tn) (5.23b)

k2 = F (xn + k1h

2 , yn + `1h

2 , tn + h

2) (5.23c)

`2 = G(xn + k1h

2 , yn + `1h

2 , tn + h

2) (5.23d)

k3 = F (xn + k2h

2 , yn + `2h

2 , tn + h

2) (5.23e)

`3 = G(xn + k2h

2 , yn + `2h

2 , tn + h

2) (5.23f)

k4 = F (xn + k3h, yn + `3h, tn + h) (5.23g)
`4 = G(xn + k3h, yn + `3h, tn + h) (5.23h)

xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4) (5.23i)

yn+1 = yn + h

6 (`1 + 2`2 + 2`3 + `4) (5.23j)

EXAMPLE 5.4 Two Cars

Two cars move with velocity v1 and v2. The driver of each car tries to keep its velocity the same as the
velocity of other car. Using a simple linear coupling between two cars, their equations of motion are
model as

v̇1 = +k(v2 − v1)
v̇2 = −k(v2 − v1) (5.24)

104 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 1 2 3 4 5

ve
lo

ci
ty

1

1.05

1.1

1.15

1.2

v
1

v
2

t
0 1 2 3 4 5

v 1-v
2

0

0.05

0.1

0.15

0.2

Figure 5.7: Output of Example 5.4. Left: The velocity of each car. At the end two cars travel at the same
velocity. Right: The difference in velocities. The velocity difference decreases exponentially. The 2nd order
Runge-Kutta method with h = 0.02 is used.

where k is a positive constant. By adjusting the unit of time, we can set k = 1. Initially, the first car was
slightly faster than the second: v1(0) = 1.2 and v2(0) = 1.0. Are they able to travel together? If so, how
soon their speed is synchronized? What is their final velocity? Since the equation is linear, this problem
can be solved analytically. The answer is ”yes”. The velocity difference decays as δv = δv0e−2t and the
final velocity is the mean of the initial velocities vf = 1

2 (v1(0) + v2(0)). Here we solve the equations
using the 2nd-order Runge-Kutta and the results are plotted in Fig. 5.7.

5.4 Second-Order Differential Equations

Many second-order ODEs in physics problems can be converted to a set of coupled first-order ODEs. The
methods discussed in the previous sections can be used to solve them without any additional steps. On the
other hand, there are algorithms specifically developed for second-order ODEs such as Newton’s equations
of motion.

5.4.1 Converting to a Coupled First-Order ODEs

Consider a second-order differential equation

ẍ = F (x, ẋ, t). (5.25)

Introducing a new variable y = ẋ, Eq (5.25) can be written as a set of coupled first-order differential
equations,

ẏ = F (x, y, t) (5.26)
ẋ = y, (5.27)

which can be solved by the method discussed in the previous section.
Newton’s equation of motion are this type of ODEs. For more complicated classical systems, Lagrangian

approach is often used. Euler-Lagrange equations generate the second order ODEs which can be transformed

SECOND-ORDER DIFFERENTIAL EQUATIONS 105

t
0 10 20 30

di
sp

la
ce

m
en

t

-1

-0.5

0

0.5

1

RK4
Exact

t
0 10 20 30

ab
so

lu
te

 e
rr

or

10-12

10-10

10-8

10-6

10-4

Figure 5.8: Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion is
integrated with 4th order Runge-Kutta method (h = 0.05). Right: Absolute error. The error is very small
but gradually increasing as the number of iterations increase.

to this type. If the system is conservative, Hamiltonian approach may be more convenient for numerical
methods since the Hamilton’s canonical equations of motion are already a set of first order ODEs.

EXAMPLE 5.5 Simple Harmonic Oscillator

A harmonic oscillator of mass m and spring constant k oscillates with frequency ω =
√

k
m . The dynamics

is determined by the Newton’s equation of motion

mẍ = −kx → ẍ = −ω2x . (5.28)

First, we convert it to coupled ODEs

v̇ = −ω2x (5.29a)
ẋ = v (5.29b)

and solve it with the 4th-order Runge-Kutta method. Figure 5.8 illustrates the accuracy of the method.
Note that the error gradually increases as the number of iterations increases.
Exercise 5.1 Add the friction term −gammaẋ in the program. Plot trajectories for γ2 > 4mk (weakly

damped), γ2 = 4mk (critically damped), and γ2 < 4mk (overdamped).

5.4.2 Verlet Method

Although any second order differential equation can be rewritten as a coupled first-order differential equation,
there are convenient methods that directly solves second-order differential equations. However, these methods
works only for certain types of second-order equations. Newton equations,

ẍ = 1
m
F (x, t) (5.30)

106 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

is an example. Note that the force does not depend on velocity.
Using the Taylor expansion,

x(t+ h) = x(t) + hẋ+ h2

2 ẍ+ h3

6 x
(3) +O(h4) (5.31)

x(t− h) = x(t)− hẋ+ h2

2 ẍ−
h3

6 x
(3) +O(h4) (5.32)

Adding these equations cancels the odd-order terms and we obtain

x(t+ h) = 2x(t)− x(t− h) + h2ẍ+O(h4) (5.33)

= 2x(t)− x(t− h) + h2

m
F (x(t), t) + o(h4) (5.34)

which leads to a recursive equation

xn+1 = 2xn − xn−1 + Fn
h2

m + o(h4) (5.35)

This simple iteration scheme gives rise to the accuracy of o(h4), only one order worse than the 4th-order
Runge-Kutta. This simplicity is due to the fact that the force does not depend on the velocity. Since
the velocity-dependent force such as friction does not appear in microscopic picture, this method is widely
used in the molecular dynamics simulation. We need to consider not only the degree of error but also the
computation time. The Verlet method evaluates the force only once in each step whereas the 4th-order
Runge-Kutta needs to evaluate it four times. Therefore, the Verlet method is more suitable for large scale
simulation.

One problem is that this recursive equation uses two previous steps. However, the given initial condition
is x0 and v0. In order to find x1 we need to know x−1! A popular resolution is to use Euler method only for
the first step.

x1 = x0 + v0h+ F0
h2

m
. (5.36)

The velocity can be obtained by the mean value numerical derivative:

vn = ẋn = xn+1 − xn−1
2h (5.37)

EXAMPLE 5.6 Simple harmonic oscillator again

We repeat Example 5.5 but with the Verlet method (Program 5.6) The result indicates that the error
is larger than that of the 4th-order Runge-Kutta as expected. However, for many large simulation, the
degree of accuracy is good enough.
Exercise 5.2 Consider a forced harmonic oscillator with external forcing A cos(Ωt) where A and Ω

are amplitude and frequency of the external force. Calculate trajectories of the forced oscillator using
the Verlet method.

5.5 Applications in Physics

5.5.1 Nonlinear Chemical Dynamics: Brusselator

In order to investigate self-organization mechanisms, the following hypothetical chemical reaction (Brusse-
lator model) has been intensively investigated:

APPLICATIONS IN PHYSICS 107

t
0 10 20 30

di
sp

la
ce

m
en

t

-1

-0.5

0

0.5

1

Verlet
Exact

t
0 10 20 30

ab
so

lu
te

 e
rr

or
10-8

10-6

10-4

10-2

100

Figure 5.9: Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion is
integrated with Verlet method (h = 0.05). Right: Absolute error. The error is small but considerably larger
that of 4th-order Runge-Kutta method in Fig. 5.8.

t
0 50 100

co
nc

en
tr

at
io

n

0

0.5

1

1.5

2

2.5

3

3.5

x
y

x
0 1 2 3

y

1

1.5

2

2.5

3

3.5

Figure 5.10: Limit cycle in the Brusselator dynamics. Parameter values: a = 1 and b = 2.3

108 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

A −→ X (5.38a)

B +X −→ Y +D (5.38b)

2X + Y −→ 3X (5.38c)

X −→ E (5.38d)

where the species A and B are sources injected into the system such that their concentration is kept constant,
and the products D and E are extracted from the system at a constant rate. The species X and Y are
intermediate products. It is important to note that both X and Y are produced and consumed during the
sequence of reactions in such a way that X produces Y and in turn Y produces X.

Corresponding to the chemical equations (5.38), the time evolution of the concentration of X and Y in
the Brusselator system is determined by coupled differential equations:

ẋ = a− (b+ 1)x+ x2y (5.39a)

ẏ = bx− x2y (5.39b)
where a and b are the concentration of A and B in the Brusselator model (5.38) which are control parameters,
and x and y are the concentration of X and Y In Program 5.7 the differential equations is integrated with
the 4th-order Runge-Kutta method. Initial conditions x0 = 1 and y0=1 and parameter values a = 1 and
1.5 < b < 2.5 are used. As b is varied the type of trajectories changes (bifurcation). In an interesting case,
the solution converges to a closed loop regardless of the initial condition. This kind of dynamics is known
as limit cycle.[2] and plays important roles in biological systems.[3, 4] Figure 5.10 illustrates the limit cycle
obtained by Program 5.7 with parameter values a = 1 and b = 2.3.

5.5.2 Nonlinear Dynamics in Laser: Maxwell-Bloch equation

A semiclassical model of the laser is known as Maxwell-Bloch equation[5, 6]:

Ė = −γ1E + κ1P (5.40a)

Ṗ = −γ2P + κ2ED (5.40b)

Ḋ = −γ3(D − λ)− κ3E P (5.40c)
where E, P , D are the electric field, the mean polarization of atoms, and the population inversion, respec-
tively. γ1 are the decay rates of the electric field in the laser cavity due to beam transmission. γ2 and γ3 are
the decay rates of the atomic polarization and population inversion, respectively. κi, i = 1, 2, 3 are positive
coupling constants. λ is the energy pumping parameter and may be positive, negative or zero. Unlike two-
dimensional nonlinear dynamics of the Brusselator model, this is three-dimensional nonlinear dynamics and
chaotic trajectories are possible. Depending on the parameter values, the system shows a variety of dynam-
ics. We solve the coupled ODEs using 2nd-order Runge-Kutta method from t = 0 to t = 500 (or longer) for
each parameter set given in Table 5.1. Then, we investigate the time evolution of E and two-dimensional
phase trajectory (E, D) for each of the following cases. Type C shows a particularly interesting trajectory

APPLICATIONS IN PHYSICS 109

Type γ1 γ2 γ3 κ1 κ2 κ3

A (γ2, γ3 � γ1) 0.1 2 3 0.25 0.2 1

B (γ2 � γ1, γ3) 0.1 10 0.25 1 0.5 1

C (γ1 > γ2 + γ3) 1 0.1 0.25 1 0.1 1

Table 5.1: Parameter sets for Maxwell-Bloch equation.

t
0 100 200 300 400 500

E
(t

)

-5

0

5

5

E

0
-5-20

0
D

10

0

-10
20

P

Figure 5.11: Left: Erroneous oscillation in the magnitude of electric field. Right: Three–dimensional phase
plot of E, P and D showing a strange attractor. Parameter values: Type C in Table 5.1 and λ = 23

known as strange atractor which is confined in a finite region without repeating itself as shown in Fig. 5.11.
Such a trajectory is possible only in three or higher dimensional phase spaces.

Type A Vary λ from 3.0 to 6.0. Observe that E always converges to a constant value.
However, below a certain critical value of λ, E decays to zero. On the other hand, above it
E goes to a positive vale (lasing).

Type B Vary λ from 0.5 to 3. Observe that E always converges to a constant value. How-
ever, below a certain critical value of λ, E decays to zero. On the other hand, above it E
goes to a positive vale (lasing).

Type C Vary λ from 20 to 25. Observe that E decays to zero with oscillation below a
critical value of λ. Above the critical value, E randomly oscillates (unstable laser).

5.5.3 Frequency Entrainment and Phase Synchronization

Rhythmical oscillations are ubiquitous phenomena such as heart beat, burst of neuron, circadian rhythm
and hands clapping. Each oscillation has its own frequency, phase, and amplitude. Consider a large number
of oscillators interacting each other. Each oscillator has a slightly different frequency and phase from each
others. With an appropriate interaction, the all oscillators begin oscillating in unison with the identical
frequency and the same phase despite that individual oscillators have different natural frequencies. This is

110 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

0 10 20
t

-1

-0.5

0

0.5

1
si

n
 3

3
1

3
2

0 10 20
t

-1

0

1

2

3

3
1-3

2
Figure 5.12: Left: The trajectory of the oscillators. Each oscillator has its own natural frequency ω1 = 1.0
and ω2 = 1.2. Initially the two oscillators are out of phase. Despite of these differences, they are quickly
synchronized and oscillate at the same frequency. Left: the phase difference rapidly changes at the beginning
but settles to a constant phase difference. [The 2nd-order Runge-Kutta is used with h = 0.01.]

the phenomenon of synchronization.[7] For example imagine hand clapping at the end of a ballet performance.
At the beginning, the clapping is not unison but soon everyone is clapping at the same frequency and phase
with others. Most spectacular phenomenon is simultaneous flashing of thousands of fireflies in Southeast
Asia.[7, 8] An example in physics is synchronization of the array of Josephson junctions.[7]

We investigate a similar phenomena using the Kuramoto model. The dynamics of phase variables θ1 and
θ2 is described by a coupled ODEs[9]:

θ̇1 = ω1 + sin(θ2 − θ1) (5.41a)
θ̇2 = ω2 − sin(θ2 − θ1) (5.41b)

where ω1 and ω2 are natural frequencies of the individual phase oscillator. When there is no coupling,
each oscillator oscillates with its own frequency. This problem is similar to the two car problem (Example
5.4). However, the coupling is now nonlinear and more dramatic phenomena such as phase entrainment
and synchronization can be seen in this model. Program 5.9 integrates Eq. (5.41) with the 2nd-order
Runge-Kutta method. The results are plotted in Fig. 5.12. Initially the oscillators are in different phases
and periods. Despite of their different natural frequencies, they oscillates in the exactly the same period
(frequency entrainment) and with a constant phase difference (phase synchronization).

Exercise 5.3 Observe that for ω1 = 1.0 and ω2 = 2.2, frequency entrainment still takes place. However,
the phase difference no longer vanishes.
Exercise 5.4 Observe that for ω1 = 1.0 and ω2 = 3.2, neither frequency entrainment nor phase synchro-

nization occur. The difference between the two oscillators is too big,

5.5.4 Period of Oscillation

In Sec 3.6.1, we discussed how to evaluate the analytical expression of the period of oscillation using numerical
integration. Here we simulate the oscillation by solving the Newton’s equation of motion numerically. We
assume that the analytical form of the force, F (x) = −U ′(x), is known. You can pick any initial condition

APPLICATIONS IN PHYSICS 111

consistent with the given energy E. For example, the initial position x0 is chosen somewhere between two
turning points. The initial velocity is then determined by the energy conservation law

m

2 v
2
0 + U(x0) = E → v0 = ±

√
2(E − U(x0))

m
(5.42)

The sign determines the direction of initial velocity.
To determine the period of oscillation, we measure the time the particle comes back to the starting point.

To increase accuracy, we measure the time τ the particle returns to the starting point after N oscillations.
Then, the period is T = τ/N . One problem is that the time is discrete and we don’t know the exact time
the particle returned. Suppose that the particle passes the initial position between tn and tn+1. That means
tn < τ < tn+1 and xn < x0 < xn+1 (assuming that the direction of the initial velocity is positive.) Using
the Euler method, the time to reach the starting point is τ = tn + δ where delat is a positive solution of
quadratic equation

x0 = xn + vnδ + Fn
δ2

2m (5.43)

for δ = tn+1 − τ . Choosing the smaller root, the answer is

δ = −vn ±
√
v2
n − 2(xn − x0)Fn/m
Fn/m

(5.44)

One of the solutions are positive depending on the sign of the force Fn. Since xn−x0 may be very small, we
need to take care of the bit-off error discussed in Problem 1.1. Program 5.10 evaluates the period of simple
harmonic oscillator (see Example 5.5) using the Verlet method. With h = 0.05, the Verlet method predicts
T = 6.283159, in a good agreement with the exact answer T = 2π.

5.5.5 Pendulum

A pendulum consisting of a bob of mass m and a massless rod of length ` exhibits two types of motion,
oscillation around a stable equilibrium and rotation in one way. Using the angular coordinate, the equation
of motion of a simple pendulum is

Iθ̈ = −mg` sin θ (5.45)
where I = m`2 is the moment of inertia. Simplifying the equation,

θ̈ = −Ω2 sin θ (5.46)

where Ω =
√
g

`
. Let integrate this equation using two different methods, Euler and Verlet methods. We are

not only interested in the coordinate but also the mechanical energy

E = Iω2

2 −mg` cos θ (5.47)

where ω = θ̇ is angular velocity. For simplicity, we use parameter values m = 1 kg and ` = 1m. The gravity
is g = 9.8m/s2. We start the motion as θ0 = 0.5 rad and ω0 = 0. We expect the oscillatory motion.
Figure 5.13 shows clearly unrealistic trajectory. Using the time step h = 0.01, the Euler method predicts
monotonic increase in the amplitude of oscillation and rotational motion begins after a certain time. The
energy monotonically increases in violation of the energy conservation law. It is clear that the Euler method
keeps moving away from the exact solution. This kind of behavior is called numerical instability. The Verlet
method , on the other hand, correctly predicts periodic oscillation and constant energy.

Exercise 5.5 Does the Euler method produce a resonable trajectory with a smaller h, say h = 0.001?

112 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 10 20 30 40 50

3

-40

-30

-20

-10

0

10

Euler
Verlet

t
0 10 20 30 40 50

E
ne

rg
y

-10

-5

0

5

10

15
Euler
Verlet

Figure 5.13: The numerical instability with the Euler method. Left: Time evolution of angular coordinate θ.
The result of the Verlet method oscillates periodically as expected. However, the output of the Euler method
oscillates with increasing amplitude and diverges at the end. Right: Mechanical energy. The energy with
the Verlet method conserves but that of the Euler method keeps increasing. Integration step size h = 0.01
is used.

5.5.6 Scattering Angle

In Sec. 2.3.2, the scattering angle is given as an improper integral which we integrated numerically. Here,
we directly integrate the Newton’s equation and compare the results with the previous results. Due to the
conservation of momentum, the motion is confined in a plane determined by the velocity and position vectors.
Therefore, we consider trajectories only on the xy plane where x is the direction of the initial velocity. The
potential is

U(x, y) = k

r
e−r/a (5.48)

where r =
√
x2 + y2. The corresponding force on the particle is

Fx = − d
dxU(x, y) = kx

r2

(
1
r

+ 1
a

)
e−r/a (5.49a)

Fy = − d
dyU(x, y) = ky

r2

(
1
r

+ 1
a

)
e−r/a (5.49b)

Using
√
ma3/k and a as units of time and distance, respectively, the equations of motion becomes free of

parameters as

ẍ = x

r2

(
1
r

+ 1
)

e−r (5.50a)

ÿ = y

r2

(
1
r

+ 1
)

e−r (5.50b)

In this units, the energy is measured in k/a. Now, we need to specify the initial conditions. Assuming that
the particle is impinged along x axis with impact parameter b, x0 = −10, y0 = b, vy0 = 0, and vx0 =

√
2E.

The impact parameter b and energy E uniquely determine the trajectory.

APPLICATIONS IN PHYSICS 113

x
-10 -5 0 5 10

y

-10

-5

0

5

10

Impact Parameter
-4 -2 0 2 4

S
ca

tte
rin

g
A

ng
le

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.14: Scattering by a screened Coulomb force. Left: trajectories with different impact parameters.
Notice the shadow cone behind the target where the particle cannot enter. Right: Scattering angle θ
determined by the simulation.

Since the force does not depend on the velocity, the Verlet method can be used to integrate the coupled
ODE. When the particle leaves the scattering region (say, r > 10), we stop the integration. Program 5.12
solves the Newton equation and calculates the scattering angle

θ = cos−1(v0 · vf/v0vf) = cos−1(v0 · vf/2E) (5.51)

where vf is the final velocity. Since energy conserves v0vf = v2
0 = 2E.

The left panel of Fig. 5.14 shows several trajectories with different impact parameters forming a shadow
cone behind the target. The right panel plots the scattering angle as a function of impact parameter.

Exercise 5.6 Calculate the trajectories and scattering angle for k < 0.

5.5.7 Double Pendulum

A double pendulum is a popular example in classical mechanics courses. The Lagrangian approach beautifully
derives the equations of motion:

(m1 +m2)L1θ̈1 +m2L2θ̈2 cos(θ1 − θ2) +m2L2θ̇
2
2 sin(θ1 − θ2)

+ (m1 +m2)g sin θ1 = 0
(5.52a)

m2L1θ̈1 cos(θ1 − θ2) +m2L2θ̈2 −m2L1θ̇
2
1 sin(θ1 − θ2) +m2g sin θ2 = 0 (5.52b)

where the angular coordinates θ1 and θ2 are defined in Fig. 5.15. These equations of motion are awfully
complicated and there is little hope to find an analytical solution. Thus we resort to a numerical method.
Since Eqs (5.52) contains both θ̈1 and θ̈2, standard numerical methods cannot be applied. They must be
rewritten in such a way that a standard numerical method can be applied. After complicated algebra, we

114 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 50 100 150 200

3

-60

-40

-20

0

20

40

3
1
3

2

x
-2 0 2

y

-3

-2

-1

0

1

2

3

Figure 5.15: Chaotic motion of a double pendulum. Left: Two angular coordinates are randomly drifting.
Right: The trajectory of the bottom bob shows chaotic motion. Parameter values: m1 = 2 kg, m2 = 1 kg,
L1 = 1m, L2 = 2m, h = 0.02.]

find

ω̇1 = DE −BF
AD −BC

(5.53a)

ω̇2 = AF − CE
AD −BC

(5.53b)

θ̇1 = ω1 (5.53c)
θ̇2 = ω2 (5.53d)

where

A = (m1 +m2)L1 (5.54a)
B = m2L2 cos(θ1 − θ2) (5.54b)
C = m2L1 cos(θ1 − θ2) (5.54c)
D = m2L2 (5.54d)
E = −m2L2ω

2
2 sin(θ1 − θ2)− (m1 +m2)g sin θ1 (5.54e)

F = m2L1ω
2
1 sin(θ1 − θ2)−m2g sin θ2 (5.54f)

which are even more complicated but Eqs (5.53) are written in a standard form of coupled first order ODEs.
Program 5.13 solves Eqs. (5.53) using the 4th order Runge-Kutta method. In Fig. 5.15 a chaotic motion

of the double pendulum is shown. The left panel plots the two angular coordinates θ1 and θ2. No periodic
or other kind of regular motion is observed. The right panel shows the trajectory of the bottom bob in the
xy plane. Again no sign of regularity is seen in the motion.

Exercise 5.7 Try to find a regular motion with low energy (small amplitude oscillation).

PROBLEMS 115

5.6 Problems

5.1 Vanishing Friction A particle of mass m = 1 kg is initially moving freely at velocity v0 = 10m/s.
At t = 0, a frictional force

−γ0 e−t/τ v (5.55)

is applied, where the friction coefficient is γ0 = 0.1 kg/s and the decay constant τ = 2s. Find the
velocity v(t) up to t = 10τ using 2nd and 4th order Runge-Kutta methods and estimate the velocity of
the particle at t >> τ . Compare the results with the exact solution

v(t) = v0 exp
[
−γ0τ

m

(
1− e−t/τ

)]
. (5.56)

5.2 FitzHugh-Nagumo Model of Neuron When electric current stimulate a neuron, the membrane
potential generates a spike or train of spikes. A simple mathematical model for such an excitable media
or relaxation oscillation is given by the FitzHugh-Nagumo model[10]:

v̇ = v − 1
3v

3 − w + I (5.57a)

ẇ = a(v + b− cw) (5.57b)

where v is the membrane potential, w a recovery variable which activate the outgoing current. I is the
incoming current which controls the dynamics. Typical parameter values are a = 0.08, b = 0.7, c = 0.8.
Find critical I above which the neuron is excited (the membrane potential periodically oscillates).

5.3 Spring Pendulum Consider a pendulum consisting of a bob of mass m and a spring (massless) of
natural frequency ω0 and natural length L0.[11] (See Fig 5.16.) Unlike regular pendulum, length L is a
dynamical variable as well as angle θ. The equations of motion are

L̈ = Lθ̇2 − ω2
0(L− L0) + g cos θ (5.58a)

Lθ̈ = −2L̇θ̇ − g sin θ (5.58b)

Using L0 and ω−1
0 as units for length and time, respectively, the equations of motion are simplified to

L̈ = Lθ̇2 − (L− 1) + a cos θ (5.59a)
Lθ̈ = −2L̇θ̇ − a sin θ (5.59b)

where a = g

L0ω2
0

. Find trajectories of the bob for various different values of a.

116 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

θ

L

m

Figure 5.16: A spring pendulum for Problem 5.3.

MATLAB Source Codes

Program 5.1

%**
%* Example 5.1 *
%* filename: ch05pr01.m *
%* program listing number: 5.1 *
%* *
%* This program solves Newton equation for a falling object *
%* using Euler and predictor-corrector methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
gamma=1.0;
g=9.8;
m=1.0;

% intial condition
v_ex(1)=0.0;
v_eu(1)=0.0;
v_pc(1)=0.0;
t(1)=0.0;

% integration parameters
tmax=10; % maximum time
N=1000; % maximum steps
h=tmax/N;% time step

for i=1:N-1
t(i+1)=t(i)+h; % time increment

% Euler method

PROBLEMS 117

F_eu=-gamma*v_eu(i)/m-g;
v_eu(i+1)=v_eu(i)+F_eu*h;

% Predictor-Corrector method
F_pc=-gamma*v_pc(i)/m-g;
v_pc(i+1)=v_pc(i)+F_pc*h; % predictor
F_pc =-gamma/m*(v_pc(i)+v_pc(i+1))/2-g;
v_pc(i+1)=v_pc(i)+F_pc*h; % corrector

% Exact solution
v_ex(i+1)=m*g/gamma*(exp(-gamma*t(i+1))-1);

end

subplot(1,2,1);
q=plot(t,v_eu,t,v_pc,t,v_ex);
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
set(q(3),'Color','black','Linewidth',2)
legend(q,{'Euler','Predictor-Corrector','Exact'});
legend(q,'Location','NorthEast');

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v_eu-v_ex),t,abs(v_pc-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'Euler','Predictor-Corrector'});
legend(p,'Location','SouthWest');

NNN

Program 5.2

%**
%* Example 5.2 *
%* filename: ch05pr02.m *
%* program listing number: 5.2 *
%* *
%* This program solves Newton equation for a falling object *
%* using Runge-Kutta 2nd and 4th order methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
gamma=1.0;
g=9.8;
m=1.0;

% intial condition

118 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

v_rk2(1)=0.0;
v_rk4(1)=0.0;
v_pc(1)=0.0;
t(1)=0.0;

% integration parameters
tmax=10; % maximum time
N=1000; % maximum steps
h=tmax/N;% time step

for i=1:N-1
t(i+1)=t(i)+h; % time increment

% Runge-Kutta 2nd order
k1=-gamma*v_rk2(i)/m-g;
v_mid=v_rk2(i)+k1*h/2;

k2=-gamma*v_mid/m-g;
v_rk2(i+1)=v_rk2(i)+k2*h;

% RUnge-Kutta 4th order
k1=-gamma*v_rk4(i)/m-g;
v_mid=v_rk4(i)+k1*h/2;

k2=-gamma*v_mid/m-g;
v_mid=v_rk4(i)+k2*h/2;

k3=-gamma*v_mid/m-g;
v_end=v_rk4(i)+k3*h;

k4=-gamma*v_end/m-g;
v_rk4(i+1)=v_rk4(i)+h/6*(k1+2*(k2+k3)+k4);

% Exact solution
v_ex(i+1)=m*g/gamma*(exp(-gamma*t(i+1))-1);

end

subplot(1,2,1);
q=plot(t,v_rk2,t,v_rk4,t,v_ex);
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
set(q(3),'Color','black','Linewidth',2)
legend(q,{'RK2','RK4','Exact'});
legend(q,'Location','NorthEast');

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v_rk2-v_ex),t,abs(v_rk4-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'RK2','RK4'});
legend(p,'Location','SouthWest');

NNN

PROBLEMS 119

Program 5.3
%**
%* Example 5.3 *
%* filename: ch05pr03.m *
%* program listing number: 5.3 *
%* *
%* This program solves Newton equation for a falling object *
%* using the Runge-Kutta-Fehlberg method. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/30/2018. *
%**
clear all;

% system parameters
gamma=1.0;
g=9.8;
m=1.0;
% time span
tspan=[0,10];
% initial condition
y0=0;
% relative tolerence
rtol=1e-5;

% define the right hand side
f = @(t,v) -gamma*v - m*g;

% use RK45 method
opts=odeset('RelTol',rtol);
[t,v]=ode45(f,tspan,y0,opts);

% exact solution
v_ex = m*g/gamma * (exp(-gamma*t)-1);

subplot(1,2,1);
q=plot(t,v,'o',t,v_ex,'-',t,t*0,'o');
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','red','Linewidth',2);
set(q(2),'Color','black','Linewidth',2);
set(q(3),'Color','blue');
legend(q,'RK45','Exact','time step')
legend(q,'Location','East');
hold off

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);

NNN

Program 5.4

120 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

%**
%* Example 5.4 *
%* filename: ch05pr04.m *
%* program listing number: 5.4 *
%* *
%* This program solves Newton equation for interacting two cars *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% Control parameters
tmax=8; N=400; h=tmax/N;

% initial conditions
v1(1)=1.2; v2(1)=1.0; t(1)=0;

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1) = t(1)+n*h;
k1 = v2(n)-v1(n);
l1 = -(v2(n)-v1(n));
mid1 = v1(n)+k1*h/2;
mid2 = v2(n)+l1*h/2;
k2 = mid2-mid1;
l2 = -(mid2-mid1);
v1(n+1)=v1(n)+k2*h;
v2(n+1)=v2(n)+l2*h;

end

subplot(1,2,1);
p=plot(t,v1,t,v2);
xlabel('t');
ylabel(texlabel('velocity'));
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{texlabel('v_1'),texlabel('v_2')});
legend(p,'Location','SouthEast');

subplot(1,2,2);
q=plot(t,v1-v2);
xlabel('t');
ylabel(texlabel('v_1-v_2'));
set(q,'Linewidth',2);

NNN

Program 5.5

%**
%* Example 5.5 *
%* filename: ch05pr05.m *
%* program listing number: 5.5 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *

PROBLEMS 121

%**
clear all;

% system parameter
omega=1;

% initial conditions
x(1)=1;
v(1)=0;
t(1)=0;
x_ex(1)=cos(0);

% control parameters
tmax=8*pi/omega;
N=500;
h=tmax/N

for n=1:N-1
% 4th-order Runge-Kutta
kv1=-omegaˆ2*x(n);
kx1=v(n);

v_mid = v(n)+kv1*h/2;
x_mid = x(n)+kx1*h/2;
kv2 = -omegaˆ2*x_mid;
kx2 = v_mid;

v_mid = v(n)+kv2*h/2;
x_mid = x(n)+kx2*h/2;
kv3 = -omegaˆ2*x_mid;
kx3 = v_mid;

v_end = v(n)+kv3*h;
x_end = x(n)+kx3*h;
kv4 = -omegaˆ2*x_end;
kx4 = v_end;

v(n+1)=v(n)+(kv1+2*(kv2+kv3)+kv4)*h/6;
x(n+1)=x(n)+(kx1+2*(kx2+kx3)+kx4)*h/6;
t(n+1)=t(1)+n*h;

% exact soution
x_ex(n+1)=cos(omega*t(n+1));

end

% plot trajectories
subplot(1,2,1);
q=plot(t,x,'o',t,x_ex);
xlabel('t');
ylabel('displacement');
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',1);
legend(q,{'RK4','Exact'});
legend(q,'Location','East');

% plot absolute error
subplot(1,2,2);
p=semilogy(t,abs(x-x_ex));
xlabel('t');
ylabel('absolute error');
set(p,'Color','blue','Linewidth',2);

122 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

NNN

Program 5.6

%**
%* Example 5.6 *
%* filename: ch05pr06.m *
%* program listing number: 5.6 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Verlet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameter
omega=1;

% initial conditions
x(1)=1;
v(1)=0;
t(1)=0;
x_ex(1)=cos(0);

% control parameters
tmax=8*pi/omega;
N=500;
h=tmax/N;

% the first Euler step
x(2) = x(1) + v(1)*h - omegaˆ2*x(1)*hˆ2/2;

for n=2:N-1
% Verlet method
x(n+1)=2*x(n)-x(n-1) - omegaˆ2*x(n)*hˆ2;
t(n+1)=t(1)+n*h;

% exact soution
x_ex(n+1)=cos(omega*t(n+1));

end

% plot trajectories
subplot(1,2,1);
q=plot(t,x,'o',t,x_ex);
xlabel('t');
ylabel('displacement');
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',1);
legend(q,{'Verlet','Exact'});
legend(q,'Location','East');

% plot absolute error
subplot(1,2,2);
p=semilogy(t,abs(x-x_ex));
xlabel('t');
ylabel('absolute error');
set(p,'Color','blue','Linewidth',2);

NNN

PROBLEMS 123

Program 5.7

%**
%* Section 5.5.1 *
%* filename: ch05pr07.m *
%* program listing number: 5.7 *
%* *
%* This program solves the Brusselator model *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% fixed parameter
a=1;

% control parameter
b=input('Enter value for b [1.5-2.5] =');

%initial conditions
x(1)=1;
y(1)=1;
t(1)=0;

% duration
tmax=100;

% number of integration steps
N=2000;

% step size
h=tmax/N;

for n=1:N-1
% 4th-order Runge-Kutta
kx1=a-(b+1)*x(n)+x(n)ˆ2*y(n);
ky1=b*x(n)-x(n)ˆ2*y(n);

x_mid = x(n)+kx1*h/2;
y_mid = y(n)+ky1*h/2;
kx2 = a - (b+1)*x_mid+x_midˆ2*y_mid;
ky2 = b*x_mid-x_midˆ2*y_mid;

x_mid = x(n)+kx2*h/2;
y_mid = y(n)+ky2*h/2;
kx3 = a - (b+1)*x_mid+x_midˆ2*y_mid;
ky3 = b*x_mid-x_midˆ2*y_mid;

x_end = x(n)+kx3*h;
y_end = y(n)+ky3*h;
kx4 = a - (b+1)*x_end+x_endˆ2*y_end;
ky4 = b*x_end-x_endˆ2*y_end;

x(n+1)=x(n)+(kx1+2*(kx2+kx3)+kx4)*h/6;
y(n+1)=y(n)+(ky1+2*(ky2+ky3)+ky4)*h/6;
t(n+1)=t(1)+n*h;

end

% plot individual trajectories
subplot(1,2,1);

124 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

p=plot(t,x,t,y);
xlabel('t');
ylabel('concentration');
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'x','y'});
legend(p,'Location','SouthEast');

% plot phase trajectory
subplot(1,2,2);
q=plot(x,y);
xlabel('x');
ylabel('y');
set(q(1),'color','blue');

NNN

Program 5.8

%**
%* Section 5.5.2 *
%* filename: ch05pr08.m *
%* program listing number: 5.8 *
%* *
%* This program solves the Maxwell-Bloch model of laser dynamics *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parametes uncomment ONLY the desired set
%Type A
%gamma1=0.1; gamma2=2; gamma3=3; c1=0.25; c2=0.2; c3=1;
%Type B
%gamma1=0.1; gamma2=10; gamma3=0.25; c1=1; c2=0.5; c3=1;
%Type C
gamma1=1; gamma2=0.1; gamma3=0.25; c1=1; c2=0.1; c3=1;

lambda=input('Enter a value for lambda = ');

% Control parameters
tmax=500; N=5000; h=tmax/N;

% initial conditions
E(1)=1.0; P(1)=1.0; D(1)=1.0; t(1)=0;

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1)=t(1)+n*h;
FE_n=-gamma1*E(n)+c1*P(n);
FP_n=-gamma2*P(n)+c2*E(n)*D(n);
FD_n=-gamma3*(D(n)-lambda)-c3*E(n)*P(n);
E_mid = E(n)+FE_n*h/2;
P_mid = P(n)+FP_n*h/2;
D_mid = D(n)+FD_n*h/2;
FE_mid=-gamma1*E_mid+c1*P_mid;
FP_mid=-gamma2*P_mid+c2*E_mid*D_mid;
FD_mid=-gamma3*(D_mid-lambda)-c3*E_mid*P_mid;
E(n+1)=E(n)+FE_mid*h;

PROBLEMS 125

P(n+1)=P(n)+FP_mid*h;
D(n+1)=D(n)+FD_mid*h;

end

% plot the dynamics of E
subplot(1,2,1);
plot(t,E);
xlabel('t');
ylabel('E(t)');

% plot 3D phase trajectory
subplot(1,2,2);
plot3(E,D,P);
xlabel('E');
ylabel('D');
zlabel('P');
grid on

NNN

Program 5.9

%**
%* Section 5.5.3 *
%* filename: ch05pr09.m *
%* program listing number: 5.9 *
%* *
%* This program solves the synchronization of two phase oscillators *
%* using 2nd-order Runge-Kutta methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

omega1=1.0; omega2=1.2;

% Control parameters
tmax=20; N=2000; h=tmax/N;

% initial conditions
theta1(1)=pi; theta2(1)=0; t(1)=0;

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1) = t(1)+n*h;
k1 = omega1 + sin(theta2(n)-theta1(n));
l1 = omega2 - sin(theta2(n)-theta1(n));
mid1 = theta1(n)+k1*h/2;
mid2 = theta2(n)+l1*h/2;
k2 = omega1 + sin(mid2-mid1);
l2 = omega2 - sin(mid2-mid1);
theta1(n+1)=theta1(n)+k2*h;
theta2(n+1)=theta2(n)+l2*h;

end

% plot the trajectories of oscillators
subplot(1,2,1);
p=plot(t,sin(theta1),t,sin(theta2));
xlabel('t');
ylabel(texlabel('sin theta'));

126 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{texlabel('theta_1'),texlabel('theta_2')});
legend(p,'Location','SouthEast');

% plot the phase difference
subplot(1,2,2);
q=plot(t,theta1-theta2);
xlabel('t');
ylabel(texlabel('theta_1-theta_2'));
set(q,'Linewidth',2);

NNN

Program 5.10

%**
%* Section 5.5.4 *
%* filename: ch05pr10.m *
%* program listing number: 5.10 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. Then, it determines the *
%* period of the oscillation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameter
omega=1; mass=1; spring_k=mass*omegaˆ2;

% initial conditions
E=1;
t(1)=0; x(1)=0;
v(1)=sqrt(2*(E-spring_k*x(1)ˆ2/2)/mass);

% control parameters
h=0.01;
N=0; Nmax=10;
n=1;

% the first Euler step
x(2) = x(1) + v(1)*h - omegaˆ2*x(1)*hˆ2/2;

while N<Nmax
n=n+1;
% Verlet method
x(n+1)=2*x(n)-x(n-1) - omegaˆ2 * x(n) * hˆ2;
v(n) = (x(n+1)-x(n-1))/(2*h);
t(n+1)=t(1)+n*h;

% Check if it returned to the tarting point
if x(n+1)-x(1)>0 & x(n)-x(1)< 0

N=N+1;
end

end

% adjustment of the return time
Fn = -omegaˆ2*x(n)/mass;

PROBLEMS 127

if Fn>0
delta = (-2*(x(n)-x(1)))/(v(n)+sqrt(v(n)ˆ2-2*(x(n)-x(1))*Fn));

else
delta = (-v(n)-sqrt(v(n)ˆ2-2*(x(n)-x(1))*Fn))/Fn;

end

tau = t(n)+delta;
period = tau/N;

fprintf('Period: Verlet = %7.6f, Exact = %7.6f \n',period,2*pi);

NNN

Program 5.11

%**
%* Section 5.5.5 *
%* filename: ch05pr11.m *
%* program listing number: 5.11 *
%* *
%* This program finds the trajectory of a pendulum using *
%* Euler and Verlet methods. Euler method shows its numerical *
%* instability and the trajectory diverges. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**

% system parameters
mass=1; L=1; g=9.8; Omega=sqrt(g/L); I=mass*Lˆ2;

% initial conditions
theta1(1)=0.5; omega1(1)=0;t(1)=0;
theta2(1)=0.5; omega2(1)=0;
E1(1) = - mass*g*L*cos(theta1(1));
E2(1) = - mass*g*L*cos(theta2(1));

% control parameters
tmax=50; N=5000; h=tmax/N;

% Euler method
for i=1:N-1

t(i+1)=t(1)+i*h;
omega1(i+1) = omega1(i) - Omegaˆ2 * sin(theta1(i)) * h;
theta1(i+1) = theta1(i) + omega1(i)*h;
E1(i+1) = I/2 * omega1(i+1)ˆ2 - mass*g*L*cos(theta1(i+1));

end

% Verlet method
theta2(2) = theta2(1) + omega2(1)*h- Omegaˆ2 * sin(theta2(1))*hˆ2/2;
for i=2:N

theta2(i+1)=2*theta2(i)-theta2(i-1)-Omegaˆ2 * sin(theta2(i))*hˆ2;
omega2(i) = (theta2(i+1)-theta2(i-1))/(2*h);
E2(i)=I/2 * omega2(i)ˆ2 - mass*g*L*cos(theta2(i));

end

subplot(1,2,1);
q=plot(t(1:N),theta1(1:N),t(1:N),theta2(1:N));
xlabel('t');
ylabel(texlabel('theta'));

128 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
legend(q,{'Euler','Verlet'});
legend(q,'Location','SouthWest');

subplot(1,2,2);
p=plot(t(1:N),E1(1:N),t(1:N),E2(1:N));
xlabel('t');
ylabel('Energy');
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'Euler','Verlet'});
legend(p,'Location','NorthWest');

NNN

Program 5.12

%**
%* Section 5.5.6 *
%* filename: ch05pr12.m *
%* program listing number: 5.12 *
%* *
%* This program calculate the trajectory of a particle scattered by *
%* Yukawa potential using he Valet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
lear all;

E=input('Enter Energy =');

% control parameter
bmax=3;
N=10;
db=bmax/N;
h=0.01;

subplot(1,2,1);

for i=1:2*N+1

% set impact parameter
b(i)=db*(i-N-1);

% initial conditions
x(1)=-10; y(1)=b(i); vx(1)=sqrt(2*E); vy(1)=0;

% first Euler step
r = sqrt(x(1)ˆ2+y(1)ˆ2);
Fx=x(1)/rˆ2 * (1/r+1) * exp(-r);
Fy=y(1)/rˆ2 * (1/r+1) * exp(-r);
x(2)=x(1)+vx(1)*h+Fx*hˆ2/2;
y(2)=y(1)+vy(1)*h+Fy*hˆ2/2;

% Verlet method
n=2;
while abs(x(n))<10

r = sqrt(x(n)ˆ2+y(n)ˆ2);
Fx=x(n)/rˆ2 * (1/r+1) * exp(-r);

PROBLEMS 129

Fy=y(n)/rˆ2 * (1/r+1) * exp(-r);
x(n+1)=2*x(n)-x(n-1)+Fx*hˆ2;
y(n+1)=2*y(n)-y(n-1)+Fy*hˆ2;
n=n+1;

end

% final velocity
vfx=(x(n)-x(n-2))/(2*h);
vfy=(y(n)-y(n-2))/(2*h);

% scattering angle
theta(i) = acos((vx(1)*vfx+vy(1)*vfy)/(2*E));

% plot the trajctory
plot(x(1:n),y(1:n));
hold on

end

% draw a target atom
p=plot(0,0,'o');
set(p,'Color','red','Linewidth',3);
hold off

axis([-10,10,-10,10]);
xlabel('x');
ylabel('y');

% plot scattering angle
subplot(1,2,2);
q=plot(b,theta);
xlabel('Impact Parameter');
ylabel('Scattering Angle theta');
set(q,'Linewidth',2);

NNN

Program 5.13

%**
%* Section 5.5.7 *
%* filename: ch05pr13.m *
%* program listing number: 5.13 *
%* *
%* This program calculate the trajectory of a double pendulum by *
%* the 4th order Runge-Kutta method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
global m1 m2 L1 L2 g
m1=2; m2=1; L1=1; L2=2; g=9.8;

% initial conditions
q1(1)=1.5;
q2(1)=3.0;
w1(1)=0;

130 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

w2(1)=0.0;
t(1)=0;
V = -(m1+m2)*g*L1*cos(q1(1))-m2*g*L2*cos(q2(1));
T = m1*L1ˆ2*w1(1)ˆ2/2+m2*(L1ˆ2*w1(1)ˆ2+L2ˆ2*w2(1)ˆ2 ...

+2*L1*L2*w1(1)*w2(1)*cos(q1(1)-q2(1)))/2;
E = T+V;

% control parameter
tmax=200;
N=10000;
h=tmax/N;

for n=1:N-1
% 4th-order Runge-Kutta
dotw=DP(q1(n),q2(n),w1(n),w2(n));
kw11=dotw(1);
kw21=dotw(2);
kq11=w1(n);
kq21=w2(n);

w1m = w1(n)+kw11*h/2;
w2m = w2(n)+kw21*h/2;
q1m = q1(n)+kq11*h/2;
q2m = q2(n)+kq21*h/2;

dotw=DP(q1m,q2m,w1m,w2m);
kw12 = dotw(1);
kw22 = dotw(2);
kq12 = w1m;
kq22 = w2m;

w1m = w1(n)+kw12*h/2;
w2m = w2(n)+kw22*h/2;
q1m = q1(n)+kq12*h/2;
q2m = q2(n)+kq22*h/2;

dotw=DP(q1m,q2m,w1m,w2m);
kw13 = dotw(1);
kw23 = dotw(2);
kq13 = w1m;
kq23 = w2m;

w1f = w1(n)+kw13*h;
w2f = w2(n)+kw23*h;
q1f = q1(n)+kq13*h;
q2f = q2(n)+kq23*h;

dotw=DP(q1f,q2f,w1f,w2f);
kw14 = dotw(1);
kw24 = dotw(2);
kq14 = w1f;
kq24 = w2f;

q1(n+1)=q1(n)+(kq11+2*(kq12+kq13)+kq14)*h/6;
q2(n+1)=q2(n)+(kq21+2*(kq22+kq23)+kq24)*h/6;
w1(n+1)=w1(n)+(kw11+2*(kw12+kw13)+kw14)*h/6;
w2(n+1)=w2(n)+(kw21+2*(kw22+kw23)+kw24)*h/6;

V = -(m1+m2)*g*L1*cos(q1(n+1))-m2*g*L2*cos(q2(n+1));
T = m1*L1ˆ2*w1(n+1)ˆ2/2+m2*(L1ˆ2*w1(n+1)ˆ2+L2ˆ2*w2(n+1)ˆ2 ...

+2*L1*L2*w1(n+1)*w2(n+1)*cos(q1(n+1)-q2(n+1)))/2;

PROBLEMS 131

E(n+1)=T+V;
t(n+1)=t(1)+n*h;

end

% plot angular coordinates
subplot(1,2,1);
p=plot(t,q1,t,q2);
xlabel('t');
ylabel(texlabel('theta'));
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,texlabel('theta_1'),texlabel('theta_2'));
legend('Location','SouthWest');

% trajectory of the second bob in xy coordiates
subplot(1,2,2);
axis square;
x2=L1*sin(q1)+L2*sin(q2);
y2=-L1*cos(q1)-L2*cos(q2);
plot(x2,y2);
xlabel('x');
ylabel('y');

Python Source Codes

Program 5.1
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.1 *
%* filename: ch05pr01.py *
%* program listing number: 5.1 *
%* *
%* This program solves Newton equation for a falling object *
%* using Euler and predictor-corrector methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/20/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=1.0
g=9.8
m=1.0

integration parameters
tmax=10 # maximum time
N=1000 # maximum steps
h=tmax/N # time step

set arrays
v_ex=np.zeros(N+1)

132 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

v_eu=np.zeros(N+1)
v_pc=np.zeros(N+1)
t=np.linspace(0,N,N+1)*h

intial condition
v_ex[0]=0.0
v_eu[0]=0.0
v_pc[0]=0.0

for i in range(0,N):
Euler method
F_eu = -gamma*v_eu[i]/m - g
v_eu[i+1] = v_eu[i] + F_eu*h

Predictor-Corrector method
F_pc = -gamma*v_pc[i]/m - g
v_pc[i+1] = v_pc[i] + F_pc*h; # predictor
F_pc = -gamma/m*(v_pc[i]+v_pc[i+1])/2 - g
v_pc[i+1] = v_pc[i] + F_pc*h # corrector

Exact solution
v_ex[i+1] = m*g/gamma*(np.exp(-gamma*t[i+1])-1)

plt.ioff()
plt.figure(figsize=(12,5))

Plot the solutions
plt.subplot(1,2,1);
plt.plot(t,v_eu,'-b',label='Euler')
plt.plot(t,v_pc,'-r',label='Predictor-Corrector')
plt.plot(t,v_ex,'-k',label='Exact')
plt.xlabel('t')
plt.ylabel('v(t)')
plt.legend(loc=1)

Plot the absolute errors
plt.subplot(1,2,2)
plt.semilogy(t,abs(v_eu-v_ex),'-b',label='Euler')
plt.semilogy(t,abs(v_pc-v_ex),'-r',label='Predictor-Corrector')

plt.xlabel('t')
plt.ylabel('absolute error')
plt.legend(loc=3)
plt.show()

NNN

Program 5.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.2 *
%* filename: ch05pr02.m *
%* program listing number: 5.2 *
%* *
%* This program solves Newton equation for a falling object *
%* using Runge-Kutta 2nd and 4th order methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *

PROBLEMS 133

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=1.0
g=9.8
m=1.0

integration parameters
tmax=10 # maximum time
N=1000 # maximum steps
h=tmax/N # time step

set arrays
v_rk45=np.zeros(N+1)
v_ex=np.zeros(N+1)
t=

for i in range(0,N):

Runge-Kutta 2nd order
k1 = -gamma*v_rk2[i]/m - g
v_mid = v_rk2[i] + k1*h/2.0
k2 = -gamma*v_mid/m - g
v_rk2[i+1] = v_rk2[i] + k2*h

RUnge-Kutta 4th order
k1 = -gamma*v_rk4[i]/m - g
v_mid = v_rk4[i] + k1*h/2.0
k2 = -gamma*v_mid/m - g
v_mid = v_rk4[i] + k2*h/2
k3 = -gamma*v_mid/m - g
v_end = v_rk4[i] + k3*h
k4 = -gamma*v_end/m - g
v_rk4[i+1] = v_rk4[i] + (k1+2*(k2+k3)+k4)*h/6.0

Exact solution
v_ex[i+1] = m*g/gamma*(np.exp(-gamma*t[i+1])-1)

plt.ioff()
plt.figure(figsize=(12,5))

Plot the solutions
plt.subplot(1,2,1);
plt.plot(t,v_rk2,'-b',label='RK2')
plt.plot(t,v_rk4,'-r',label='RK4')
plt.plot(t,v_ex,'-k',label='Exact')
plt.xlabel('t')
plt.ylabel('v(t)')
plt.legend(loc=1)

Plot the absolute errors
plt.subplot(1,2,2)
plt.semilogy(t,abs(v_rk2-v_ex),'-b',label='RK2')
plt.semilogy(t,abs(v_rk4-v_ex),'-r',label='RK4')

134 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

plt.xlabel('t')
plt.ylabel('absolute error')
plt.legend(loc=3)
plt.show()

NNN

Program 5.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.3 *
%* filename: ch05pr03.py *
%* program listing number: 5.3 *
%* *
%* This program solves Newton equation for a falling object *
%* using the Runge-Kutta-Fehlberg method. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/30/2018. *
%**
"""

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

define the right hand side of ODE
def func(t,v):
return -gamma*v-m*g

if __name__ == "__main__":

system parameters
gamma=1.0
m=1.0
g=9.8
time span
tspan=[0,10]
initial condition (must be ndarray)
y0=[0]
#relative tolerence
rtol=1e-5

use RK45 method
sol=solve_ivp(func,tspan,y0,method='RK45',rtol=rtol)
save the results
t=sol.t
v=list(sol.y.flat)

exact solution
v_ex=m*g/gamma * (np.exp(-gamma*t)-1)

plt.ioff()
plt.figure(figsize=(12,5))

PROBLEMS 135

plt.subplot(1,2,1)
plt.plot(t,v,'or',label="RK45")
plt.plot(t,v_ex,'-k',label="Exact")
plt.plot(t,t*0,'ob',label="Time step")
plt.xlabel('t')
plt.ylabel('velocity')
plt.legend(loc=0)

plt.subplot(1,2,2)
plt.semilogy(t,abs(v-v_ex),'-k')
plt.xlabel('t')
plt.ylabel("absolute error")
plt.show()

NNN

Program 5.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.4 *
%* filename: ch05pr04.py *
%* program listing number: 5.4 *
%* *
%* This program solves Newton equation for interacting two cars *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Control parameters
tmax=8; N=400; h=tmax/N;

t=np.linspace(0,tmax,N+1)
v1=np.zeros(N+1)
v2=np.zeros(N+1)

#initial conditions
v1[0]=1.2; v2[0]=1.0

2nd-order Runge-Kutta method
for n in range(0,N):

k1 = v2[n]-v1[n]
l1 = -(v2[n]-v1[n])
mid1 = v1[n]+k1*h/2
mid2 = v2[n]+l1*h/2
k2 = mid2-mid1
l2 = -(mid2-mid1)
v1[n+1]=v1[n]+k2*h
v2[n+1]=v2[n]+l2*h

plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,v1,'-b',label="v_1")

136 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

plt.plot(t,v2,'-r',label="v_2")
plt.xlabel('t')
plt.ylabel('velocity')
plt.legend(loc=1)

plt.subplot(1,2,2)
plt.plot(t,v1-v2,'-k')
plt.xlabel('t')
plt.ylabel("v_1-v_2")
plt.show()

NNN

Program 5.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.5 *
%* filename: ch05pr05.py *
%* program listing number: 5.5 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameter
omega=1.0

control parameters
tmax=8.0*np.pi/omega
N=500
h=tmax/N

t=np.linspace(0,tmax,N+1)
x=np.zeros(N+1)
v=np.zeros(N+1)

exact soution
x_ex=np.cos(omega*t)

initial conditions
x[0]=1.0
v[0]=0.0

for n in range(0,N):
4th-order Runge-Kutta
kv1=-omega**2*x[n];
kx1=v[n];

v_mid = v[n]+kv1*h/2.0
x_mid = x[n]+kx1*h/2.0
kv2 = -omega**2*x_mid
kx2 = v_mid

PROBLEMS 137

v_mid = v[n]+kv2*h/2.0
x_mid = x[n]+kx2*h/2.0
kv3 = -omega**2*x_mid
kx3 = v_mid

v_end = v[n]+kv3*h
x_end = x[n]+kx3*h
kv4 = -omega**2*x_end
kx4 = v_end

v[n+1]=v[n]+(kv1+2.0*(kv2+kv3)+kv4)*h/6.0
x[n+1]=x[n]+(kx1+2.0*(kx2+kx3)+kx4)*h/6.0

plot trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,x,'ob',label='RK4')
plt.plot(t,x_ex,'-r',label='Exact')
plt.xlabel('t')
plt.ylabel('displacement')
plt.legend(loc=1)

plot absolute error
plt.subplot(1,2,2)
plt.semilogy(t,abs(x-x_ex),'-k')
plt.xlabel('t');
plt.ylabel('absolute error')
plt.show()

NNN

Program 5.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.6 *
%* filename: ch05pr06.py *
%* program listing number: 5.6 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Verlet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameter
omega=1;

control parameters
tmax=8.0*np.pi/omega
N=500
h=tmax/N

t=np.linspace(0,tmax,N+1)

138 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

x=np.zeros(N+1)
v=np.zeros(N+1)

exact soution
x_ex=np.cos(omega*t)

initial conditions
x[0]=1.0
v[0]=0.0

the first Euler step
x[1] = x[0] + v[0]*h - omega**2*x[0]*h**2/2.0

for n in range(1,N):
Verlet method
x[n+1]=2*x[n]-x[n-1] - omega**2*x[n]*h**2;

plot trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,x,'ob',label='Verlet')
plt.plot(t,x_ex,'-r',label='Exact')
plt.xlabel('t')
plt.ylabel('displacement')
plt.legend(loc=1)

plot absolute error
plt.subplot(1,2,2)
plt.semilogy(t,abs(x-x_ex),'-k')
plt.xlabel('t');
plt.ylabel('absolute error')
plt.show()

NNN

Program 5.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 5.5.1 *
%* filename: ch05pr07.py *
%* program listing number: 5.7 *
%* *
%* This program solves the Brusselator model *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

fixed parameter
a=1.0

control parameter

PROBLEMS 139

b=np.float(input('Enter value for b [1.5-2.5] ='))

duration
tmax=100
number of integration steps
N=2000
step size
h=tmax/N

t=np.linspace(0,tmax,N+1)
x=np.zeros(N+1)
y=np.zeros(N+1)

#initial conditions
x[0]=1.0
y[0]=1.0

for n in range(0,N):
4th-order Runge-Kutta
kx1=a-(b+1)*x[n]+x[n]**2*y[n]
ky1=b*x[n]-x[n]**2*y[n]

x_mid = x[n]+kx1*h/2.0
y_mid = y[n]+ky1*h/2.0
kx2 = a - (b+1.0)*x_mid+x_mid**2*y_mid
ky2 = b*x_mid-x_mid**2*y_mid

x_mid = x[n]+kx2*h/2.0
y_mid = y[n]+ky2*h/2.0
kx3 = a - (b+1.0)*x_mid+x_mid**2*y_mid
ky3 = b*x_mid-x_mid**2*y_mid

x_end = x[n]+kx3*h
y_end = y[n]+ky3*h
kx4 = a - (b+1.0)*x_end+x_end**2*y_end
ky4 = b*x_end-x_end**2*y_end

x[n+1]=x[n]+(kx1+2.0*(kx2+kx3)+kx4)*h/6.0
y[n+1]=y[n]+(ky1+2.0*(ky2+ky3)+ky4)*h/6.0

plot individual trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1);
plt.plot(t,x,'-b',label='x')
plt.plot(t,y,'-r',label='y')
plt.xlabel('t');
plt.ylabel('concentration');
plt.legend(loc=1)

plot phase trajectory
plt.subplot(1,2,2)
plt.plot(x,y,'-b')
plt.xlabel('x')
plt.ylabel('y');
plt.show()

NNN

Program 5.8

140 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 5.5.2 *
%* filename: ch05pr08.py *
%* program listing number: 5.8 *
%* *
%* This program solves the Maxwell-Bloch model of laser dynamics *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

system parametes uncomment ONLY the desired set
gamma1_set = {0: 0.1, 1: 0.1, 2: 1.0}
gamma2_set = {0: 2.0, 1: 10.0, 2: 0.1}
gamma3_set = {0: 3.0, 1: 0.25, 2: 0.25}
c1_set = {0: 0.25, 1: 1.0, 2: 1.0}
c2_set = {0: 0.2, 1: 0.5, 2: 0.1}
c3_set = {0: 1.0, 1: 1.0, 2: 1.0}

param=np.int(input('Choose a parameter set [0-2] ='))
gamma1=gamma1_set.get(param)
gamma2=gamma2_set.get(param)
gamma3=gamma3_set.get(param)
c1=c1_set.get(param)
c2=c2_set.get(param)
c3=c3_set.get(param)

lam=np.float(input('Enter a value for lambda = '))

Control parameters
tmax=500; N=5000; h=tmax/N
t=np.linspace(0,tmax,N+1)

E=np.zeros(N+1)
P=np.zeros(N+1)
D=np.zeros(N+1)

initial conditions
E[0]=1.0; P[0]=1.0; D[0]=1.0

2nd-order Runge-Kutta method
for n in range(0,N):

FE_n=-gamma1*E[n]+c1*P[n]
FP_n=-gamma2*P[n]+c2*E[n]*D[n]
FD_n=-gamma3*(D[n]-lam)-c3*E[n]*P[n]
E_mid = E[n]+FE_n*h/2.0
P_mid = P[n]+FP_n*h/2.0
D_mid = D[n]+FD_n*h/2.0
FE_mid=-gamma1*E_mid+c1*P_mid
FP_mid=-gamma2*P_mid+c2*E_mid*D_mid
FD_mid=-gamma3*(D_mid-lam)-c3*E_mid*P_mid
E[n+1]=E[n]+FE_mid*h
P[n+1]=P[n]+FP_mid*h

PROBLEMS 141

D[n+1]=D[n]+FD_mid*h

plot the dynamics of E
plt.ioff()
fig=plt.figure(figsize=(12,5))
ax=fig.add_subplot(1,2,1)
ax.plot(t,E)
ax.set_xlabel('t')
ax.set_ylabel('E(t)')

plot 3D phase trajectory
ax = fig.add_subplot(1,2,2,projection='3d')
ax.plot(D, E, P)
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('P')
plt.show()

NNN

Bibliography

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[2] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 8.3.

[3] Albert Goldbeter. Biochemical Oscillations and Ceulluar Rhythms. Cambridge University Press, 1996.

[4] Irving R. Epstein and John A. Pojman. An Introduction to Nonlinear Chemical DynaChaos – Ocilla-
tions, Waves,Patterns. and Chaos. Oxford University Press, 1998.

[5] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 3.3.

[6] G. L. Baker and J. P. Gollub. Chaotiintroduction – an introduction. Cambridge University Press, 2nd
edition, 1996. Section 7.1.

[7] Steven Strogatz. Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life.
Hachette Books, 2004.

[8] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 4.5.

[9] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 8.6.

[10] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
The MIT Press, 2007. Section 4.2.

[11] Tamás Tél and Márton Gruiz. Chaotic Dynamics: An Introduction Based on Classical Mechanics.
Cambridge University Press, 2006. Section 7.4.2.

142

CHAPTER 6

ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY
VALUE PROBLEMS

When we solve a Newton equation, a set of initial conditions, i.e., initial position x(t0) and velocity ẋ(t0),
are usually specified. In general second order ODEs need two conditions for each variable. However, a set of
initial conditions is not only the way to specify the two independent conditions. For example, A trajectory
x(t) can be uniquely determined by specifying an initial position x(ti) and a final position x(tf) (Dirichlet
boundary condition). When the two conditions are given at two different time we call it a boundary value
problem. It seems strange to use a future position as a condition but it is a popular problem in physics. For
example, we could ask a question like how fast we should drive to arrive at the destination in a given time.
It is also possible to specify a derivative as a boundary condition (Neumann boundary condition). Boundary
value problems are also more common for ODEs with one-dimensional spatial coordinates such as Poisson
equation for scalar potential ϕ(x), heat equation for temperature profile T (x), and diffusion equation for
particle density ρ(x). From the numerical view of point, however, there is no difference between temporal
and spatial problems. Eigenvalue problems are also a kind of boundary value problems but we will discuss
them in the next chapter.

6.1 Shooting method

In the previous chapter, we solved Newton’s equation of motion as an initial value problem. Now, we solve a
Newton equation as a boundary value problem. Consider the following problem: The trajectory of a particle
of mass m is determined by a Newton’s equation of motion

ẍ = F (x, ẋ, t) (6.1)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

143

144 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

as before. At time t = ti, the particle is located at xi. The particle arrives at xf at time tf. What are the
trajectory x(t) and velocity v(t) of the particle? This is clearly a boundary value problem. If we can solve
the Newton equation as an initial value problem, the trajectory can be considered as a function of the initial
position xi and velocity vi. We write it as x(t;xi, vi). We know that the particle must be at xf at time
tf. Thus, we have x(tf;xi, vi) = xf where only vi is unknown. By solving this equation for vi we find the
answer. This is nothing but a root finding problem. Once we find the initial velocity, we can find x(t) and
v(t) by solving the Newton equation using the method discussed in the previous chapter. In other words,
the boundary value problem is now replaced with an initial value problem combined with root finding. The
root finding method needs a function value f(vi) ≡ x(tf;xi, vi) − xf. In other words, we must be able to
evaluate f(vi) for any given vi. The evaluation of f(vi) is an initial value problem and thus we can solve it
by the method discussed in the previous chapter.

Since the solution to a Newton equation is unique, there is only one root. Therefore, the secant method
should work well. Remembering that the secant method needs two initial guesses. The algorithm known
as shooting method is given in Algorithm 6.1. We shoot again and again not at random but with some
intelligence until the target is hit.

Algorithm 6.1 Shooting method

1. Guess an initial velocity v1. Here subscript ”1” indicates the first try.

2. Solve the Newton equation as an initial value problem using v1 and get the final position
x1 = x(tf). Here the subscript ”1” indicates the first try.

3. If |x1 − xf| < tolerance, we already found a solution. Otherwise continue to step 4.

4. Change the initial velocity slightly v2 = v1 + δ. This is the second try.

5. Solve the Newton equation again and get x2 = x(tf).

6. If |x2 − xf| < tolerance then we find a solution. Otherwise continue step 7.

7. Now, we enter a loop of the secant method.

8. vn+1 = vn −
vn − vn−1
xn − xn−1

[xn − xf]. Here, the (n + 1)-th try is suggested by the secant
method.

9. Solve the Newton equation with vn+1 as initial condition and get xn+1 = x(tf).

10. If |xn+1 − xf| < tolerance then we find a solution. Otherwise repeat from step 8.

EXAMPLE 6.1 Air Rocket

A compressed air rocket of mass m = 1 kg is launched vertically from ground. We want to make it reach
height yf = 100 m in tf = 2 s. At what speed should the rocket be launched? The Newton equation for
the rocket is

mÿ = −C|ẏ|ẏ −mg (6.2)

NUMEROV METHOD 145

Iteration
0 2 4 6 8 10

v
0

40

50

60

70

80

90

100

110

numerical
exact

Figure 6.1: The output of Example 6.1. Improvement of the solution as the secant method is iterated. Initial
guesses (step 1 and 2) are far from the correct answer but the iteration quickly converges to the right answer.

where the coefficient∗ is C = 0.01 kg/m. Note that the rocket may reach the desired height at the given
time on its way down.

If the rocket satisfies the condition on its way up, the analytic solution is given by

vi =

√
gλ

[√
e2yf/λ − cos

(√
g t2f
λ

)]
sin
(√

g t2f
λ

) (6.3)

where λ = m/C. Substituting all parameter values we obtain vi = 101.9281 m/s. We try to get
this value numerically using the shooting method. Program 6.1 solves the problem using the 4th-order
Runge-Kutta and secant methods.

First, we have to guess the first two steps. The average speed, 50 m/s, may be a good starting value.
The second guess should be slightly faster since the answer must be larger than the average speed. We
use 51 m/s for the second guess. Figure 6.1 shows how the iteration of secant method improves the
solution. Our initial guess is far from the final answer. Nevertheless the iteration quickly converges to
the correct answer. With tolerance 10−8, the calculation stopped after 6 secant iterations. The final
velocity is positive and thus the rocket is moving upward. The final answer vi = 101.9968 m/s is close
to the exact one.

6.2 Numerov method

An efficient method is availabe for the second-order ODE of the following form:

d2y

dx2 + w(x)y = S(x) (6.4)

This type of differential equations is popular in physics. For example, when w(x) = 0 this equation is equiv-
alent to one-dimensional Poisson equation, heat equation, and diffusion equation. It becomes a Shrödinger

∗If only linear drag force is considered the problem is too trivial because we are rooking for a root of a linear equation. The secant
method converges immediately at the first iteration. Quadratic drag force requires at least several steps due to non-linearity.

146 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

equation (energy eigenvalue equation) and Newton equation for parametric harmonic oscillators if S(x) = 0.
The algorithm shown below is essentially the same as initial value problems and can be used to solve them.
However, since this type of differential equation appear mostly in boundary value problems, we focus on the
boundary value problems.

Recall the three-points numerical second-order derivative (2.14),

yn+1 − 2yn + yn−1
h2 = d2y

dx2 + h2

12
d4y

dx4 +O
(
h4) (6.5)

here we includes the forth order term explicitly. We can evaluate it using the original differential equation
as follows:

d4y

dx4 = d2

dx2 (−w(x)y + S(x))

= −wn+1yn+1 − 2wnyn + wn−1yn−1
h2 + Sn+1 − 2Sn + Sn−1

h2 +O
(
h2) (6.6)

where wn = w(xn) and Sn = S(xn). Substituting Eqs (6.5) and (6.6) to Eq (6.4) and rearranging y’s, the
explicit recursive equation is obtained:(

1 + h2

12wn+1

)
yn+1 =2

(
1− 5h2

12 wn
)
yn −

(
1 + h2

12wn−1

)
yn−1

+ h2

12 (Sn+1 + 10Sn + Sn−1) +O
(
h6) (6.7)

This algorithm is one order more accurate than the fourth-order Runge-Kutta method and yet w(x) and
S(x) are evaluated only one time on the grid points. Therefore, the Numerov method is more efficient than
the Runge-Kutta method for this type of the second-order differential equation.

EXAMPLE 6.2 One-dimensional Poisson equation

Electric potential φ(x) in one-dimensional space satisfies the Poisoon equation

φ′′(x) = −ρ(x)
ε0

(6.8)

where ρ(x) is electric charge density and ε0 vacuum permittivity. We consider an electric charge density

ρ(x) = Cxe−x
2

(6.9)
where C is a positive constant. The present model has an exact solution

φ(x) =
√
π

2 erf(x) (6.10)

where erf is the error function. We solve this model numerically using the Numerov method and secant
root finding.

For simplicity, we set C/ε0 = 1. As Fig. 6.2 shows the charge density is localized around x = 0.
Since

∫∞
−∞ ρ(x)dx = 0 (the net charge is zero), the charge is invisible from distance. Therefore, the

potential should be nearly constant at |x| � 1. Mathematically speaking, the boundary condition is
lim
|x|→∞

φ′(x) = 0. This kind of boundary condition at infinity is not suitable for numerical calculation.

NUMEROV METHOD 147

x
-10 -5 0 5 10

?
(x

)

-1

-0.5

0

0.5

1

charge
numerical
exact

iteration
1 2 3 4 5 6

?
'(L

)

10-15

10-10

10-5

100

105

Figure 6.2: The output of Example 6.2. Left: The profile of the charge density (black), the numerical
potential (red) and exact solution (blue). Right: The boundary value of the derivative is iteratively optimized
to the correct boundary condition.

We assume that φ′(±L) = 0 for some large L. A common method integrates the ODE from x = −L
using φ(−L) and φ′(−L) as boundary conditions. Since we don’t know φ(−L), we guess one. Then,
we solve the ODE as initial value problem and find φ′(L). If this value does not match to the given
boundary condition, the initial guess was wrong. Then, we start over again with a different value of
φ(−L) suggested by the secant method.

The above method should work well but there is an even better way by taking into account the
symmetry of the problem. Since the charge density is anti-symmetric (ρ(−x) = −ρ(x)), φ′′(x) is also
anti-symmetric and thus φ(x) must be anti-symmetric, too. Therefore, φ(0) = 0. We can start at x = 0
and shoot out toward x = L. A shorter shooting range is better! We still have to guess the next function
value, φ(h) where h is step size of x. Using φ(0) and φ(h), we can find the potential up to the end
point φ(L). If |φ′(L)| < tolerance, the guess is correct and we found a solution. Otherwise, repeat the
calculation using a new guess suggested by the secant method. However, we don’t know φ′(L) and thus
we need to evaluate it numerically. It does not have to be super accurate and the forward finite difference
method (2.2) is sufficient for this purpose.

φ′(L) = φ(L)− φ(L− h)
h

(6.11)

In the left panel of Fig 6.2, the numerical solution is compared with the analytic solution. The agree-
ment is so good that they are visually indistinguishable. The right panel shows that the progressive
improvement toward the given boundary condition φ′(L) = 0. Despite that the initial guess was quite
off the mark, the iteration converges very quickly.

148 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

6.3 Applications in Physics

6.3.1 Quantum Free Falling (See Problem 3.3)

A quantum particle of mass m is in a uniform gravitational field g. The stationary Schrödinger equation is(
− ~2

2m
d2

dy2 +mgy

)
ψ(y) = Eψ(y) (6.12)

where y and E are the position and energy of the particle. We assume that the particle is dropped from
y = 0 and the gravitational potential energy is also measured from y = 0. Under this reference conditions,
E = 0.

Using a normalized coordinate x =
(

2m2g

~2

)1/3

y, Eq. (6.12) is simplified to

d2

dx2ψ(x) = xψ(x) (6.13)

which is known as Airy equation. Despite of its simple looking, the solution to this equation cannot be
expressed in a simple form. General solution is given by

ψ(x) = c1Ai(x) + c2Bi(x) (6.14)

where Ai(x) and Bi(x) are first and second kind of Airy functions.[1] Now we apply the first boundary
condition. Since the particle should not be found at x = ∞, we impose limx→∞ ψ(x) = 0. If this is the
classical particle, the particle should not move upward. However, due to uncertainty principle, the quantum
particle can be observed slightly above x = 0. Since lim

x→∞
Bi(x) =∞, we immediately conclude that c2 = 0.

What is the second boundary condition? It turns out that physics imposes no additional condition.† Hence,
c1 can be any finite value.‡ We could impose a condition such as ψ(0) = 1 for convenience. It makes the
numerical method more time consuming. Therefore, we don’t use additional boundary condition and we will
utilize this freedom in the numerical method.

One may try to evaluate the analytical solution. The integral form of Ai(x) is given by

Ai(x) = 1
π

∫ ∞
0

cos
(
t3

3 + xt

)
dt . (6.15)

This integral is super improper and none of standard numerical quadrature works. It is much faster and more
accurate to integrate the ODE (6.13) numerically. There are other ways to evaluate the Airy functions and
many numerical libraries include them. MATLAB has a built-in Airy function airy(). However, numerical
methods to evaluate Airy functions are still actively investigated.[2].

Now, we try to solve the problem by direct numerical integration of the ODE. Noting that Eq. (6.13) is a
special case of Eq. (6.4) with w(x) = −x and S(x) = 0, we can integrate it with the Numerov method. The
rigorous boundary condition is lim

x→∞
ψ(x) = 0 but we replace it with ψ(xmax) = 0, xmax � 1. Considering a

similar ODE, y′′ = y, has a solution y ∼ e−x, we expect Ai(x) vanishes very quickly, xmax = 5 is sufficiently
large. In order to use the Numerov method, we need ψ(xmax − h). As we discussed above, if ψ(x) is a
solution, cψ(x) is also a solution and thus we don’t have to worry about the magnitude. This implies that
ψ(xmax − h) can be any finite value. Now we have two points to start the iterations. At the end, we fix the
absolute magnitude by letting ψ(0) = 1. This is not a physical condition but just for our convenience.

†This is an unbound state and thus we cannot normalize the wave function.
‡It is a convention to set Ai(0) = Γ(2

3)
32/3 = 0.355028 . . . [1]

APPLICATIONS IN PHYSICS 149

x
-15 -10 -5 0 5

A
(x

)

-1.5

-1

-0.5

0

0.5

1

1.5

2

Numerov
MATLAB

Figure 6.3: The numerical solution (red) to Eq. (6.13) is compared with the airy function (blue) provided
by MATLAB. Two curves are normalized at x = 0.

Algorithm 6.2 Airy Equation

1. Starting with ψ(xmax) = 0 we integrate the equation backward from x = xmax
to x = xmin.

2. Choose an integration step h = −0.1. (negative because it steps backward.)

3. Guess the next value ψ(xmax + h) = δ. In principle, we can use any positive
value for δ since the absolute magnitude of the solution cannot be determined
until the normalization condition is applied.

4. Integrate the ODE using the Numerov method down to xmin.

5. Normalized the solution so that ψ(0) = 1.

Program 6.3 implements this algorithm. The results are plotted in MATLAB in Fig. 6.3. The numerical
result agrees well with the MATLAB built-in airy function. In the region where the classical particle is
prohibited (x > 0), the wave function decays quickly. For x < 0, the wave function oscillates and its wave
length decreases as the particle falls down. Recalling p = h

λ , as the momentum p increases the wave length
λ decreases.

6.3.2 Heating a rod

A general heat equation for one-dimensional system is given by

cpρ
∂T

∂t
= κ

∂2T

∂x2 + qloss (6.16)

where cp, ρ, and κ are specific heat capacity, mass density and heat conductivity, respectively. We also take
into account the loss of heat to the environment by qloss. When the system is in a steady state (∂T/∂t = 0),

150 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

this partial differential equation becomes a ODE

κ
d2T

dx2 = −qloss (6.17)

Now, we consider a long metallic rod of length L placed in a thermal environment. The temperature of
the environment is kept at T0. Then, each end of the rod is attached to thermostat so that the temperature
of the left end is kept at TL > T0 and the right end at TR > T0 As the temperature of the rod is higher than
the environment, heat energy dissipate into the environment by

qloss = −µ(T (x)− T0) (6.18)

where µ is a positive constant. This model is valid only when |T − T0| is small.
Now we calculate the temperature profile of the rod. It is convenient to use a temperature measured from

T0. Introducing, u = T − T0 and normalized length, s = x/L, the ODE is simplified to

d2

ds2u(s) = γu(s) (6.19)

where γ = µL2/κ is a dimensionless constant. Letting w(x) = −γ and S(x) = 0, this ODE can be integrated
by the Numerov method.

Finally, we want to make it sure that the solution is accurate enough to compute other physical quantities.
As an example, we check the conservation of energy. In the current setting, energy is injected from the left
end of the rod. Its magnitude is determined by the temperature gradient:

Qin = −κT ′(0) → −u′(0) (6.20)

where the last expression is for dimensionless calculation. Similarly energy loss from the right end is

Qout = +κT ′(L) → +u′(1) (6.21)

and the heat dissipation through the surface of the rod is given by

Qdiss = −µ
∫ L

0
[T (x)− T0]dx → −γ

∫ 1

0
u(s)ds (6.22)

Since the net energy transaction must be balanced, Qin +Qout +Qdiss = 0.
Program 6.4 calculates the temperature profile using the Numerov method and evaluates the energy

transaction. Now, pick parameter values. All constants (µ,L, κ) are combined together into one parameter
γ and thus we don’t have to specify each parameter value. We use γ = 10 in the example calculation. The
example boundary conditions are u(0) = 1 and u(1) = 0. It is not necessary to compute other value of u(0)
because eq. (6.19) is linear. If u(x) is a solution, c u(x) is also a solution. If you change the temperature at
the left end as TL = 100, the solution would be 100u(x). There is no need to recalculate the solution. If the
heat loss is not linear to the temperature difference, we cannot use this trick. (See Problem 5.1.)

The temperature profile is plotted in the left panel of Fig 6.4. When the temperature is high, heat
dissipation is faster and thus temperature gradient is larger near the left edge. If the heat dissipation to the
environment is not considered, the profile is a straight line from TL to TR. The effect of the dissipation is
clearly visible in the plot. The right panel shows the error after each iteration. The improvement is not very
fast but steady. Here is the output of the energy transaction:

Q_in=3.173136, Q_out=-3.129448, Q_diss=-0.043694, Q_net=-0.000007

The energy conserves with 5 significant figures.

PROBLEMS 151

s
0 0.5 1

u
(s

)

-0.2

0

0.2

0.4

0.6

0.8

1

iteration
0 20 40

T
R

10-10

10-5

100

105

1010

Figure 6.4: Left: The numerical solution to Eq. (6.19). Right: Error after each secant iteration.

6.4 Problems

6.1 Heating Rod with Nonliear Heat Loss
In Sec 6.3.2, the temperature profile is computed with the linear heat loss (6.18) which is valid only
when the temperature is not far from the temperature of the environment. When temperature difference
becomes large, heat loss due to radiation becomes dominant. In that case, the loss density is given by

qloss = −µ(T 4 − T 4
0) (6.23)

Find the temperature profile. Note that the Numerov method cannot be used with this loss function.
Use the 4th-order Rung-Kutta instead.

6.2 Cannon

A cannon ball is shot at a target located 1200 m away on the same level of ground. The initial speed
of the cannon ball is fixed to v0 = 150 m/s. You can control only the elevation angle θ. Taking into
account quadratic friction, the equation of motion is given by

m
d2

dt2~v = −bv~v −mgẑ (6.24)

where v is the magnitude of the velocity ~v and ẑ is a unit vector in the vertical upward direction. The
coefficient b is defined by

b = 1
2ρCDA (6.25)

where ρ is the mass density of air, CD dimensionless drag coefficient, and A is the cross sectional area
of the cannon ball. Reasonable parameter values are m = 5 kg, A = 9 × 10−3 m2, ρ = 1.2 kg/m3,
CD = 0.5. At what angle θ the target is hit?

152 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

MATLAB Source Codes

Program 6.1

%**
%* Example 6.1 *
%* filename: ch06pr01.m *
%* program listing number: 6.1-1 *
%* *
%* This program determines a launching speed that a rocket necessary *
%* to reach height yf in travel time tf. *
%* Use function: rocket_trajectory(v,t) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% set the boundary conditions
yf=100; tf=2;

% tolerance
tol=1e-8;

% control variable
found = false;

% first guess
n=1;
v(n) = 50;
[y(n), vf] = rocket_trajectory(v(n),tf);
if abs(y(n)-yf) < tol

found = true;
v0 = v(n);

end

%second guess
n=n+1;
v(n) = 51;
[y(n), vf] = rocket_trajectory(v(n),tf);
if abs(y(n)-yf) < tol

found = true;
v0 = v(n);

end

% secant iteration
while not(found)

v(n+1) = v(n) - (v(n)-v(n-1))/(y(n)-y(n-1))*(y(n)-yf);
[y(n+1), vf] = rocket_trajectory(v(n+1),tf);
if abs(y(n+1)-yf) < tol

found = true;
v0 = v(n+1);

end
n=n+1;

end

% show the result
fprintf('initial velocity = %.6f final velocity = %.6f \n',v(n),vf)

% plot the convergency

PROBLEMS 153

p=plot([1:n],v,'-o',[0,n+2],[101.9281,101.9281],'--');
xlabel('Iteration','Fontsize',14)
ylabel(texlabel('v_0'),'Fontsize',14)
axis([0 n+2 40 110])
set(p(1),'linewidth',2)
legend('numerical','exact')
legend('location','southeast')

%**
%* Example 6.1 *
%* filename: rocket_trajectory.m *
%* program listing number: 6.1-2 *
%* Called by ch06pr01.m *
%* *
%* This function detemines the trajectory of the rocket for a given *
%* initial velocity and the final time. *
%* Input: vi = initial velocity *
%* t = final time *
%* Output: y = final position of the rocket *
%* v = final velocity of the rocket *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
function [y,v]=rocket_trajectory(vi,t)

% This function calculat the height of the rocket at t;
% system parameter values
g=9.8; m=1; C=0.01;

% control parameters
N=1000;
h=t/N;

% define force/mass as a function of v
f=@(v) -(C/m)*abs(v)*v-g;

% initial conditions
y0=0;
v0=vi;

% 4th-order Runge-Kutta
for n=1:N-1

ky1 = v0;
kv1 = f(v0);

y_mid = y0 + ky1*h/2;
v_mid = v0 + kv1*h/2;
ky2 = v_mid;
kv2 = f(v_mid);

y_mid = y0 + ky2*h/2;
v_mid = v0 + kv2*h/2;
ky3 = v_mid;
kv3 = f(v_mid);

y_end = y0 + ky3*h;
v_end = v0 + kv3*h;
ky4 = v_end;
kv4 = f(v_end);

y0=y0+(ky1+2*(ky2+ky3)+ky4)*h/6;

154 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

v0=v0+(kv1+2*(kv2+kv3)+kv4)*h/6;
end

% return the final height and velocity
y=y0;
v=v0;
end

NNN

Program 6.2

%**
%* Example 6.2 *
%* filename: ch06pr02.m *
%* program listing number: 6.2-1 *
%* *
%* This program solves one-dimensional Poisson equation using *
%* Numerov integration and secant root finding methods. *
%* Use function: numerov_poisson(y,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% set the boundary conditions
L=10;
% tolerance
tol=1e-16';
% control variable
found = false;

n=1;
% first guess of phi_1
y1(n) = 0.1;
% get the potential phi(x)
y = numerov_poisson(y1(n),L);
N = size(y,1); % check how many grid points are used.
% derivative of phi(x) at the end point.
y2(n) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n)) < tol

found = true;
end

if not(found)
n=n+1;
% second guess of phi_1
y1(n) = y1(n-1)+0.01;
% get the potential phi(x)
y = numerov_poisson(y1(n),L);
% derivative of phi(x) at the end point.
y2(n) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n)) < tol

found = true;
end

end

% secant iteration
while not(found)

% guess phi_1 by secant method

PROBLEMS 155

y1(n+1) = y1(n) - (y1(n)-y1(n-1))/(y2(n)-y2(n-1))*y2(n);
% derivative of phi(x) at the end point.
y = numerov_poisson(y1(n+1),L);
% derivative of phi(x) at the end point.

y2(n+1) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n+1)) < tol

found = true;
end
n=n+1;

end

% construct the whole curve from x=-L to x=L.
X(1:N) = -y(N:-1:1,1); X(N+1:2*N)=y(1:N,1);
Y(1:N) = -y(N:-1:1,2); Y(N+1:2*N)=y(1:N,2);

%plot charge density
subplot(1,2,1)
p1=plot(X,2.*X.*exp(-X.*X));
set(p1,'color','black')
hold on
% plot the numerical potential
p2=plot(X,Y);
set(p2,'Linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel(texlabel('phi(x)'),'fontsize',14)
axis([-L L -1 1])
hold on
% plot the analytic potential
p3=plot(X,sqrt(pi)/2*erf(X));
set(p3,'color','blue')
legend('charge','numerical','exact')
legend('Location','southeast')
hold on
% plot the zero line
p4=plot([-L,L],[0,0],'--');
set(p4,'color','black')
hold off

subplot(1,2,2)
% plot the improvment of the first point.
q=semilogy([1:n],abs(y2),'-o');
xlabel('iteration')
ylabel(texlabel('phi''(L)'))
%axis([0 8 0.0001 1])
set(q,'linewidth',2)

%**
%* Example 6.2 *
%* filename: numerov_poisson.m *
%* program listing number: 6.2-2 *
%* Called by ch06pr02.m *
%* *
%* This function integrates a one-dimensional Poisson equation for *
%* given initial velocity and the final time. *
%* Input: y1 = y(h) *
%* L = boundary *
%* Output: y = y(L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *

156 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

%**
function [y]=numerov_poisson(y1,L)

% control parameters
N=10000; h=L/N;
y=zeros(N+1,2); % y(:,1) is position x

% y(:,2) is field phi(x)

% define S(x) in Numerov method
S=@(x) -2*x*exp(-xˆ2);

% initial conditions
% due to symmetry phi(0)=0
n=1;
y(n,1)=0;
y(n,2)=0;
s(n)=S(y(n,1));

% we guess phi(h)=phi_1
n=n+1;
x(n,1)=y(n-1,1)+h;
y(n,2)=y1;
s(n)=S(y(n,1));

% shoot out to x=L by the Numerov method
for n=2:N

y(n+1,1) = y(1,1) + (n-1)*h;
s(n+1)=S(y(n+1,1));
y(n+1,2) = 2*y(n,2)-y(n-1,2)+(s(n+1)+10*s(n)+s(n-1))*hˆ2/12;

end

end

NNN

Program 6.3

%**
%* Section 6.3.1 *
%* filename: ch06pr03.m *
%* program listing number: 6.3 *
%* *
%* This program finds the wave function of freely falling particle. *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;
clc

% control parameters
xmax = 5;
xmin = -15;

% Integrating from xmax to 0

h = -0.1;
N = ceil((xmin-xmax)/h);

% define w(x) in Numerov method

PROBLEMS 157

W = @(x) -x;

% initial conditions
n = 1;
y(n,1) = xmax;
y(n,2) = 0;
w(n) = W(y(n,1));

% we guess next value
n = n+1;
y(n,1) = y(n-1,1)+h;
y(n,2) = y(n-1,2)+0.1;
w(n) = W(y(n,1));

% shoot left by the Numerov method
for n=2:N

y(n+1,1) = y(n,1) + h;
w(n+1) = W(y(n+1,1));
y(n+1,2) = 2*(1-5*hˆ2*w(n)/12)*y(n,2) - (1+hˆ2*w(n-1)/12)*y(n-1,2);
y(n+1,2) = y(n+1,2)/(1+hˆ2*w(n+1)/12);

end

% normalization
N0 = int32(-xmax/h)+1; % find the location of x=0
y(:,2) = y(:,2)/y(N0,2);

p=plot(y(:,1),y(:,2),y(:,1),airy(y(:,1))/airy(0));
xlabel('x')
ylabel(texlabel('psi(x)'))
set(p(1),'linewidth',2,'color','red');
set(p(2),'linewidth',1,'color','blue');
legend('Numerov','MATLAB');
legend('location','southeast');
hold on
q=plot([-15, 5],[0,0],'--',[0,0],[-1.5,2],'--');
set(q,'color','black');
axis([-15 5 -1.5 2]);
hold off

NNN

Program 6.4

%**
%* Section 6.3.2 *
%* filename: ch06pr04.m *
%* program listing number: 6.4-1 *
%* *
%* This program solves one-dimensional heat equation and finds *
%* temperature profile and heat energy transaction using *
%* Numerov integration. *
%* Use function: numerov_heat(TL,delta,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**

clear all;
% system parameters
global mu

158 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

mu = -10;
TL=1; TR=0; L=1;
% tolerance
tol=1e-9;
% control variable
found = false;

n=1;
% first guess of delta
y1(n) = 1;
% get the u(x)
y = numerov_heat(TL,y1(n),L);
N = size(y,1); % check how many grid points are used.
y2(n)=(y(N,2)-TR)ˆ2;
if abs(y2(n)) < tol

found = true;
end

if not(found)
n=n+1;
% second guess of delta
y1(n) = y1(n-1)+0.01;
% get u(x)
y = numerov_heat(TL,y1(n),L);
y2(n)=(y(N,2)-TR)ˆ2;
if abs(y2(n)) < tol

found = true;
end

end

% secant iteration
while not(found)

% guess delta by secant method
y1(n+1) = y1(n) - (y1(n)-y1(n-1))/(y2(n)-y2(n-1))*y2(n);
% derivative of phi(x) at the end point.
y = numerov_heat(TL,y1(n+1),L);
y2(n+1)=(y(N,2)-TR)ˆ2;
if abs(y2(n+1)) < tol

found = true;
end
n=n+1;

end

% Energy conservation
Q_in = -(y(2,2)-y(1,2))/(y(2,1)-y(1,1));
Q_out= +(y(n,2)-y(n-1,2))/(y(n,1)-y(n-1,1));
Q_diss = mu*sum(y(1:2:n-2,2)+4*y(2:2:n-1,2)+y(3:2:n,2))*(y(2,1)-y(1,1))/3;
fprintf('Q_in=%.6f, Q_out=%.6f, Q_diss=%.6f, Q_net=%.6f\n',...

Q_in, Q_out, Q_diss, Q_in+Q_out+Q_diss);

% plot heat source
subplot(1,2,1)
p=plot(y(:,1),y(:,2));
set(p,'Linewidth',2,'color','red')
xlabel('s','fontsize',14)
ylabel(texlabel('u(s)'),'fontsize',14)
hold on

p2=plot([0,L],[0,0],'--');
set(p2,'color','black')
hold off

PROBLEMS 159

subplot(1,2,2)
% plot the error after each iteration.
q=semilogy([1:n],abs(y2),'-o');
xlabel('iteration','fontsize',14)
ylabel(texlabel('T_R'),'fontsize',14)
set(q,'linewidth',2)

%**
%* Section 6.3.2 *
%* filename: numerov_heat.m *
%* program listing number: 6.3-2 *
%* Called by ch06pr02.m *
%* *
%* This function integrates a one-dimensional heat equation. *
%* Input: TL = temperature at the left end of the rod *
%* delta = decrease of the temperature at next point *
%* L = length of the rod *
%* Output: y = position y(:,1) and temperature profile y(:,2) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
function [y]=numerov_heat(TL,delta,L)

global mu

% control parameters
N=10000; h=L/N;
y=zeros(N+1,2); % y(:,1) is position x

% y(:,2) is field u(x)

% define w(x) in Numerov method
w=mu;

% initial conditions
n=1;
y(n,1)=0;
y(n,2)=TL;

% we guess u(h)
n=n+1;
y(n,1)=y(n-1,1)+h;
y(n,2)=y(n-1,2)-delta;

% shoot out to x=L by the Numerov method
for n=2:N

y(n+1,1) = y(1,1) + (n-1)*h;
y(n+1,2) = 2*(1-5*hˆ2*w/12)*y(n,2) - (1+hˆ2*w/12)*y(n-1,2);
y(n+1,2) = y(n+1,2)/(1+hˆ2*w/12);

end

end

Python Source Codes

Program 6.1

160 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 6.1 *
%* filename: ch06pr01.py *
%* program listing number: 6.1-1 *
%* *
%* This program determines a launching speed that a rocket necessary *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

def f(v):
right hand side of the ODE
g=9.8; m=1.0; C=0.01
return -(C/m)*np.abs(v)*v-g

def rocket_trajectory(vi,t):
Solve the ODE using RK5 and return the final position abd velocity
N=1000
h=t/N
y0=0.0
v0=vi

for n in range(N):
ky1 = v0
kv1 = f(v0)

y_mid = y0 + ky1*h/2.0
v_mid = v0 + kv1*h/2.0
ky2 = v_mid
kv2 = f(v_mid)

y_mid = y0 + ky2*h/2.0
v_mid = v0 + kv2*h/2.0
ky3 = v_mid
kv3 = f(v_mid)

y_end = y0 + ky3*h
v_end = v0 + kv3*h
ky4 = v_end
kv4 = f(v_end)

y0=y0+(ky1+2*(ky2+ky3)+ky4)*h/6.0
v0=v0+(kv1+2*(kv2+kv3)+kv4)*h/6.0

return [y0,v0]

if __name__ == "__main__":
set the boundary conditions
yf=100.0; tf=2.0

tolerance
tol=1e-8

PROBLEMS 161

control variable
nmax = 100
found = False

y=np.zeros(nmax+1)
v=np.zeros(nmax+1)
first guess
n=1
v[n] = 50.0
[y[n], vf] = rocket_trajectory(v[n],tf)
if np.abs(y[n]-yf) < tol :

found = True
v0 = v[n]

#second guess
n+=1
v[n] = 51.0
[y[n], vf] = rocket_trajectory(v[n],tf)
if np.abs(y[n]-yf) < tol:

found = True
v0 = v[n]

secant iteration
while not(found) :

v[n+1] = v[n] - (v[n]-v[n-1])/(y[n]-y[n-1])*(y[n]-yf)
[y[n+1], vf] = rocket_trajectory(v[n+1],tf)
if np.abs(y[n+1]-yf) < tol:

found = True
v0 = v[n+1]

n+=1

show the result
print('initial velocity = {0:10.6f} final velocity = {1:10.6f}'

.format(v[n],vf))

plot the convergency
plt.ioff()
plt.figure(figsize=(6,5))
plt.plot(np.linspace(1,n,n),v[1:n+1],'-ob',label='numerical')
plt.plot([0,n+2],[101.9281,101.9281],'--',label='exact')
plt.xlabel('Iteration')
plt.ylabel('v_0')
plt.legend(loc=4)
plt.show()

Program 6.2

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 6.2 *
%* filename: ch06pr02.py *
%* program listing number: 6.2-1 *
%* *
%* This program solves one-dimensional Poisson equation using *
%* Numerov integration and secant root finding methods. *
%* Use function: numerov_poisson(y,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *

162 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

%**
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf

def S(x):
return -2.0*x*np.exp(-x**2)

def numerov_poisson(y1,L,N):
control parameters

h=L/N
x=np.linspace(0,L,N+1)
y=np.zeros(N+1) # field phi(x)
s=np.zeros(N+1)

initial conditions
due to symmetry phi(0)=0
y[0]=0.0
s[0]=S(y[0])

we guess phi(h)=phi_1
y[1]=y1
s[1]=S(x[1])

shoot out to x=L by the Numerov method
n=1
while n < N :

s[n+1]=S(x[n+1])
y[n+1] = 2.0*y[n]-y[n-1]+(s[n+1]+10.0*s[n]+s[n-1])*h**2/12.0
n+=1

return x, y

if __name__ == "__main__":
set the boundary conditions
L=10.0
N=10000
tolerance
tol=1.0e-16
control variable
found = False

y1=np.zeros(101)
y2=np.zeros(101)
n=1
first guess of phi_1
y1[0] = 0.1

get the potential phi(x)
x, y = numerov_poisson(y1[0],L,N)

derivative of phi(x) at the end point.
y2[0] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[0]) < tol:

found = True

if not(found):
second guess of phi_1
y1[1] = y1[0]+0.01
get the potential phi(x)

PROBLEMS 163

x, y = numerov_poisson(y1[1],L,N)
derivative of phi(x) at the end point.
y2[1] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[1]) < tol:

found = True

secant iteration
n=1
while not(found):

guess phi_1 by secant method
y1[n+1] = y1[n] - (y1[n]-y1[n-1])/(y2[n]-y2[n-1])*y2[n]
derivative of phi(x) at the end point.
x, y = numerov_poisson(y1[n+1],L,N)
derivative of phi(x) at the end point.

y2[n+1] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[n+1]) < tol:

found = True

n+=1
print("Itertation ={0:5d}, y2={1:15.5e}".format(n,y2[n]))

construct the whole curve from x=-L to x=L.
X=np.zeros(2*N+1)
Y=np.zeros(2*N+1)
X[0:N] = -x[N:0:-1]; X[N:2*N+1]=x[0:N+1]
Y[0:N] = -y[N:0:-1]; Y[N:2*N+1]=y[0:N+1]

#plot charge density
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(X,2*X*np.exp(-X*X),'-g',label=r"$\rho(x)$")

plot the numerical potential
plt.plot(X,Y,'-r',linewidth=2.0,label="Numerical")
plot the analytic potential
plt.plot(X,np.sqrt(np.pi)/2.0*erf(X),'-b',label="Exact")
plt.plot([-L,L],[0.0,0.0],'--k')
plt.xlabel('x')
plt.ylabel(r"$\phi(x)$")
plt.legend(loc=4)

plt.subplot(1,2,2)
plot the improvment of the first point.
plt.semilogy(np.linspace(0,n,n+1),abs(y2[0:n+1]),'-o')
plt.xlabel('iteration')
plt.ylabel("$\phi'(L)$")
plt.show()

Program 6.3

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 6.3.1 *
%* filename: ch06pr03.py *
%* program listing number: 6.3 *
%* *

164 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

%* This program finds the wave function of freely falling particle. *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import airy

define w(x) in Numerov method
def W(x):

return -x

control parameters
xmax = 5.0
xmin = -15.0

Integrating from xmax to 0
N = 200
h = (xmin-xmax)/np.float(N)
x = np.linspace(xmax,xmin,N+1)
y = np.zeros(N+1)
w = np.zeros(N+1)

initial conditions
y[0] = 0
w[0] = W(x[0])

we guess next value
y[1] = y[0]+0.1
w[1] = W(x[1]);

shoot left by the Numerov method
for n in range(1,N):

w[n+1] = W(x[n+1]);
y[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*y[n] - (1.0+h**2*w[n-1]/12.0)*y[n-1]
y[n+1] = y[n+1]/(1.0+h**2*w[n+1]/12.0)

normalization
N0 = np.int(-xmax/h) # find the location of x=0
y[:] = y[:]/y[N0]

plt.figure(figsize=(6,5))
plt.plot(x,y,'-r',label="Numerov",linewidth=2.5)
plt.plot(x,airy(x)[0]/airy(0)[0],'-b',label="Exact")
plt.xlabel('x')
plt.ylabel(r'$\psi(x)$')
plt.legend(loc=4)
plt.plot([-15, 5],[0,0],'--k',[0,0],[-1.5,2],'--k')
plt.show()

Program 6.4

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 6.3.2 *

PROBLEMS 165

%* filename: ch06pr04.py *
%* program listing number: 6.4-1 *
%* *
%* This program solves one-dimensional heat equation and finds *
%* temperature profile and heat energy transaction using *
%* Numerov integration. *
%* Use function: numerov_heat(TL,delta,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

def numerov_heat(TL,delta,L):
global mu
control parameters
N=10000; h=L/N
x=np.linspace(0,L,N+1)
u=np.zeros(N+1)

define w(x) in Numerov method
w=mu

initial conditions
u[0]=TL

we guess u(h)
u[1]=u[0]-delta

shoot out to x=L by the Numerov method
for n in range(1,N):

u[n+1] = 2.0*(1.0-5.0*h**2*w/12.0)*u[n] - (1.0+h**2*w/12.0)*u[n-1]
u[n+1] = u[n+1]/(1+h**2*w/12.0)

return [x,u]

if __name__ == "__main__":

parameters
global mu
mu = -10.0
TL=10.0; TR=0.0; L=1.0

tolerance
tol=1.0e-9

control variable
found = False

y1 = np.zeros(1000)
y2 = np.zeros(1000)
first guess of delta
y1[0] = 1
get the u(x)
[x, u] = numerov_heat(TL,y1[0],L)
N = u.size-1 # check how many grid points are used.
y2[0]=(u[N]-TR)**2
if abs(y2[0]) < tol:

166 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

found = True

if not(found):
#second guess of delta
y1[1] = y1[0]+0.01
get u(x)
[x,u] = numerov_heat(TL,y1[1],L)
y2[1] =(u[N]-TR)**2
if abs(y2[1]) < tol:

found = True

secant iteration
n=1
while not(found):

guess delta by secant method
y1[n+1] = y1[n] - (y1[n]-y1[n-1])/(y2[n]-y2[n-1])*y2[n]
derivative of phi(x) at the end point.
[x,u] = numerov_heat(TL,y1[n+1],L)
y2[n+1]=(u[N]-TR)**2
if abs(y2[n+1]) < tol:

found = True

n+=1

Energy conservation
Q_in = -(u[1]-u[0])/(x[1]-x[0])
Q_out= +(u[n]-u[n-1])/(x[n]-x[n-1])
Q_diss = mu*sum(u[0:n-1:2]+4.0*u[1:n:2]+u[2:n+1:2])*(x[1]-x[0])/3.0
print('Q_in={0:10.6f}, Q_out={1:10.6f}, Q_diss={2:10.6f}, Q_net={3:10.6f}'

.format(Q_in, Q_out, Q_diss, Q_in+Q_out+Q_diss))

plot heat source
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,u,'-r')
plt.plot([0,L],[0,0],'--k')
plt.xlabel(r's')
plt.ylabel(r'$u(s)$')

plt.subplot(1,2,2)
plot the error after each iteration.
plt.semilogy(np.linspace(0,n,n+1),abs(y2[0:n+1]),'-o')
plt.xlabel('iteration')
plt.ylabel(r'T_R')

plt.show()

NNN

Bibliography

[1] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.
Section 6.22.15.

[2] D. Jentschura and E. Lötstedt. Numerical calculation of bessel, hankel and airy functions. Computer
Physics Communications, 183(3):506–519, 2012.

167

CHAPTER 7

ORDINARY DIFFERENTIAL EQUATIONS III:
EIGENVALUE PROBLEMS

Another important mathematical problem involving differential equation is the eigenvalue problem. In
general it is a linear differential equation:

Ly = λy (7.1)

where L is a linear operator and λ. We want to find eigenvalues λ and corresponding eigenfunctions y. This
equation is homogeneous and thus the magnitude of y cannot be determined. If y(x) is a solution, then cy(x)
is also a solution where c is any constant. We utilize this property in the numerical methods.

A linear operator popular in physics has a form

L = a
d2

dx2 + p(x) d
dx + q(x) (7.2)

where a is a constant, and the functions p(x) and q(x) do not depend on λ nor y. Explicitly writing (7.1),
we obtain an ODE

ay′′ + p(x)y′ + q(x)y = λy . (7.3)

In this chapter we focus on this operator.
Eigenvalue problems are different from the regular boundary value problems we investigated in the previous

chapter. First of all, the value of λ is not known. In general, y(x) depends on λ and we must determine
both λ and y(x) simultaneously. How can we do that? Suppose we use an arbitrary value for λ and solve
the ODE. Let us write the solution as y(x;λ) . The solution must satisfies boundary condition y(xL;λ) = yL
and y(xR;λ) = yR. It looks that we can find the eigenvalue λ by a root finding method. However there are
two equations to satisfy with a single parameterλ, which is not possible in general. The solution exists only
for yL = yR = 0.[1, 2] or the periodical boundary condition y(x+ L) = y(x).

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

169

170 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

Second difference is that there can be many different solutions, which we write as λi, (i = 1, 2, · · · , N) and
the corresponding eigenfunctions yi(x). In many cases, there are infinitely many solutions (N =∞). Some
applications want to know one specific solution, usually the one with the smallest (or largest) eigenvalue.
Other applications want to know multiple solutions. It is hard for a numerical method to find all of them.
Further complication arises when two different solutions have the same eigenvalue (degeneracy). We do not
discuss degeneracy in this chapter.

Apart from these differences, the numerical methods to solve the boundary value problems in the previous
chapter still can be used to solve the eigenvalue problems. In this chapter, we focus on the shooting method.
There are other methods. Lowest eigenvalues can be obtained by numerical minimization of functionals,
which we discuss in Chapter 8. We can convert eigenvalue problems to initial value problems of partial
differential equations, which will appear in Chapter 13. Yet, there is another method based on stochastic
dynamics (diffusion Monte Carlo simulation), which will be introduced in Chapter 18.

Eigenvalue problems in matrix form are also common in physics, particularly in quantum mechanics where
L is a square matrix and y is a column vector. Mathematically speaking, the matrix version is essentially
the same as the present one. In fact, we can convert a differential equation form of an eigenvalue problem
to a matrix form using a basis set. We will discuss the matrix version in Chapter 10.

7.1 Shooting Method for Eigenvalue Problems

The basic idea is exactly the same as the shooting method in Chapter 5. We guess a value of λ and shoot.
Change the value and shoot again until we hit the target. The target is one of the boundary condition.
Given lambda, we integrate the ODE from one of the boundaries, say xL, using a numerical method such as
the Numerov method. The solution is a function of λ which we write as y(x;λ). The boundary condition at
xL is automatically satisfied when the ODE is solved numerically. However, the other boundary condition at
xR is not automatically satisfied. Only correct values of λ can satisfy both boundary conditions. Therefore,
we need to look for λ that satisfies the other boundary condition, y(xR, λ) = 0. This is just a root finding
problem. We adjust the value of λ until the boundary conditions are satisfied.

There is another way to satisfy the both boundary conditions. Integrate the ODE from both ends xL to
some mid point xC and also backward from and xR to xC. Then, we have two solution, forward solution
y+(x) for xL < x < xC and backward solution y−(x) for xC < x < xR. We can match these two solutions
at xC by adjusting their scale. However, they do not connect smoothly at xC unless we have correct value
for λ. In this case, the root finding process solves y′−(xC) = y′+(xC). We change λ until this condition is
satisfied. This approach has an advantage in some case, particularly if the system has a useful symmetry
such as parity.

A problem of the shooting method is that we don’t know which eigenvalue we will find. The secant method
does not guarantee the eigenvalue nearest to the initial guess. If we want to find a specific eigenvalue, the
bisection method is better if the target eigenvalue is bracketed.

SHOOTING METHOD FOR EIGENVALUE PROBLEMS 171

Algorithm 7.1 Shooting method with secant root finding
1. Guess a value of eigenvalue λ1. The subscript ”1” indicates the first try.

2. Starting with a boundary value y(a) = 0.

3. Assign a value to the next point y(a + h). Any value is OK since the magnitude is
arbitrary.

4. Integrate the ODE using a numerical method to the other end and get the value of
y1 = y(b). This is the first output.

5. If |y1| < tolerance then we find a solution. Otherwise continue to next step.

6. Guess a new value of eigenvalue λ2. This is the second try.

7. Integrate the ODE in the same way as step 4 and get the new value for y2 = y(b). This
is the second output.

8. If |y2| < tolerance then we find a solution. Otherwise continue to next step.

9. Now, we enter a loop of the secant method.

10. λn+1 = λn−
λn − λn−1
yn − yn−1

yn. Here, the (n+ 1)-th try is suggested by the secant method.

11. Solve the Newton equation with λn+1 as initial condition and get yn+1 = y(b).

12. If |yn+1| < tolerance then we find a solution. Otherwise repeat from step 10.

EXAMPLE 7.1 Eigen modes of standing waves

A standing wave in a stretched string is a simplest eigenvalue problem. The vertical displacement of the
string y(x) at position x is determined by the folowing eigen value equation:

d2y

dx2 = λy (7.4)

with boundary conditions y(0) = y(1) = 0. The exact answer is well known. The eigenvalue is λn =
−(nπ)2 and the corresponding eigenfunction yn(x) = A sin(nπx) where n is any non-negative integer and
A is any non-zero constant. Program 7.1 solves this problem using Algorithm 7.1. Figure 7.1 illustrates
the simple idea of shooting method. When λ = −9, the solution overshoots the target boundary. On
the other hand, when λ = −11, the solution undershoot and misses the target again. A certain value of
λ between the two values, the trajectory must hit the target. That is the eigenvalue. The program finds
λ = −9.869044 which is in good agreement with the exact value λexact = −π2 = −9.8696044.

Exercise 7.1 Solve the same problem with the bisection method (Algorithm 7.1).

172 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

x
0 0.2 0.4 0.6 0.8 1

y(
x)

-0.2

0

0.2

0.4

0.6

0.8

1
Overshoot
Hit
Undershoot

Figure 7.1: Illustration of the shooting method. Equation (7.4) is integrated with three different values of
λ. When λ = −9 (blue) , the solution overshoots the target boundary. On the other hand, when λ = −11
(turquoise), the solution undershoots it. Therefore, the correct answer should be between the two values.
When λ = −9.8696044 (red), the solution hits the target and thus it is the eigenvalue.

7.2 Applications in Physical Problems

7.2.1 Quamtum Harmonic Oscillator

Energy eigenvalues of a harmonic oscillator are determined by[
− ~2

2m
d2

dx2 + mω2x2

2

]
ψ(x) = Eψ(x) (7.5)

where m and ω are the mass and frequency of the oscillator, respectively.[3] We want to determine eigenvaue
E and eigenfunction ψ(x). The boundary condition is lim

|x|→∞
ψ(x) = 0. As usual, we replace this boundary

condition with ψ(±L) = 0 where L is a sufficiently large but finite quantity. Changing the units of length

and energy as ξ =
√
mω

~
x and energy λ = 2E

~ω
, the above equation is simplified to[3]

[
d2

dξ2 − (ξ2 − λ)
]
ψ(ξ) = 0. (7.6)

which is suitable for the Numerov integration. The exact solution is well known: λn = 2n+ 1, n = 0, 1, · · ·
and corresponding eigenfunctions are given by

ψn(ξ) = 1√
2nn!
√
π

e−ξ
2/2Hn(ξ) (7.7)

where Hn(ξ) is the Hermite polynomial of n-th degree.
In order to enhance the degree of accuracy, we take into account the symmetry of the system. Since the

potential is an even function [U(−x) = U(x)], the wavefunction must be either symmetric [ψ(−x) = ψ(x)]
or anti-symmetric [ψ(−x) = −ψ(x)]. This symmetric properties suggest that we need to consider only x < 0
(or only x > 0). We integrate the equation only from x = −L where ψ(−L) = 0 to x = 0. If the solution is
symmetric, the boundary condition is ψ′(0) = 0. For the anti-symmetric solution, the boundary condition is
ψ(0) = 0. Program 7.2 implements this symmetry consideration and finds the eigenvalue and eigenfunction

APPLICATIONS IN PHYSICAL PROBLEMS 173

x
-5 0 5

A
(x

)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

6=4
6=5
6=6

x
-5 0 5

A
(x

)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

6=2
6=3
6=4

Figure 7.2: Wave functions of quantum harmonic oscillator. Left: Symmetric state. When the value of λ
is not right (blue and turquoise), the wave function is not smoothly connected at x = 0. When λ is the
correct eigenvalue, the curve is smooth everywhere. Right: Anti-symmetric state. Similarly to the symmetric
function, when the value of λ is not right (blue and turquoise), the wave function jumps at x = 0.

for the given bracket using the Numerov and bisection methods (Algorithm 7.1). When an eigenvalue is
searched between 8.2 and 9.4, the code found an eigenvalue 9.0004, which is almost exact.

Figure 7.2 illustrates how the symmetry is used in the calculation. For the symmetric state (left panel),
the wavefunction is smooth at x = 0. However, if a wrong value is used (λ = 4 or 6), a cusp appears at x = 0
(the derivative is not continuous.) Similarly for the anti-symmetric case (right panel), the wave function
jumps at x = 0 unless a correct eigenvalue is used.

7.2.2 Bouncing Quantum Particle

In Sec. 5.3.1, we discussed how to compute the wave function of a particle in a uniform gravity. The particle
keeps falling forever in that calculation. Now, we put a floor so that the particle can bounce back. We want
to know what energy (eigenvalue) the particle can have and what is the corresponding eigenfunction. We
stat with the Schrodinger equation (5.11). We set the reference of energy so that the potential energy is zero

at the floor (y = 0). Using 3

√
2m2g

~2 and 3

√
mg2~2

2 as units for length and energy, the Schrödinger equation
is simplified to [

d2

dy2 + (E − y)
]
ψ(y) = 0 (7.8)

Since the particle cannot go below the floor, a boundary condition is ψ(0) = 0. The other boundary condition
lim
y→∞

ψ(y) = 0 is replaced with ψ(L) =) with a large value of L.
As we discussed in Sec 3.5.1, a solution to this equation is Ai(y − E). Applying the boundary condition

at y = 0, Ai(−E) = 0. Therfore, the energy eigenvalues are En = −zn where zn is the n-th root of the airy
function Ai(zn) = 0. The first few roots of the airy function is listed in Table 7.1.

Now, we try to find the eigenvalue by solving the differential equation directly. We integrate from y = L
to y = 0 by the Numerov method and use the secant method to find an eigenvalue. (Algorithm 7.1) The first
five eigenvalues are listed in Table 7.1. They are in a good agreement with the roots of the airy function.
As warned earlier in this chapter, the secant root finding not always find a root nearest to the initial guess.
Notice that the initial guess of the 5-th eigenvalues are below the 4-th eigenvalue.

174 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

n root initial guess numerical eigenvalue

1 -2.33811 2 2.3381074

2 -4.08795 3 4.0879494

3 -5.52056 5 5.5205605

4 -6.78671 7 6.7867934

5 -7.94413 6 7.9473771

Table 7.1: The first five roots of airy function Ai(x) and eigenvalues by numerically solving the Schrödinger
equation (7.8).

x
0 5 10

v(
x)

-1

-0.5

0

0.5

1

iteration
0 5 10

6

-10

-5

0

5

10

Figure 7.3: Wavefuntions and eigenvalues of a quantum bouncing particle. Left: The energy eigenfunctions
of the lowest three states. Right: The levels of the three lowest energy eigenstates.

APPLICATIONS IN PHYSICAL PROBLEMS 175

Table 7.2: Values of the constants for the Morse potential.

Molecule r0(Å) De (eV) αr0

H2 0.742 4.75 1.44

I2 2.66 1.56 4.94

7.2.3 Diatomic Molecules

The vibrational state of a diatomic molecule such as H2 is described by a radial wave function ψ(r). The
wave function is determined by the energy eigenvalue equation

− ~2

2µ
d2ψ

dr2 +
[
U(r) + ~2`(`+ 1)

r

]
ψ = λψ. (7.9)

where µ. λ, and ` are reduced mass, energy eigenvalue, and angular quantum number, respectively. The
interaction potential is often approximated by the Morse potential

U(r) = De

[
e−2α(r−r0) − 2e−α(r−r0)

]
(7.10)

where De, r0 and α are dissociation energy, equilibrium distance between the atoms and decay constant.
Their values for hydrogen and iodine molecules are listed in Table 7.2.

When ` = 0, analytical solutions∗ are known.[4] The eigenvalues are

λn = −De

[
1− α~√

2µDe

(
n+ 1

2

)]2
(7.11)

where n is non-negative integer smaller than
√

2µDe

α~
− 1

2 . The corresponding eigenfunctions are

ψn(r) = e−ξ/2ξ2L(2s)
n (ξ) (7.12)

where
ξ = 2

√
2µDe

α~
e−α(r−r0), s =

√
−2µλ
α~

. (7.13)

and L2s
n is generalized Laguerre function which can be evaluated by the recursive equation

nL(a)
n (x) = (2n− 1 + a− x)L(a)

n−1(x) + (1− a− n)L(a)
n−2(x) (7.14)

with L
(a)
0 (x) = 1 and L

(a)
1 (x) = 1 + a− x.

Even when analytical solution is known, numerical analysis of the problem sometimes helps understanding
the physics more quickly than analytical approach. Not many people can visualize hypergeometric functions
in their head.

To implement a numerical method, we need some preparation. The boundary condition lim
x→∞

ψ(x) = 0
must be replaced by ψ(xmax) = 0 where xmax is chosen such that ψ(xmax) < tolerance. How can we find such

∗Strictly speaking ∞ > r ≥ 0. However, ∞ > r > −∞ is assumed. This is a reasonable approximation since the potential
diverges to +∞ as r goes to −∞.

176 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

9
-1 -0.5 0 0.5 1 1.5

U
(9

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

n=0
n=1
n=2

9
-1 -0.5 0 0.5 1

A
(9

)

-1

-0.5

0

0.5

1

1.5

Figure 7.4: Left: The Morse potential and the three lowest eigenvalues. Right: Wavefuntions corresponding
toe the three eigenvalues shown in the left panel.

a value? The best way is to find a similar problem which can be solved analytically and find xmax usng the
analytical solution. The value for the original problem should be similar to that. For the present problem,
the motion of the atoms should be close to a harmonic oscillation. Therefore, we consider a small amplitude
approximation of the Morse potential.[5]. Expanding U(r) in a Taylor series around the equilibrium position,
we obtain a harmonic potential

U(r) ≈ −De +Deα
2(r − r0)2 (7.15)

and the corresponding spring constant is k = 2Deα
2 or frequency ω =

√
2Deα2/µ. The ground state of the

harmonic oscillator has wave function
u(x) ∝ e−x

2/2a2
. (7.16)

where a =
√

~/µω. If we choose xmax = 6a, the wave function at the boundary is u(xmax)/u(0) = e−18 ∼
10−8 which is small enough. This value should good enough at least for low energy states.

Program 7.4 solves Eq. (7.9) for the lowest three eigenvalues using Algorithm ??. The results are
n=0, E=-0.1646901622, Exact=-0.1646901622
n=1, E=-0.1458135760, Exact=-0.1458135781
n=2, E=-0.1280854412, Exact=-0.1280856284

The agreement is very good. However, the error increases as n increases. The error is due to the choice of
xmax which is supposed to be ∞. Figures 7.4 show the energy levels with respect to the potential energy
profile (left panel) and eigen functions (right panel).

Exercise 7.2 Compare the numerically obtained eigenfunctions with the analytical solution (7.12.

PROBLEMS 177

7.3 Problems

7.1 Quantum Particle in a Square Potential
In Sec. 3.6.4, the energy of the particle in a square potential is evaluated numerically. Here, we solve
the Schrödinger equation directly. The potential energy (See Fig. 3.7) is given by

V (x) =
{

0 for |x| < a

V0 for |x| > a
(7.17)

Using a and ~2

2ma2 as units of length and energy respectively, the Schrödinger equation is written as

[
− d2

dx2 + V (x)
]
ψ(x) = Eψ(x) (7.18)

The parameter value z0 = 6 in Sec 3.6.4 corresponds to V0 = 36 [See Eq. (3.25b).]. The root finding
program in Sec.3.6.4 found four energy eigenvalues, E = z2 = 1.81, 7.18, 15.89, 27.31. Modify the code
used in Section 7.2.1 (or write your own code in your favorite language) and find all four eigenvalues.
Compare the results with the results obtained in Sec.4.3.2

7.2 Bound States in a Symmetric Potential
A quantum particle of mass m is bound in a potential

U(x) = − U0

cosh2 αx
. (7.19)

Find all energy eigenvalues of the bound states.
Analytical solutions are given by

En = −~2α2

8m

[
−(2n+ 1) +

√
1 + 8mU0

~2α2

]
(7.20)

and
ψn(x) = (1− ξ2)ε/2F [ε− s, ε+ s+ 1, ε+ 1, (1− ξ)/2] (7.21)

where F is the hypergeometric function and

ξ = tanhαx, ε =
√
−2mEn
~α

, s = 1
2

(
−1 +

√
1 + 8mU0

~2α2

)
(7.22)

178 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

MATLAB Source Codes

Program 7.1

%**
%* Example 7.1 *
%* filename: ch07pr01.m *
%* program listing number: 7.1 *
%* *
%* This program finds the first two eigen modes of standing wave in a *
%* string using the shooting method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
clear all;

% setting the grid
xmin=0.0;
xmax=1.0;
N=200;
h=(xmax-xmin)/N;
x = linspace(xmin,xmax,N+1);
v=zeros(1,N+1);

% control parameters
tol=1e-6;
delta=1;
found=false;
kmax=100;

lambda(1) = 1;
k=1;

while not(found) & k<kmax

% integrate ODE by Numerov method
w = -lambda(k);
v(1)=0;
v(2)=delta;
for n=2:N-1

v(n+1) = 2*(1-5*hˆ2*w/12)*v(n) - (1+hˆ2*w/12)*v(n-1);
v(n+1) = v(n+1)/(1+hˆ2*w/12);

end

% error in the boundary condition
err(k) = v(N);

if abs(err(k)) < tol
found = true;

else
% secant method to guess next lambda
if k == 1

lambda(k+1) = lambda(k)-0.1;
else

lambda(k+1) = lambda(k) ...
-(lambda(k)-lambda(k-1))/(err(k)-err(k-1))*err(k);

end
k=k+1;

PROBLEMS 179

end
end
s=max(v);
v=v/s;
fprintf('lambda = %.7f, exact=%.7f\n',lambda(k),-piˆ2);

subplot(1,2,1)
p=plot(x,v);
set(p,'linewidth',2)
xlabel('x','fontsize',14);
ylabel('v(x)','fontsize',14);
axis([0 1 -1.1 1.1]);
hold on

subplot(1,2,2)
r=plot([1:k],lambda(1:k),'-o');
set(r,'linewidth',2)
xlabel('iteration','fontsize',14)
ylabel(texlabel('lambda'),'fontsize',14)
axis([0 k -(2*pi)ˆ2*1.1 10])
hold on
r=plot([0,k],[-piˆ2, -piˆ2],'--');
set(r,'color','black')
hold on
r=plot([0,k],[-(2*pi)ˆ2, -(2*pi)ˆ2],'--');
set(r,'color','black')
hold on

found = false;
lambda(1) = -30;
k = 1;

while not(found)
w = -lambda(k);
v(1)=0;
v(2)=delta;
for n=2:N-1

v(n+1) = 2*(1-5*hˆ2*w/12)*v(n) - (1+hˆ2*w/12)*v(n-1);
v(n+1) = v(n+1)/(1+hˆ2*w/12);

end
err(k) = v(N);
if abs(err(k)) < tol

found = true;
else

if k == 1
lambda(k+1) = lambda(k)-0.1;

else
lambda(k+1) = lambda(k) ...

-(lambda(k)-lambda(k-1))/(err(k)-err(k-1))*err(k);
end
k=k+1;

end
end
s = max(v);
v = v/s;
fprintf('lambda = %.7f, exact=%.7f\n',lambda(k),-(2*pi)ˆ2);

subplot(1,2,1)
p=plot(x,v);
set(p,'linewidth',2,'color','red')

180 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

legend(texlabel('lambda_0=1'),texlabel('lambda_0=-30'));
legend('location','southwest');
r=plot([0,1],[0,0]);
set(r,'color','black')
hold off
subplot(1,2,2)
r=plot([1:k],lambda(1:k),'-o');
set(r,'linewidth',2,'color','red')
hold off

NNN

Program 7.2

%**
%* Section 7.2.1 *
%* filename: ch07pr02.m *
%* program listing number: 7.2 *
%* Uses: qmho_numerov.m *
%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* harmonic oscillator within a given bracket using the shooting *
%* method (Numerov and bisection methods). *
%* Parity symmetry is taken into account. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

E(1)=input('Energy Lower Blacket =');
E(2)=input('Energy Upper Blacket =');

symmetric = false;
anti_symmetric = false;
found = false;
xmax=5;
tol = 1e-8;
h = 0.001;

% Initial Lower bound
[x,psi] = qmho_numerov(E(1),xmax,h);
N=size(x,2);
error_L=(psi(N)-psi(N-1))/(x(N)-x(N-1));
error_L2=psi(N);
if abs(error_L) < tol

found = true;
symmetric = true;
EM = E(1);

elseif abs(error_L2) < tol
found = true;
anti_symmeric = true;
EM = E(1);

end

% Initial Upper bound
if not(found)

[x,psi] = qmho_numerov(E(2),xmax,h);
error_U=(psi(N)-psi(N-1))/(x(N)-x(N-1));
error_U2=psi(N);
if abs(error_U) < tol

PROBLEMS 181

found = true;
symmetric = true;
EM = E(2);

elseif abs(error_U2) < tol
found = true;
anti_symmeric = true;
EM = E(2);

end
if error_U*error_L<0

symmetric = true;
elseif error_U2*error_L2<0

anti_symmetric = true;
error_U = error_U2;
error_L = error_L2;

else
error('Blacket error!');

end
if symmetric & anti_symmetric

error('Blacket error2!');
end

end

% Begin bisection
while not(found)

EM = sum(E)*0.5;
[x,psi] = qmho_numerov(EM,xmax,h);
if symmetric

error_M=(psi(N)-psi(N-1))/(x(N)-x(N-1));
else

error_M=psi(N);
end

if abs(error_M)<tol
found = true;

else
if error_M*error_L < 0

E(2) = EM;
error_U = error_M;

else
E(1) = EM;
error_L = error_M;

end
end

end

% output the result
if symmetric

fprintf('Symmetric state: ')
elseif anti_symmetric

fprintf('Anti-Symmetric state: ')
end
fprintf('Eigenvalue= %.6f\n', EM);

X(1:N) = x(1:N);
X(N+1:2*N-1)=-x(N-1:-1:1);
if symmetric

Y(1:N) = psi(1:N);
Y(N+1:2*N-1)=psi(N-1:-1:1);

else
Y(1:N) = psi(1:N);
Y(N+1:2*N-1)=-psi(N-1:-1:1);

182 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

end

A = sum(Y(1:2:2*N-3).ˆ2+4*Y(2:2:2*N-2).ˆ2+Y(3:2:2*N-1).ˆ2)*h/3;
Y = Y / sqrt(A);
p=plot(X,Y,[-xmax,xmax],[0,0],[0,0],[-1,1]);
set(p(1),'linewidth',2,'color','blue')
set(p(2:3),'color','black')
xlabel('x','fontsize',14)
ylabel(texlabel('psi(x)'),'fontsize',14)

function [x,psi] = qmho_numerov(E,xmax,h)

W = @(x) -(xˆ2-E);

N=round(xmax/h);
xmax=h*N;
x = linspace(-xmax,0.0,N+1);
w = -x.ˆ2+E;
psi = zeros(N+1);
psi(1)=0;
psi(2)=0.001;

% shoot out to x=0 by the Numerov method
for n=2:N

psi(n+1) = 2*(1-5*hˆ2*w(n)/12)*psi(n) - (1+hˆ2*w(n-1)/12)*psi(n-1);
psi(n+1) = psi(n+1)/(1+hˆ2*w(n+1)/12);

end
end

NNN

Program 7.3

%**
%* Section 7.2.2 *
%* filename: ch07pr03.m *
%* program listing number: 7.3 *
%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* bouncing ball within a given bracket using the shooting *
%* method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
clear all;

% setting the grid
L=10; N=500; h=L/N;
x=linspace(0.0,L,N+1);
psi=zeros(N+1);

% control parameter
tol=1e-6;
delta = 0.01;
found = false;
kmax=100;

eigval(1) = input('Initial Guess ='); % initial guess

PROBLEMS 183

% secant iteration
k=1;
while not(found)

% Numerov integration
w = eigval(k)-x;
psi(N+1)=0;
psi(N)=delta;

for n=N:-1:2
psi(n-1) = 2*(1-5*hˆ2*w(n)/12)*psi(n) - (1+hˆ2*w(n+1)/12)*psi(n+1);
psi(n-1) = psi(n-1)/(1+hˆ2*w(n-1)/12);

end

err(k) = psi(1); % last point should be zero
if abs(err(k)) < tol

found = true;
else

if k == 1
eigval(k+1) = eigval(k)-0.1; % second guess

else
eigval(k+1) = eigval(k) ... % suggestion by the secant method

-(eigval(k)-eigval(k-1))/(err(k)-err(k-1))*err(k);
end
k=k+1;

end
end

% normalize the solution at the maximum
psi=psi/max(psi);
fprintf('lambda = %.7f\n',eigval(k));

% plot eigenfunction
subplot(1,2,1)
p=plot(x,psi);
set(p,'linewidth',2)
hold on
q=plot([x(1),x(N)],[0,0]);
set(q,'color','black')
xlabel('x','fontsize',14);
ylabel('v(x)','fontsize',14);
axis([0 L -1.1 1.1]);

% plot eigenvalue
subplot(1,2,2)
r=plot([1:k],eigval(1:k),'-o');
set(r,'linewidth',2)
xlabel('iteration','fontsize',14)
ylabel('E','fontsize',14)
axis([0 k -piˆ2*1.1 10])
hold on
r=plot([0,k],[-piˆ2, -piˆ2],'--');
set(r,'color','black')
hold off

NNN

Program 7.4
%**
%* Section 7.2.3 *
%* filename: ch07pr04.m *
%* program listing number: 7.4 *

184 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* particle in the Morse potential using the shooting. *
%* method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all
clc

% Use the atomic unit
mp=1836.4;
e=27.2114;
a0=0.529177;
% parameters for H2
D=4.75/e; R0=0.742/a0; a=1.44/R0; name='H_2'; m=mp; mu=m/2;

% parameters for I2
%D=1.56/e; R0=2.66/a0; a=4.94/R0; name='I_2'; m=127*mp; mu=m/2;

% zero point energy
omega=sqrt(2*D*aˆ2/mu);
DE=omega/5;
d=1/sqrt(mu*omega)*12;

% define the discrete coordinate
N=1000;
h=d/N;
x=linspace(-d/2,d/2,N+1);
psi=zeros(1,N+1);
phi=zeros(3,N+1);
% evaluate the potential
U=D*(exp(-2*a*x)-2*exp(-a*x));

E_M=-D;

for L=1:3
% Initial Bracketting
E_L = E_M+DE;
w = 2*mu*(E_L-U);
psi(1)=0;
psi(2)=0.1;
% shoot out to x=L by the Numerov method
for n=2:N

psi(n+1) = 2*(1-5*hˆ2*w(n)/12)*psi(n) - (1+hˆ2*w(n-1)/12)*psi(n-1);
psi(n+1) = psi(n+1)/(1+hˆ2*w(n+1)/12);

end
ERR_L=psi(N+1);
found=false;

while not(found)
E_U = E_L+DE;
if E_U>0

error
end
w = 2*mu*(E_U-U);
psi(1)=0;
psi(2)=0.1;
for n=2:N

PROBLEMS 185

psi(n+1) = 2*(1-5*hˆ2*w(n)/12)*psi(n) - (1+hˆ2*w(n-1)/12)*psi(n-1);
psi(n+1) = psi(n+1)/(1+hˆ2*w(n+1)/12);

end
ERR_U=psi(N+1);
if ERR_L*ERR_U<0

found=true;
else

E_L=E_U;
ERR_L=ERR_U;

end
end

found=false;
tol1=1e-8;
tol2=1e-15;

while not(found)
E_M=(E_L+E_U)/2;
w = 2*mu*(E_M-U);
psi(1)=0;
psi(2)=0.1;

for n=2:N
psi(n+1) = 2*(1-5*hˆ2*w(n)/12)*psi(n) - (1+hˆ2*w(n-1)/12)*psi(n-1);
psi(n+1) = psi(n+1)/(1+hˆ2*w(n+1)/12);

end
ERR_M=psi(N+1);
if abs(ERR_M) < tol1 || abs(E_L-E_M)<tol2

found = true;
end

if ERR_M*ERR_L > 0
E_L=E_M;

else
E_U=E_M;

end

end
eigval(L) = E_M;
% normalize the wave function
z=sum(psi.ˆ2)*h;
phi(L,:)=psi/sqrt(z);
exact=-D*(1-a/sqrt(2*mu*D)*(L-1/2))ˆ2;
fprintf('n=%d, E=%.10f, Exact=%.10f\n',L-1,E_M,exact)

end

% Ploting potential and eigenvalues
subplot(1,2,1)
N0=ceil(N/5);
p=plot([x(N0),x(N)],[eigval(1),eigval(1)],...

[x(N0),x(N)],[eigval(2),eigval(2)],...
[x(N0),x(N)],[eigval(3),eigval(3)]);

legend(p,'n=0','n=1','n=2')
hold on
plot(x(N0:N),U(N0:N),'color','black')
hold off
xlabel(texlabel('xi'),'fontsize',14)
ylabel(texlabel('U(xi)'),'fontsize',14)

% Ploting wave functions

186 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

subplot(1,2,2)
plot(x,phi(1,:),x,phi(2,:),x,phi(3,:))
ymax=max(phi(:));
ymin=min(phi(:));
axis([-d/2 d/2 ymin*1.1 ymax*1.1])
xlabel(texlabel('xi'),'fontsize',14)
ylabel(texlabel('psi(xi)'),'fontsize',14)

NNN

Python Source Codes

Program 7.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 7.1 *
%* filename: ch07pr01.py *
%* program listing number: 7.1 *
%* *
%* This program finds the first two eigen modes of standing wave in a *
%* string using the shooting method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

setting the grid
xmin=0.0
xmax=1.0
N=200
h=(xmax-xmin)/np.float(N)
x=np.linspace(xmin,xmax,N+1)
v = np.zeros(N+1)

control parameter
kmax=100
tol=1.0e-6
delta = 1.0
found = False

lam=np.zeros(kmax+1)
err=np.zeros(kmax+1)
lam[0] = 1.0

k=0
while not(found) and k < kmax:

integrate ODE by Numerov method
w = -lam[k]
v[0]=0.0
v[1]=delta

PROBLEMS 187

for n in range(1,N):
v[n+1] = 2.0*(1.0-5.0*h**2*w/12.0)*v[n] - (1.0+h**2*w/12.0)*v[n-1]
v[n+1] = v[n+1]/(1.0+h**2*w/12.0)

error in the boundary condition
err[k] = v[N]

if np.abs(err[k]) < tol:
found = True

else:
secant method to guess next lambda
if k == 0:

lam[k+1] = lam[k]-0.1
else:

lam[k+1] = lam[k]-(lam[k]-lam[k-1])/(err[k]-err[k-1])*err[k]
k+=1

s=max(v)
v=v/s
print('lambda = {0:12.7f}, exact={1:12.7f}'.format(lam[k],-np.pi**2))

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,v,'-b',label=r"\lambda_0=1$")
plt.xlabel('x',fontsize=14)
plt.ylabel('v(x)',fontsize=14)

plt.subplot(1,2,2)
plt.plot(np.linspace(0,k,k+1),lam[0:k+1],'-ob')
plt.plot([0,k],[-np.pi**2, -np.pi**2],'--k')
plt.plot([0,k],[-(2*np.pi)**2, -(2*np.pi)**2],'--k')
plt.xlabel('iteration',fontsize=14)
plt.ylabel(r'λ',fontsize=14)

found = False

lam[0]= -30

k=0
while not(found) and k < kmax:

w = -lam[k]
v[0]=0.0
v[1]=delta
for n in range(1,N):

v[n+1] = 2.0*(1.0-5.0*h**2*w/12.0)*v[n] - (1.0+h**2*w/12.0)*v[n-1]
v[n+1] = v[n+1]/(1.0+h**2*w/12.0)

err[k] = v[N]
if abs(err[k]) < tol:

found = True
else:

if k == 0:
lam[k+1] = lam[k]-0.1

else:
lam[k+1] = lam[k] -(lam[k]-lam[k-1])/(err[k]-err[k-1])*err[k]

k+=1

188 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

s = max(v)
v = v/s
print('lambda = {0:12.7f}, exact={1:12.7f}'.format(lam[k],-(2*np.pi)**2))

plt.subplot(1,2,1)
plt.plot(x,v,'-r',label=r"\lambda_0=-30$")
plt.legend(loc=3)

plt.subplot(1,2,2)
plt.plot(np.linspace(0,k,k+1),lam[0:k+1],'-or')

plt.show()

NNN

Program 7.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 7.2.1 *
%* filename: ch07pr02.py *
%* program listing number: 7.2 *
%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* harmonic oscillator within a given bracket using the shooting *
%* method (Numerov and bisection methods). *
%* Parity symmetry is taken into account. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
import sys

def qmho_numerov(E,xmax,h):
N=round(xmax/h)
xmax = h*N
psi=np.zeros(N+1)
x =np.linspace(-xmax,0.0,N+1)
w = -x**2+E

psi[0]=0
psi[1]=0.001

shoot out to x=L by the Numerov method
for n in range(1,N):

psi[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*psi[n] \
- (1.0+h**2*w[n-1]/12.0)*psi[n-1]

psi[n+1] = psi[n+1]/(1+h**2*w[n+1]/12.0)

return [x,psi]

if __name__ == "__main__":

E=np.zeros(2)
E[0]=np.float(input('Energy Lower Blacket ='))
E[1]=np.float(input('Energy Upper Blacket ='))

PROBLEMS 189

control parameter
symmetric = False;
anti_symmetric = False
found = False
xmin=0.0
xmax=5.0
tol = 1e-8
h = 0.001

Initial Lower bound
[x,psi] = qmho_numerov(E[0],xmax,h)
N=x.size-1
error_L=(psi[N]-psi[N-1])/(x[N]-x[N-1])
error_L2=psi[N]
if np.abs(error_L) < tol:

found = True
symmetric = True
EM = E[0]

elif np.abs(error_L2) < tol:
found = True
anti_symmeric = True
EM = E[0]

Initial Upper bound
if not(found):

[x,psi] = qmho_numerov(E[1],xmax,h)
error_U=(psi[N]-psi[N-1])/(x[N]-x[N-1])
error_U2=psi[N]

if np.abs(error_U) < tol:
found = True
symmetric = True
EM = E[1]

elif np.abs(error_U2) < tol:
found = True
anti_symmeric = True
EM = E[1]

if error_U*error_L<0:
symmetric = True

elif error_U2*error_L2<0:
anti_symmetric = True
error_U = error_U2
error_L = error_L2

else:
sys.exit('Blacket error!');

if symmetric & anti_symmetric:
sys.exit('Blacket error2!')

Begin bisection
while not(found):

EM = E.sum()*0.5
[x,psi] = qmho_numerov(EM,xmax,h)
if symmetric:

error_M=(psi[N]-psi[N-1])/(x[N]-x[N-1])
else:

error_M=psi[N]

if np.abs(error_M)<tol:
found = True

190 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

else:
if error_M*error_L < 0:

E[1] = EM
error_U = error_M

else:
E[0] = EM
error_L = error_M

output the result
if symmetric:

print('Symmetric state: ')
elif anti_symmetric:

print('Anti-Symmetric state: ')

print('Eigenvalue= {0:12.6f}'.format(EM))

X=np.zeros(2*N+1)
Y=np.zeros(2*N+1)
X[0:N+1] = x[0:N+1]
X[N+1:2*N]=-x[N-1:0:-1]
if symmetric:

Y[0:N+1] = psi[0:N+1];
Y[N+1:2*N]=psi[N-1:0:-1]

else:
Y[1:N] = psi[1:N]
Y[N+1:2*N]=-psi[N-1:0:-1]

A = sum(Y[0:2*N-3:2]**2+4.0*Y[1:2*N-2:2]**2+Y[2:2*N-1:2]**2)*h/3.0
Y = Y / np.sqrt(A)
plt.figure(figsize=(6,5))
plt.plot(X,Y,'-b')
plt.plot([-xmax,xmax],[0,0],'-k')
plt.plot([0,0],[-1,1],'-k')
plt.xlabel('x')
plt.ylabel(r'$\psi(x)$')
plt.show()

NNN

Program 7.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 7.2.2 *
%* filename: ch07pr03.py *
%* program listing number: 7.3 *
%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* bouncing ball within a given bracket using the shooting *
%* method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

setting the grid
L=10.0; N=500; h=L/N

PROBLEMS 191

x=np.linspace(0,L,N+1)
psi=np.zeros(N+1)

control parameter
tol=1e-6
delta = 0.01
found = False
kmax=100
eigval=np.zeros(kmax+1)
err=np.zeros(kmax+1)
eigval[0] = np.float(input('Initial Guess =')) # initial guess

k=0
secant iteration
while not(found) and k<kmax:

Numerov integration
w = eigval[k]-x
psi[N]=0.0
psi[N-1]=delta
for n in range(N-1,0,-1):

psi[n-1]=2.0*(1.0-5.0*h**2*w[n]/12.0)*psi[n] \
- (1.0+h**2*w[n+1]/12.)*psi[n+1]

psi[n-1] = psi[n-1]/(1.0+h**2*w[n-1]/12.0)

err[k] = psi[0]
if np.abs(err[k]) < tol:

found = True
else:

if k == 0:
eigval[k+1] = eigval[k]-0.1 # second guess

else:
suggestion by the secant method
eigval[k+1] = eigval[k] \

-(eigval[k]-eigval[k-1])/(err[k]-err[k-1])*err[k]

k+=1

normalize the solution at the maximum
psi=psi/max(psi)
print('Eigenvalue = {0:12.7f}'.format(eigval[k]))

plot eigenfunction
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,psi,'-b',linewidth=2)
plt.plot([x[0],x[N]],[0,0],'-k')
plt.xlabel('x',fontsize=14)
plt.ylabel('v(x)',fontsize=14)

plot eigenvalue
plt.subplot(1,2,2)
plt.plot(np.linspace(0,k,k+1),eigval[0:k+1],'-ob')
plt.plot([0,k],[-np.pi**2, -np.pi**2],'--k');
plt.xlabel('iteration',fontsize=14)
plt.ylabel('E',fontsize=14)

plt.show()

NNN

Program 7.4

192 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 7.2.3 *
%* filename: ch07pr04.py *
%* program listing number: 7.4 *
%* *
%* This program finds an eigenvalue and eigenfunction of a quantum *
%* particle in the Morse potential using the shooting. *
%* method (Numerov and secant methods). *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
import sys

Use the atomic unit
mp=1836.4
e=27.2114
a0=0.529177
parameters for H2
D=4.75/e; R0=0.742/a0; a=1.44/R0; name='H_2'; m=mp; mu=m/2.

parameters for I2
#D=1.56/e; R0=2.66/a0; a=4.94/R0; name='I_2'; m=127*mp; mu=m/2;

zero point energy
omega=np.sqrt(2.0*D*a**2/mu)
DE=omega/5.0
d=1.0/np.sqrt(mu*omega)*12.0

define the discrete coordinate
N=1000
h=d/N
x=np.linspace(-d/2.0,d/2.0,N+1)
psi=np.zeros(N+1)
phi=np.zeros((3,N+1))
evaluate the potential
U=D*(np.exp(-2.0*a*x)-2.0*np.exp(-a*x))

eigval=np.zeros(3)
E_M=-D

for L in [0, 1, 2]:

Initial Bracketting
E_L = E_M+DE
w = 2*mu*(E_L-U)
psi[0]=0.0
psi[1]=0.1
shoot out to x=L by the Numerov method
for n in range(1,N):

psi[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*psi[n] \
- (1.0+h**2*w[n-1]/12.0)*psi[n-1]

PROBLEMS 193

psi[n+1] = psi[n+1]/(1+h**2*w[n+1]/12.0)

ERR_L=psi[N]
found=False

while not(found):

E_U = E_L+DE
if E_U>0.0:

sys.exit('Blacket error')

w = 2.0*mu*(E_U-U)
psi[0]=0.0
psi[1]=0.1
for n in range(1,N):

psi[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*psi[n] \
- (1.0+h**2*w[n-1]/12.0)*psi[n-1]

psi[n+1] = psi[n+1]/(1+h**2*w[n+1]/12.0)

ERR_U=psi[N]
if np.sign(ERR_L)*np.sign(ERR_U)<0.0:

found=True
else:

E_L=E_U
ERR_L=ERR_U

found=False
tol1=1e-8
tol2=1e-15

while not(found):
E_M=(E_L+E_U)/2.0
w = 2.0*mu*(E_M-U)
psi[0]=0.0
psi[1]=0.1

for n in range(1,N):
psi[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*psi[n] \

- (1.0+h**2*w[n-1]/12.0)*psi[n-1]
psi[n+1] = psi[n+1]/(1+h**2*w[n+1]/12.0)

ERR_M=psi[N]
if np.abs(ERR_M) < tol1 or np.abs(E_L-E_M)<tol2:

found = True

if np.sign(ERR_M)*np.sign(ERR_L) > 0.0 :
E_L=E_M

else:
E_U=E_M

eigval[L] = E_M
normalize the wave function
z=sum(psi**2)*h
phi[L,:]=psi/np.sqrt(z);
exact=-D*(1.0-a/np.sqrt(2.0*mu*D)*(L+1./2.))**2
print('n={0:3d}, E={1:10.7f}, Exact={2:10.7f}'.format(L-1,E_M,exact))

Ploting potential and eigenvalues
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)

194 ORDINARY DIFFERENTIAL EQUATIONS III: EIGENVALUE PROBLEMS

N0=np.int(np.ceil(N/5))
plt.plot([x[N0],x[N]],[eigval[0],eigval[0]],'-b',label='n=0')
plt.plot([x[N0],x[N]],[eigval[1],eigval[1]],'-g',label='n=1')
plt.plot([x[N0],x[N]],[eigval[2],eigval[2]],'-r',label='n=2')
plt.plot(x[N0:N],U[N0:N],'-k')
plt.xlabel(r'ξ',fontsize=14)
plt.ylabel(r'$U(\xi)$',fontsize=14)
plt.legend(loc=1)

Ploting wave functions
plt.subplot(1,2,2)
plt.plot(x,phi[0,:],'-b')
plt.plot(x,phi[1,:],'-g')
plt.plot(x,phi[2,:],'-r')
plt.xlabel(r'ξ',fontsize=14)
plt.ylabel(r'$\psi(\xi)$',fontsize=14)

plt.show()

NNN

Bibliography

[1] K. F. Riley, M. P. Hobson, and S. J. Bence. Mathematical Methods for Physics and Engineering. Cam-
bridge University Press, 3rd edition, 2006. Section 17.4.

[2] Wolfgang Walter and R. Thompson. Ordinary Differential Equations. Springer, 1998. Section 27.

[3] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005. Section
2.3.2.

[4] L. D. Landau and L. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory. Butterworth-
Heinemann, 3rd edition, 1981. Section 23.

[5] John R. Taylor. Classical Mechanics. University Science Books, 2005. Chapter 5.

195

CHAPTER 8

MATRIX I: LINEAR ALGEBRAIC EQUATIONS

So far our focus has been on numerical methods for calculus. Linear algebra is another major mathematical
component in physics, where vectors and matrices are main players. It plays an essential role particularly
in quantum mechanics. The numerical methods of linear algebra are also used in other numerical methods
in later chapters when we solve multivariate root finding/minimization problems, data fitting, and partial
differential equations. It is highly desirable to develop efficient and accurate numerical methods for linear
algebra. Despite that the problem looks very basic, numerical methods to solve it is not trivial. In this
chapter, various numerical methods for solving linear systems are introduced.

The size of the matrix can be very large in real world applications. Writing a code for large matrices
is often complicated. Fortunately, standard libraries such as LAPACK[1] are available for most computer
languages and we utilize them. However, it is dangerous to use such black-box routines without knowing
how they work. In this chapter, basic ideas are introduced using small matrices, mostly 3-by-3. Once we
understand the ideas, we can use the black-box routines with confidence and when they fail we will find
alternative methods.

In particular, we are interested in linear algebraic equations. We often encounter a set of simultaneous
equations like

3x− y + 4z = 2 (8.1a)
2x− z = −1 (8.1b)

3y + 2z = 3 (8.1c)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

197

198 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Writing it in a matrix form, the set of equations are expressed in a single equation Ax = b, where

A =

3 −1 4

2 0 −1

0 3 2

 , b =

2

−1

3

 . (8.2)

To discuss more general cases, we write a system of linear equation in a matrix form
A11 A12 · · · A1N

A21 A22 · · · A2N
. . .

AN1 AN2 · · · ANN

x1

x2
...

xN

 =

b1

b2
...

bN

 (8.3)

or simply
Ax = b (8.4)

where A is a N -by-N square matrix, and x and b are column vectors of length N . Mathematically speaking,
the solution to this equation is as simple as x = A−1b where A−1 the inverse of A. However, finding the
inverse matrix is not a trivial task as you know from the linear algebra course. Fortunately, there are smart
numerical methods to solve it even without computing the actual inverse matrix. In MATLAB, simply
x=b\A solves the problem. We can of course use it and it works in most cases. However, we always need to
understand the degree of accuracy and the stability of the numerical method used inside MATLAB.

When we solve Eq. (8.1) by hand a common method is to eliminate variables one by one (the method
of variable elimination). Numerical methods essentially do the same. First, we discuss a trivial case. If the
matrix A is either upper or lower triangular, forward substitution and back substitution solve the problem
right away. For general cases, we introduce numerical methods known as Gaussian elimination and LU
decomposition, which transform general matrix problems to triangular matrix problems.

8.1 Triangular Matrices

We first discuss a special kind of matrices: lower triangular matrix

L =

L11 0 0 · · · 0

L21 L22 0 · · · 0

L31 L32 L33 · · · 0
...

...
... . . . 0

LN1 LN2 LN3 · · · LNN

, (8.5)

and upper triangular matrix

U =

U11 U12 U13 · · · U1N

0 U22 U23 · · · U2N

0 0 U33 · · · U3N

0
...

...

0 0 0 0 UNN

. (8.6)

TRIANGULAR MATRICES 199

The triangular matrices have several nice properties such as

The product of two same type of triangular matrices is again the same type of a triangular matrix.

The inverse of a triangular matrix is the same type of triangular matrix as the original one.

The determinant of a triangular matrix is just a product of all diagonal elements.

EXAMPLE 8.1

To familiarize ourselves with triangular matrices, we verify the above properties numerically. Since we
have not learned how to evaluate matrix inverse and determinant, we use MATLAB built-in functions,
inv() and det(). Numerical methods to compute them will be discussed in this chapter. Let us verify
the three properties using the following lower triangular matrix,

A =

2 0 0

−1 1 0

3 2 −1

 , B =

1 0 0

2 4 0

−1 −2 3

 . (8.7)

Program 8.1 computes the product of A and B, inverse and determinant of A. Here is the outputs.

Mutilication: A*B
2 0 0
1 4 0
8 10 -3

Inverse of A
5.0000e-01 -5.5511e-17 5.5511e-17
5.0000e-01 1.0000e+00 0.0000e+00
2.5000e+00 2.0000e+00 -1.0000e+00

Products of the diagonal elements = -2
Determinant by MATLAB = -2.000000e+00

The product is again a lower triangular matrix. The inverse is not exactly a lower triangular matrix since
the upper triangle elements are not exactly zero. They are numerical errors caused mostly by round-off
error and practically small enough to be ignored. Finally, the product of the diagonal elements matches
to the determinant obtained by the built-in function.

8.1.1 Forward/Back Substitutions

First, we will solve a simple linear equation
Lx = b (8.8)

where the matrix L is lower triangular. For simplicity, we consider 3-by-3 matrices but the method will work
for any size of matrices.

200 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Writing Eq. (8.8) explicitly, the corresponding equations of the system is

L11x1 = b1 (8.9a)
L21x1 + L22x2 = b2 (8.9b)

L31x1 + L32x2 + L33x3 = b3 (8.9c)

It is trivial to solve this equation. From the first equation, x1 = b1/L11. Solving the second equation for x2,
we obtain x2 = (b2 − L21x1)/L22 = (b2 − b1L21/L11)/L22. x3 can be obtained in the same way. For general
cases, the solution is given by

xi = 1
Lii

bi − i−1∑
j=1

Lijxj

 (8.10)

In order to find xi, we must know x1, x2, · · · , xi−1. In other words, you must evaluate this equation in the
forward order from i = 1 to N . That is why this method is called forward substitution.

Similarly for the upper triangular matrix, Ux = b can be solved easily by back substitution

xi = 1
Uii

bi − N∑
j=1+1

Uijxj

 (8.11)

which must be evaluated backward from i = N to i = 1 and thus this method is known as back substituion.

EXAMPLE 8.2

We solve the following equation.

3x− y + 4z = −1 (8.12a)
2y − z = −2 (8.12b)

2z = 4 (8.12c)

First, we write it in matrix form
3 −1 4

0 2 −1

0 0 2

x

y

z

 =

−1

−2

4

 . (8.13)

Since the matrix is upper triangular, we use the back substitution method. Program 8.2 carries out back
substitution and the solution is

x=-3.0, y=0.0, z=2.0

GAUSSIAN ELIMINATION 201

8.2 Gaussian Elimination

Solving linear equations of triangular matrix is almost trivial. Is there a similar formula for general matrix
problems? The answer is NO. The problem is much harder. However, almost any general matrix problem
can be transformed to an equivalent triangular matrix problem as long as A is not singular. Since a non-
trivial problem becomes a trivial problem, the transformation procedure must be non-trivial (due to the
law of the conservation of difficulty). The procedure is actually the same as what we do when we solve
the equation manually by hand. That is the method of variable elimination which is commonly known as
Gaussian elimination.

8.2.1 Elmination Procedures

First, let us solve (8.1) by hand. Diagram (8.14) shows it. First, we eliminate x in the second equation using
the first equation. From the first equation x = 1

3 (y−4z+2). Substituting it to the second equation, x in the
second equation is eliminated. Next, we do the same for the third equation. This time, we will eliminate y.
The third equation contains only z and thus we solve the problem. Notice that the final expression is upper
triangle. The second equation can be simplified by multiplying 3 to both sides. However, that will change
the properties of the matrix, namely the determinant. So, we keep the rather messy expression.

3x− y + 4z = 2 3x− y + 4z = 2 3x− y + 4z = 2 (8.14a)

2x− z = −1 1 st−−−−−−−→
elimination

2
3y −

11
3 z = −7

3
2 nd−−−−−−−→

elimination

2
3y −

11
3 z = −7

3 (8.14b)

3y + 2z = 3 3y + 2z = 3 37
2 z = 27

2 (8.14c)

Now we write this procedure in a matrix form,

Ax = b ⇒ M (1)Ax = M (1)b ⇒ M (2)M (1)Ax = M (2)M (1)b. (8.15)

where the transformation matrix M (i) applies the i-th step of the forward Gaussian elimination. For the
above example, the transformation matrices are

M (1) =

1 0 0

−2/3 1 0

0 0 1

 , M (2) =

1 0 0

0 1 0

0 −9/2 1

 . (8.16)

Notice that these matrices are lower triangular matrices and only one element differs from the identity
matrix.

In general, the product of N −1 transformation matrices transforms a general linear equation to an upper
triangular equation.

M (N−1)M (N−2) · · ·M (2)M (1)Ax = M (N−1)M (N−2) · · ·M (2)M (1)b −→ Ux = b′ (8.17)

Note that the transformation matrix is applied to the both sides of the equation. In other words, we are
modifying b as well as A, which is a weak point of the Gaussian elimination method which we will discuss
later. Algorithm 9.1 shows the summary of the Gaussian forward elimination procedure.

202 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Algorithm 8.1 Gaussian forward elimination

1. Consider a recursive equation A(n+1) = M (n)A(n) and b(n+1) = M (n)b(n), starting
with the original equation A(1)x = b(1) where A(1) is a N -by-N matrix.

2. M (n) is the same as the identity matrix except for the n-th column,
M

(n)
kn = −A(n)

kn /A
(n)
nn where k = n+ 1, · · · , N .

3. Apply the transformation to both A(n) and b(n). Note that the transformation affect
only the rows from n+ 1 to N of A(n) and b(n).

4. Increment n and repeat from step 2 until n = N .

Although the method is simple and works fine for many cases, it fails when the matrix is close to singular.
There are better methods. We introduced the Gaussian elimination method for a pedagogical purpose since
similar ideas are used in other methods. More practical methods will be discussed later.

EXAMPLE 8.3

We solve Eq. (8.1) using the Gaussian elimination followed by the back substitution. Program 8.3
implements Algorithm 9.1. The following output shows the linear equation after Gaussian elimination is
applied. The matrix A is transformed to a upper triangular form and b is also transformed accordingly.
Then, the solution x is obtained from the transformed equation by the back substitution, which is in
agreement with the exact solution x = − 5

37 , y = 19
37 , z = 27

37 .

A=
3.00000 -1.00000 4.00000
0.00000 0.66667 -3.66667
0.00000 0.00000 18.50000

b=
2.00000

-2.33333
13.50000

x=
-0.13514
0.51351
0.72973

GAUSSIAN ELIMINATION 203

8.2.2 Pivoting

The Gaussian elimination method suffers from round-off errors, sometimes severely. To see the source of the
error, apply the Gaussian elimination to the following problem:

εx+ y + z = 1 εx+ y + z = 1 εx+ y + z = 1

x+ y = 2 1st−−−−−−−→
elimination

(
1− 1

ε

)
y − 1

ε
z = 2− 1

ε

ε→0−−−−−−→
round-off

−1
ε
y − 1

ε
z = −1

ε

x+ z = 3 −1
ε
y +

(
1− 1

ε

)
z = 3− 1

ε
−1
ε
y − 1

ε
z = −1

ε

where ε � 1. Using the first equation, we eliminate x from the second and third equations. As ε → 0, 1
ε

becomes so large that computers cannot distinguish 1 − 1
ε

and −1
ε

due to round-off. Now the second and
third equations are identical and thus there is no unique solution. On the other hand, when ε = 0, the
solution does exist and it is x = 2, y = 0, z = 1. This example demonstrates the failure of the Gaussian
elimination.

Fortunately, there is a way to avoid such errors. We did not have to use the first equation to eliminate x.
Instead, use the second equation to eliminate x in two other equations. After swapping the first and second
rows, we apply the regular Gaussian elimination.

x+ y = 2 x+ y = 2 x+ y = 2

εx+ y + z = 1 1st−−−−−−−→
elimination

(1− ε)y + z = 1− 2ε 2nd−−−−−−−→
elimination

(1− ε)y + z = 1− 2ε

x+ z = 3 −y + z = 1 2− ε
1− εz = 2− 3ε

1− ε

ε→0−−−−−−→
round-off

x+ y = 2
y + z = 1

2z = 2

After the first step, we don’t see any extreme value. Now, we eliminate y using the second equation. If the
new coefficient to y happened to be very small, we need to swap the second and third equations to avoid the
round-off error. Since the coefficient to y is not small in this example, we don’t need to worry about it. We
now go ahead and eliminate y. The final expression takes an upper triangular form. When ε = 0, we obtain
the correct solution by the back substitution.

This algorithm of avoiding the round-off errors by rearranging the equations is known as pivoting. The
above example swapped two rows. This is known as partial pivoting. In some cases, interchanging both rows
and columns may be needed to achieve a desired accuracy. This is known as complete pivoting. We must
recall that when the matrix A is singular (the determinant of A is zero) Eq. (8.4) does not have a unique
solution. When A is near singular (the determinant is close to zero) the Gaussian elimination in general fails
even with pivoting. Then, we must resort to other method such as singular value decomposition (SVD)[2].

Algorithm 8.2 summarizes the so-called scaled partial pivoting method. The basic idea is that when we
eliminate a variable xn, we look for the row which has the largest coefficient to xn (the pivot element).
However, the absolute magnitude of the coefficients does not have significant meaning since each row can be
scaled by multiplying a constant without changing the solution. So, we normalize each row by the largest
coefficient in the row.

204 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

A11 A12 A13 A14 A15

0

0

0

0

A22 A23 A24 A25

0

0

0

A33 A34 A35

A43 A44 A45

A53 A54 A55

Figure 8.1: After two steps of forward elimination, 3-by-3 submatrix remains non-triangular. To find the
next pivot, find the maximum of A33/S3, A43/S4, and A53/S5. The row carrying the maximum goes to the
top of the submatrix.

Algorithm 8.2 Scaled Partial Pivoting

1. Find a scale factor for each row. Si = maxj(|Aij |).

2. Staring with n = 1, repeat the following procedure up to n = N − 1.

3. Assume that n− 1 variables are already eliminated and the first n− 1 rows are already
upper triangular. The remaining submatrix is still not triangular. (See Fig. 8.1.) Now,
we eliminate xn.

4. Find a row j ≥ n such that |Ajn|/Sj ≥ |Akn|/Sk, (∀k ≥ n). This is the pivot row.

5. Move j-th row to the top of the submatrix. (Pivoting)

6. Apply the forward elimination to the row below the pivot row. After that, we have a
new A and b.

7. If n = N − 1, the elimination is completed. Otherwise, increment n and go to step 3.

EXAMPLE 8.4

We solve Eq. (8.1) again but using partial pivoting this time. Program 8.4 will do it. The permutation
matrix P indicates which rows are swapped. The results show that the first elimination swapped the
first and second rows. Then, the second elimination interchanged the second and third rows. The
final triangular form of A is totally different from the one obtained without pivoting (see example 8.3).
However, the final solution x agrees with the previous example. Note that the final triangular matrix
in Example 8.3 contains a large element 18.5. However, the pivoting avoided the appearance of such a
large element.

GAUSSIAN ELIMINATION 205

A=
2.00000 0.00000 -1.00000
0.00000 3.00000 2.00000
0.00000 0.00000 6.16667

b=
-1.00000
3.00000
4.50000

P=
0 1 0
1 0 1
0 1 0

x=
-0.13514
0.51351
0.72973

8.2.3 Determinant

The determinant of a triangular matrix is simple. Just the product of the all diagonal is the determinant.
For example, an upper triangular matrix U has the determinant:

|U | =
N∏
i

Uii. (8.20)

Now, we show that the Gaussian elimination preserves the determinant. Using the transform matrices defined
in Eq. (8.17), the final upper triangular form U is given by

U = M (N−1)M (N−2) · · ·M (2)M (1)A (8.21)

and its determinant

|U | = |M (N−1)M (N−2) · · ·M (2)M (1)A| = |M (N−1)||M (N−2)| · · · |M (2)||M (1)||A| (8.22)

Noting that M (n) is a lower triangular matrix with a unit diagonal, its determinant is 1. Hence, |U | = |A|.
When pivoting is used,

|U | = |M (N−1)||P (N−1)||M (N−2)||P (N−2)| · · · |M (1)||P (1)||A| = (−1)p|A| (8.23)

where p is the number of pivoting. The proof is simple. If two rows are swapped |P (n)| = −1 and otherwise
it is |P (n)| = +1.

EXAMPLE 8.5

We calculate the determinant of the matrix in Eq. (8.2). By using the rule of Sarrus, its determinant is
37. Now, look at Eq. (8.14). The corresponding matrix take a upper triangular form:

3 −1 4

0 2/3 −11/3

0 0 37/2

 (8.24)

206 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

The product of the all diagonal elements is 3× 2/3× 37/2 = 37 which is the determinant.

8.2.4 Matrix Inversion

The Gaussian elimination cleverly solves equation Ax = b without deriving A−1. However, since we are able
to calculate x, there must be a way to find A−1. Indeed, the Gaussian elimination method can be used to
get the inverse. Consider N sets of the linear equations with unit vectors as b. Aij

x11

x21

x31

 =

1

0

0

 ,
 Aij

x12

x22

x32

 =

0

1

0

 ,
 Aij

x13

x23

x33

 =

0

0

1

 , (8.25)

Each equation can be solved by the Gaussian elimination. Therefore, we have xij . Now, we can write the
set of equations in a single matrix equation Aij

 xij

 =

 Iij

 (8.26)

where Iij is an identity matrix. Therefore, the matrix x is the inverse of A. By performing Gaussian
elimination N times, we can find the inverse of a matrix. This method is known as Gauss-Jordan elimination.
Since this is based on the Gaussian elimination method, it may suffer from round-off error. Other methods
are usually used in practical applications. However, it is very useful to know the basic idea of Gauss-Jordan
method in order to develop other methods.

EXAMPLE 8.6

We calculate the inverse of matrix A in Eq (8.2)) using the Gaussian elimination. It is trivial to modify
the code in Example 8.4. Program 8.5 calculates the inverse and check the answer by calculating AA−1.
The output show that we recover the identity matrix and thus the inverse is accurate.

Invers of A=
0.08108 -0.10811 0.16216
0.37838 0.16216 -0.24324
0.02703 0.29730 0.05405

A Aˆ(-1)=
1.00000 0.00000 0.00000
0.00000 1.00000 -0.00000

-0.00000 0.00000 1.00000

LU DECOMPOSITION 207

8.3 LU Decomposition

While it is simple, the Gaussian elimination has various weakness. We reduced the chance of round-off error
by pivoting. Another issue arises when we want to solve the equation many times with the same A but
different b. We have to carry out the elimination for every different b even with the same A. For a large
system, that is annoying. Fortunately, there are better ways. LU decomposition[2] is one of them.

8.3.1 Decomposition Algorithm

Looking at Eq. (8.21) again. U = MA where M = M (N−1)M (N−2) · · ·M (1). Recall that U is upper
triangular and each M (n) is lower triangular. Now, using the properties of triangular matrices: (1) the
product of triangular matrices is again the same kind of triangular matrix. (2) the inverse of a triangular
matrix is again the same kind of triangular matrix. Hence, M is lower triangular and so is M−1. Let
L = M−1, we conclude that

A = LU (8.27)

which is called LU decomposition or LU factorization of A. If pivoting is used, the rows are shuffled.
Therefore,

PA = LU (8.28)

where P is a permutation matrix. Using the property of permutation, namely P−1 = P , we obtain a more
popular expression

A = PLU (8.29)

This is just another way to express the Gaussian elimination. However, this decomposition does not depend
of the right hand side b. You need to carry out the decomposition only once for A. This saves computer
time significantly if Ax = b has to be solved many times with different b.

MATLAB has a built-in function lu() to compute LU decomposition (See Example 8.7.) For other
languages, LAPACK includes LU decomposition routines. Actually MATLAB internally calls LAPACK
routines. Be reminded that any numerical algorithm has weakness. A blind use of “canned” routines is
dangerous. We should carefully check possible pitfalls whenever we use canned routines.

8.3.2 Linear equations

Now, we solve Ax = b using the LU decomposition. The equation is now PLUx = b or equivalently
LUx = Pb, which can be divided to two equations, Ly = Pb and Ux = y where y is an auxiliary vector.
The former equation can be solved for y easily by forward substitution. Then, solve the latter for x with
back substitution. Once L and U are computed for A, we can use them for different b with the same L and
U . That is a huge advantage.

EXAMPLE 8.7

Here is another attempt to solve Eq. (8.1). This time we use LU decomposition (built-in function in
MATLAB). The permutation matrix indicated that the second and third rows are swapped during the
decomposition procedure. The product PLU recovers the original A. The results agree perfectly with
the analytic answers.

208 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

L (Lower Triangular Matrix)
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.66667 0.22222 1.00000

U (Upper Triangular Matrix)
3.00000 -1.00000 4.00000
0.00000 3.00000 2.00000
0.00000 0.00000 -4.11111

P (Permutation Matrix)
1 0 0
0 0 1
0 1 0

P*L*U
3.00000 -1.00000 4.00000
2.00000 0.00000 -1.00000
0.00000 3.00000 2.00000

x=-0.13514, y=0.51351, z=0.72973

8.3.3 Matrix Inverse

It is straight forward to find the inverse of a matrix using LU decomposition. The idea is exactly the same
as Gauss-Jordin elimination. Substituting A = PLU and using P−1 = P , Eq. (8.26) becomes (LU)ij

 xij

 =

 Pij

 (8.30)

If Gaussian elimination is used, we have to repeat the elimination N times for a N ×N matrix. With LU
decomposition, we use the elimination only once and we need to repeat only forward/back substitution.

8.3.4 Determinant

Calculation of the determinant is also straight forward. |A| = |P LU | = |P | |U | |L| = (−1)p|U | |L|. Here we
used |P | = (−1)p where p is the number of pivoting (the number of permutations). The determinant of U
and L are just the product of all diagonal elements. Thus,

|A| = (−1)p
N∏
i=1

Uii Lii (8.31)

EXAMPLE 8.8

TRIDIAGONAL MATRICES 209

Using the L and U obtained in Example 8.7, we find the determinant |A| = |PLU | = (−1) ∗ 3 ∗ 3 ∗
(−4.11111) = 36.99999 which is in agreement with exact value 37.

8.4 Tridiagonal Matrices

A tridiagonal matrix is defined by a sparse matrix

d1 u1 0

`2 d2 u2

`3 d3
. . .

. uN−1

0 `N dN

(8.32)

which is a popular matrix expression of one-dimensional Laplace operator. In Chapter 2, we evaluated the
second order derivative of a function f(x) at a single point x. Suppose that we want evaluate the second
order derivative at all points on a grid xi = x0 + ih, i = 1, · · · , N where h is a step length. Using the
standard method (2.14),

f ′′(xi) = f(xi+1) + f(xi−1)− 2f(xi)
h2 , i = 1, · · · , N (8.33)

where we assume that x0 = xN+1 = 0. We can express it simultaneously for all points in a matrix form.

f ′′1

f ′′2

f ′′2
...

f ′′N

= 1
h2

−2 1

1 −2 1

1 −2 . . .
. 1

1 −2

f1

f2

f3
...

fN

(8.34)

where fi = f(xi) and f ′′i = f ′′(xi). This indicates that the second-order derivative is an tridiagonal matrix
acting on a column vector f .

8.4.1 Linear Equations

If A in the linear equations eq8.4 is tridiagonal, the Gaussian elimination becomes rather simple. Since the
most of matrix elements are zero, the use of regular Gaussian elimination programs is not efficient. We can
actually write down the elimination process explicitly. Here is the backward elimination procedure:

ξN−1 = −`N
dN

, ξi−1 = −`i
di + uiξi

, i = N − 1, · · · , 2 (8.35)

ζN−1 = bN
dN

, ζi−1 = bi − uiζi
di + uiξi

, i = N − 1, · · · , 2 (8.36)

210 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

If the denominator is close to zero, pivoting is necessary. Now, the equation is lower triangular and the
solution is obtained by forward substitution:

x1 = b1 − u1ζ1
d1 + u1ξ1

, xi+1 = ξixi + ζi, i = 1, · · · , N − 1. (8.37)

8.4.2 Determinant and Inverse

We can also write down the explicit procedure for determinant and inverse. The following recursive equation

Dn = dnDn−1 − `n−1un−1Dn−2, D0 = 1 and D−1 = 0 (8.38)

converges to the determinant DN .
For the inverse of tridiagonal matrix, first we compute the following recursive equations,

ηn = `nηn−1 − dn−1un−1ηn−2, n = 1, 2, · · · , N (8.39)

starting with η0 = 1, η−1 = 0 and compute

ξn = anξn+1 − dnunξn+2, n = N,N − 1, · · · , 1 (8.40)

backward starting with ξN+1 = 1 and ξN+2 = 0. Then, the elements of the inverse matrix is given by

(A−1)ij =

(−1)i+jdi · · · dj−1ηi−1ξj+1/ηN i ≤ j

(−1)i+juj · · ·uj−1ηj−1ξi+1/ηN i > j
(8.41)

EXAMPLE 8.9

We want to solve the following equation.
1 2 0 0

2 1 2 0

0 3 1 3

0 0 3 1

x1

x2

x3

x4

 =

2

−1

1

3

 (8.42)

Program 8.7 first checks if this is not a singular problem by computing the determinant. If the determi-
nant is not zero, it solves the equation and check the numerical errors. Since the determinant is rather
large compared with the matrix elements, it is safe to ignore pivoting. The error of all solutions is quite
small.

Determinant -18
x= 1.000000 -0.500000 0.500000 0.833333
Eerror= 4.440892e-16 4.440892e-16 0.000000e+00 0.000000e+00

SOLVING LINEAR EQUATIONS BY MINIMIZATION 211

8.5 Solving Linear Equations by Minimization

The methods discussed above are strictly for the linear equations (8.4). There are quite different approaches
to solve the same linear equations. Although they are not very efficient for linear problems, they can be
extended to non-linear equations. Therefore, we introduce them here for the pedagogical purpose.

Consider a multivariate function
f(x) = 1

2xt Ax− btx (8.43)

where A is a N × N positive definite symmetric matrix and b and x are vectors of N dimension. The
superscript T represents transpose. Recall that atb is inner product between a and b. The function has a
unique minimum at x determined by

∇f(x) = Ax− b = 0 (8.44)
which is nothing but a linear equation.

Let us take it inversely. If we want to solve the linear equation (8.44), we just minimize Eq. (8.43) with
respect to x. If A is not symmetric nor positive definite, minimize the following function:

f(x) = 1
2xt AtAx−Atbtx (8.45)

This expression is essentially the same as Eq. (8.43) since it has a positive definite symmetric matrix AtA
and constant vector Atb. Furthermore, this function has a minimum at

At(Ax− b) = 0 (8.46)

which is equivalent to Eq. (8.4) since A is not singular.
There are many ways to minimize such a function. In the following we will discuss the steepest descent

and conjugate gradient methods.

8.5.1 Steepest Descent Method

To minimize the function value starting from an initial point x0, we need to find the direction in which the
function value decreases. Recalling that the gradient of the function gives the direction of the highest slope,

g0 ≡ −∇f(x0) = b−Ax0 (8.47)
provides the direction of the steepest descent. Do not miss the minus sign in front of the nabla operator.
Now, we move down the slope along the line specified by the steepest descent until we hit the bottom along
the line. This process is called line minimization. The new point is written as

x1 = x0 + λg0. (8.48)

where λ is a constant to be determined. The new gradient g1 at x1 must be orthogonal to the previous
gradient because we are already at the minimum in the direction of g0. Hence,

gt
1g0 = (bt − xt

1A
t)g0 = [bt − (xt

0 + λgt
0)At]g0 = (gt

0 − λgt
0A

t)g0 = 0 (8.49)

Solving this equation for λ, we find
λ = gt

0g0
gt

0Ag0
(8.50)

where we used the symmetric property At = A. Now the line minimization is completed. The new point
x1 is just a minimum on the line and not the minimum of the function yet. However, if the procedure is

212 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

repeated with x1 as a new stating point, the function value keeps decreasing and reaches the global minimum
of the function within a tolerance. The summary of the procedure is gicen in Algorithm 8.3.

Algorithm 8.3 Steepest Descent Minimization

1. Starting with n = 0, repeat the following recursive process.

2. Evaluate the gradient vector gn = b−Axn.

3. If |gn| < tolerance, xn is the solution. Otherwise continue.

4. Calculate the step length λ = gt
ngn

gt
nAgn

.

5. Jump to a new point xn+1 = xn + λgn.

6. Increment n and go to step 2.

EXAMPLE 8.10

We solve a simple two-dimensional problem of Ax = b where

A =

4 1

1 3

 , b =

1

2

 (8.51)

Note that A is symmetric. The analytic solution is x1 = 1/11 and x2 = 7/11. We solve this problem
iteratively using the steepest descent minimization. The corresponding function to be minimized is

f(x) = 1
2xtAx− xtb (8.52)

Program 8.9 minimizes it with the steepest descent method. The contour plot in Fig. 8.2a shows the
function near the minimum. The trajectory of the steepest descent plotted in Fig 8.2a shows that after
a few line minimization, it is already very close to the minimum. In fact, it took only nine steps even
with a small tolerance 1× 10−8. The result agrees well with the analytic solution.

Solution=(0.09092,0.63636)

8.5.2 Conjugate Gradient Method

The steepest descent method becomes inefficient when the trajectory is trapped in a narrow valley as shown
in Fig. 8.2c. For a quadratic system (8.43), there is an algorithm called conjugate gradient method[3] which
find the solution in exactly N iterations for N dimensional quadratic system. We again assume that A is

SOLVING LINEAR EQUATIONS BY MINIMIZATION 213

x
1

-1 0 1

x 2

-1

-0.5

0

0.5

1

1.5

2

f(x)
line minimization

(a) The steepest descent minimization of the 2D
quadratic system (Example 8.10). Fore steps are vis-
ible. More steps (not visible in the plot) are needed
to get sufficient accuracy.

x
1

-1 0 1

x 2

-1

-0.5

0

0.5

1

1.5

2

f(x)
CG steps

(b) The conjugate gradient minimization of the 2D
quadratic system (Example 8.11. By construction, it
needs only two steps to find the solution.

x
1

-3
-2

-1
0

1

x
2

0 2 4 6 8 10 12 14 16 18 20

(c) When the function has a narrow valley like this case, the steepest descent
method takes a long zig-zag path, making it very inefficient.

(d) Illustration of steepest descent/conjugate gradient methods.

214 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

symmetric and positive definite. The conjugate gradient method utilizes the geometry of quadratic system
as summarized in Algorithm 8.4.

Algorithm 8.4 Conjugate Gradient Method

1. Start with an initial guess x0 and n = 0.

2. Set the initial residual vector: r0 = b−Ax0

3. Set the initial conjugate direction: p0 = r0.

4. Evaluate the step size: α = rt
nrn

pt
nApn

.

5. Update the point: xn+1 = xn + αpn.

6. Update the residual vector: rn+1 = rn − αApn.

7. If |rn+1| < tolerance, xn+1 is the solution. Otherwise continue.

8. Evaluate the other step size: β =
rt
n+1rn+1

rt
nrn

.

9. Update the conjugate vector: pn+1 = rn+1 + βpn.

10. Increment n and go to step 4.

EXAMPLE 8.11

We solve the same problem as Example 8.10 again but with the conjugate gradient method. Program
8.10 implements the above Algorithm and solve the problem. Figure 8.2b shows that two steps of line
minimization hits the minimum as expected. The solution is in a good agreement with the exact one.

Solution=(0.09089,0.63638)

APPLICATIONS IN PHYSICS 215

8.6 Applications in Physics

8.6.1 Multiloop circute: Kirchhoff rules

Find currents Ii, i = 1, 2, 3 in the circuit shown in Figure.

Applying the Kirchhoff rules, we find a set of equations for the
currents

I1 − I2 − I3 = 0
3I1 + 2I2 = 3
−2I2 + 4I3 = 3

or in a matrix form AI = b with

A =

1 −1 −1

3 2 0

0 −2 4

 , b =

0

3

3

The code used in Example 8.4 can be used. The answer is I1 = 0.92308 A, I2 = 0.11538 A, I3 = 0.80769 A.

8.6.2 Coupled Harmonic Oscillators in a Uniform Gravity

Four particles of mas mi (i = 1, · · · , 4) are linked by four springs and the whole system
is hanged from the ceiling as shown in Figure. The natural length of the springs is
`1 = `3 = 0.1m, `2 = `4 = 0.2 and their spring constants are k1 = k4 = 100N/m and
k2 = k3 = 150N/m. The mass of particles is m1 = m2 = 0.15 kg, m3 = m4 = 0.30 kg
We want to know the distance between particles when the system is at a mechanical
equilibrium. The force on each particles are given by

F1 = k1x1 − k2x2 −m1g (8.53a)
F2 = k2x2 − k3x3 −m2g (8.53b)
F3 = k3x3 − k4x4 −m3g (8.53c)
F4 = k4x4 −m2g . (8.53d)

k1

k 2

k3

k 4

m1

m2

m3

m4

where xi is the stretch of each spring from its natural length. At the mechanical equilibrium, the force on
each particle must vanish. Hence, Fi = 0 for all i. Writing it in matrix form Ax = b,

A =

k1 −k2 0 0

0 k2 −k3 0

0 0 k3 −k4

0 0 0 k4

 , b =

m1g

m2g

m3g

m4g

 (8.54)

The matrix is already upper triangular and thus we can solve it immediately using back substitution. Taking
into account the natural length, the distance between particles i − 1 and i is di−1,i = `i + xi. We can use
Program 8.1 to solve this problem. The answer is d12 = 0.249000, d23 = 0.139200, d34 = 0.229400.

216 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

8.6.3 Determinant of Tree Graphs: Graham-Pollack theorem

Consider a graph shown in Fig 8.3. This graph consist of n = 10 vertices and 9 edges. When there is no loop
in it, the graph is called tree. A tree of n vertices has n − 1 edges. We consider distance between vertices.
The distance between vertices v2 and v9 is 3 since there are three edges between them. The distance of
between vi and vj forms a distance matrix Dij . The example graph shown in Fig 8.3 has a distance matrix

D =

0 1 2 3 4 4 3 4 4 5

1 0 1 2 3 3 2 3 3 4

2 1 0 1 2 2 1 2 2 3

3 2 1 0 1 1 2 3 3 4

4 3 2 1 0 2 3 4 4 5

4 3 2 1 2 0 3 4 4 5

3 2 1 2 3 3 0 1 1 2

4 3 2 3 4 4 1 0 2 3

4 3 2 3 4 4 1 2 0 1

5 4 3 4 5 5 2 3 1 0

(8.55)

In 1971, Graham and Pollak obtained a remarkable formula[4, 5]

det(D) = −(n− 1)(−2)n−2 (8.56)

which is independent of the structure of the tree. For the above distance matrix, det(D) = −9 · (−2)8 =
−2304. We now check it by numerical calculation. Program 8.8 calculates the determinant of the distance
matrix using Gaussian elimination with partial pivoting. The output is

Gaussian Elimination: -2304.000000
Graham-Pollak: -2304.000000

The formula works!

PROBLEMS 217

v1

v 2
v3

v 4

v5

v6
v7

v8

v9

v10

Figure 8.3: A small example of tree graph. It has 10 vertices and 9 edges.However, there is no loop.

8.7 Problems

8.1 Orthogoinal matrices
A rotation matrix R rotates points in a coordinate space. Accordingly, any vector a is rotated as b = Ra.
Since rotation does not changes the norm of vector, btb = atRtRa = ata where t indicates transpose.
Hence, RtR = I where I is the identity matrix. This means the rotation matrix is an orthogonal matrix
defined by R−1 = Rt. A rotation of −74◦ around the axes (-1/3,2/3,2/3) is given by a rotation matrix

R =

0.36 0.48 −0.80

−0.80 0.60 0

0.48 0.64 0.60

 . (8.57)

Show that this matrix is indeed orthogonal by comparing R−1 and Rt. You may use build-in functions
in MATLAB or Numpy.

8.2 Three particles are chained by four springs as shown in Fig. Two
springs at the ends are fixed to the walls. The walls are separated
by distance d = 8. The natural length of the springs are `1 = `3 =
1, `2 = `4 = 2 and their spring constants are k1 = k4 = 2 and
k2 = k3 = 4. Let di be the length of the i-th spring. The potential
energy of the system is defined by U =

∑
i

1
2ki(di − `i)2. Letting

the position of the particles xi, i = 1, · · · , 4.

1 2 3
k 2 k 3k 1 k 4

U = k1
2 (x1 − `1)2 + k2

2 (x2 − x1 − `2)2 + k3
2 (x3 − x2 − `3)2 + k4

2 (d− x3 − `4)2 (8.58)

Find the length of the springs at mechanical equilibrium. Yu may use built-in functions such as linsolve()
in MATLAB.
[Solve ∂

∂x1
U(x1, x2, x3) = 0, ∂

∂x2
U(x1, x2, x3) = 0, and ∂

∂x3
U(x1, x2, x3) = 0 for x1, x2, and x3.]

218 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

MATLAB Source Codes

Program 8.1

%**
%* Example 8.1 *
%* filename: ch08pr01.m *
%* program listing number: 8.1 *
%* *
%* This program checks the properties of triangular matrices. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/31/2015. *
%**
clear all;

% define matrices A and B
A=[[2, 0, 0];[-1,1,0];[3,2,-1]]
B=[[1, 0, 0];[2,4,0];[-1,-2,3]]

C=A*B;
fprintf('Mutilication: A*B\n')
% MATLAB print column first. Thus you need to print its transpose
fprintf('%3d %3d %3d\n',C')
fprintf('\nInverse of A\n')
D=inv(A);
fprintf('%15.4e %15.4e %15.4e\n',D')

E1=A(1,1)*A(2,2)*A(3,3);
E2=det(A);
fprintf('\nProducts of the diagonal elements = %d\n',E1)
fprintf('Determinant by MATLAB = %d\n',E2)

NNN

Program 8.2

%**
%* Example 8.2 *
%* filename: ch08pr02.m *
%* program listing number: 8.2 *
%* *
%* This program solves a upper-triangular linear equation with *
%* the backsubstitution method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% define matrix A and vector b
A=[[3, -1, 4];[0,2,-1];[0,0,2]];
b=[-1;-2;4];

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end

PROBLEMS 219

x(i) = (b(i)-Ax)/A(i,i);
end

fprintf('x=%.1f, y=%.1f, z=%.1f\n',x)

NNN

Program 8.3
%**
%* Example 8.3 *
%* filename: ch08pr03.m *
%* program listing number: 8.3 *
%* *
%* This program solves a simple linear equation with the Gaussian *
%* eliminationa and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A=[[3,-1,4];[2,0,-1];[0,3,2]];
b=[2;-1;3];

%forward elimination
for n=1:N-1

for i=n+1:N
M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i)=M*b(n)+b(i);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end
x(i) = (b(i)-Ax)/A(i,i);

end

% result
fprintf('\nA=\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nb=\n')
fprintf('%8.5f\n',b)
fprintf('\nx=\n')
fprintf('%8.5f\n',x)

NNN

Program 8.4
%**
%* Example 8.4 *
%* filename: ch08pr04.m *
%* program listing number: 8.4 *

220 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* *
%* This program solves a simple linear equation with the Gaussian *
%* elimination with partial pivoting and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A=[[3,-1,4];[2,0,-1];[0,3,2]];
b=[2;-1;3];
P=eye(N,N); % permutation matrix is initially an identity matrix

% Find scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1
% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
TMP=b(n);
b(n)=b(j);
b(j)=TMP;
% Record the permutation
P(n,n)=0; P(j,j)=0;
P(n,j)=1; P(j,n)=1;

end
% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i)=M*b(n)+b(i);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end
x(i) = (b(i)-Ax)/A(i,i);

PROBLEMS 221

end

% result
fprintf('\nA=\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nb=\n')
fprintf('%8.5f\n',b)
fprintf('\nP=\n')
fprintf('%i %i %i\n',P')
fprintf('\nx=\n')
fprintf('%8.5f\n',x)

NNN

Program 8.5
%**
%* Example 8.6 *
%* filename: ch08pr05.m *
%* program listing number: 8.5 *
%* *
%* This program calculates the inverse of a given matrix using *
%* Gaussi-Jordin methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A0=[[3,-1,4];[2,0,-1];[0,3,2]];
A=A0; % keep the original matrix
b=eye(N,N);

% scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1
% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
TMP2(1:N) = b(n,:);
b(n,:)=b(j,:);
b(j,:)=TMP2(1:N);

end

222 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i,:)=M*b(n,:)+b(i,:);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax(1:N)=0;
for j=i+1:3

for k=1:N
Ax(k) = Ax(k)+A(i,j)*x(j,k);

end
end
for j=1:N

x(i,j) = (b(i,j)-Ax(j))/A(i,i);
end

end

% result
fprintf('\nInvers of A=\n')
fprintf('%8.5f %8.5f %8.5f\n',x)
fprintf('\nA Aˆ(-1)=\n')
fprintf('%8.5f %8.5f %8.5f\n',A0*x)

NNN

Program 8.6
%**
%* Example 8.7 *
%* filename: ch08pr06.m *
%* program listing number: 8.6 *
%* *
%* This program solves a simple linear equation with LU decomposition.*
%* MATLAB function lu() is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Define a matrix
A=[[3, -1, 4];[2, 0, -1];[0, 3, 2]];
b=[2;-1;3];

% LU dcomposition
[L U P]=lu(A);

% Rcover the original matrix
S=P*L*U;

% Show the results
fprintf('\nA (Original Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nL (Lower Triangular Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',L')
fprintf('\nU (Upper Triangular Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',U')

PROBLEMS 223

fprintf('\nP (Permutation Matrix)\n')
fprintf('%i %i %i\n',P')
fprintf('\nP*L*U\n')
fprintf('%8.5f %8.5f %8.5f\n',S')

b = P*b;
% forward substition
for i=1:3

Ly=0;
for j=1:i-1

Ly = Ly+L(i,j)*y(j);
end
y(i) = (b(i)-Ly)/L(i,i);

end

% backsubstitution
for i=3:-1:1

Ux=0;
for j=i+1:3

Ux = Ux+U(i,j)*x(j);
end
x(i) = (y(i)-Ux)/U(i,i);

end

fprintf('\nx=%.5f, y=%.5f, z=%.5f\n',x)

NNN

Program 8.7
%**
%* Example 8.9 *
%* filename: ch08pr07.m *
%* program listing number: 8.7 *
%* *
%* This program solves a tridiagonal system with backward elimination.*
%* Then, find solution by forward substitution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/01/2015. *
%**
clear all

% Define matrices. No need to use the full matrix.
d=[2,3,4,3]; % diagonal elements
u=[2,3,3,0]; % above diagonal
l=[0,2,3,3]; % below diagonal
b=[1,2,3,4]; % right hand side

% Calculation of determinant
D(1)=d(1);
D(2)=d(2)*D(1)-l(1)*u(1);
for i=3:4

D(i)=d(i)*D(i-1)-l(i-1)*u(i-1)*D(i-2);
end

fprintf('Determinant %d\n',D(4))
if D(4) == 0

fprintf('Singular')
stop

end

224 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

% Decomposition by backword elimination
Y(3)=-l(4)/d(4);
Z(3)= b(4)/d(4);
for i=3:-1:2

Y(i-1)=-l(i)/(d(i)+u(i)*Y(i));
Z(i-1)=(b(i)-u(i)*Z(i))/(d(i)+u(i)*Y(i));

end

% Forward substitution
x(1)=(b(1)-u(1)*Z(1))/(d(1)+u(1)*Y(1));
for i=1:3

x(i+1)=Y(i)*x(i)+Z(i);
end

% Answer
fprintf('x= %f %f %f %f\n',x)

% Check the errors.
s(1)=d(1)*x(1)+u(1)*x(2)-b(1);
s(2)=l(2)*x(1)+d(2)*x(2)+u(2)*x(3)-b(2);
s(3)=l(3)*x(2)+d(3)*x(3)+u(3)*x(4)-b(3);
s(4)=l(4)*x(3)+d(4)*x(4)-b(4);
fprintf('Error= %e %e %e %e\n',s)

NNN

Program 8.8
%**
%* Section 8.6.3 *
%* filename: ch08pr08.m *
%* program listing number: 8.8 *
%* *
%* This program calculate the determinant of distance matrix for *
%* a tree graph using Gaussian elimination with partial pivoting. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/01/2015. *
%**
clear all;

% Set a linear equation
N=10;
A=[[0 , 1 , 2 , 3 , 4 , 4 , 3 , 4 , 4 , 5];...

[1 , 0 , 1 , 2 , 3 , 3 , 2 , 3 , 3 , 4];...
[2 , 1 , 0 , 1 , 2 , 2 , 1 , 2 , 2 , 3];...
[3 , 2 , 1 , 0 , 1 , 1 , 2 , 3 , 3 , 4];...
[4 , 3 , 2 , 1 , 0 , 2 , 3 , 4 , 4 , 5];...
[4 , 3 , 2 , 1 , 2 , 0 , 3 , 4 , 4 , 5];...
[3 , 2 , 1 , 2 , 3 , 3 , 0 , 1 , 1 , 2];...
[4 , 3 , 2 , 3 , 4 , 4 , 1 , 0 , 2 , 3];...
[4 , 3 , 2 , 3 , 4 , 4 , 1 , 2 , 0 , 1];...
[5 , 4 , 3 , 4 , 5 , 5 , 2 , 3 , 1 , 0]];

P=eye(N,N); % permutation matrix is initially an identity matrix

% Find scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1

PROBLEMS 225

% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
% Record the permutation
P(n,n)=0; P(j,j)=0;
P(n,j)=1; P(j,n)=1;

end
% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);

end
A(n+1,n)=0;

end

p=sum(sum(P))
D=(-1)ˆp;
for i=1:10

D=D*A(i,i);
end
D_GP=-(N-1)*(-2)ˆ(N-2);
fprintf('Gaussian Elimination: %f\n',D)
fprintf(' Graham-Pollak: %f\n',D_GP)

NNN

Program 8.9
%**
%* Example 8.10 *
%* filename: ch08pr09.m *
%* program listing number: 8.9 *
%* *
%* This program solves a 2x2 linear equation by the steepest descent *
%* minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;
A=[[4,1];[1,3]];
b=[1;2];
c=[-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1];
tol = 1e-8;

% contour plot of the cost function
x=linspace(-1,1.2);
y=linspace(-1,2);

226 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

[X,Y]=meshgrid(x,y);
N=size(X,2);
M=size(Y,2);
for i=1:N

for j=1:M
Z(i,j) = 0.5*(X(i,j)ˆ2*A(1,1)+(A(1,2)+A(2,1))*X(i,j)*Y(i,j)...

+A(2,2)*Y(i,j)ˆ2) - X(i,j)*b(1)-Y(i,j)*b(2);
end

end

contour(X,Y,Z,c);
hold on

% steepest descent with line minimization
n=1;
x=[1;0.5]; % starting point
u(1)=x(1);
v(1)=x(2);
g = A*x-b;
gg=g'*g;
while abs(gg)>tol

n=n+1;
lambda = gg/(g'*A*g);
x = x - lambda * g;
u(n)=x(1);
v(n)=x(2);
g = A*x-b;
gg = g'*g;

end

fprintf('Solution=(%.5f,%.5f)\n',x)

p=plot(u,v);
set(p,'linewidth',2,'color','black')
axis equal tight
xlabel(texlabel('x_1'),'fontsize',14)
ylabel(texlabel('x_2'),'fontsize',14)

hold off

NNN

Program 8.10
%**
%* Example 8.11 *
%* filename: ch08pr10.m *
%* program listing number: 8.10 *
%* *
%* This program solves a 2x2 linear equation by the conjugate *
%* gradient minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;
A=[[4,1];[1,3]];
b=[1;2];
c=[-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1];
tol = 1e-8;

% contour plot of the cost function

PROBLEMS 227

x=linspace(-1,1.2);
y=linspace(-1,2);
[X,Y]=meshgrid(x,y);
N=size(X,2);
M=size(Y,2);
for i=1:N

for j=1:M
Z(i,j) = 0.5*(X(i,j)ˆ2*A(1,1)+(A(1,2)+A(2,1))*X(i,j)*Y(i,j)...

+A(2,2)*Y(i,j)ˆ2) - X(i,j)*b(1)-Y(i,j)*b(2);
end

end

contour(X,Y,Z,c);
hold on

% conjugate gradient method
n=1;
x=[1;0.5]; % starting point
u(1)=x(1);
v(1)=x(2);
r=b- A*x;
p=r;
rr=r'*r;
while abs(rr)>tol

n=n+1;
alpha = rr/(r'*A*r);
x = x + alpha*p;
u(n)=x(1);
v(n)=x(2);
r1=b-A*x;
rr1=r1'*r1;
beta=rr1/rr;
r=r1;
rr=rr1;
p=r+beta*p;

end

fprintf('Solution=(%.5f,%.5f)\n',x)

p=plot(u,v);
set(p,'linewidth',2,'color','black')
axis equal tight
xlabel(texlabel('x_1'),'fontsize',14)
ylabel(texlabel('x_2'),'fontsize',14)
legend('f(x)','CG steps');
hold off

NNN

Python Source Codes

Program 8.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

228 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* Example 8.1 *
%* filename: ch08pr01.m *
%* program listing number: 8.1 *
%* *
%* This program checks the properties of triangular matrices. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/31/2015. *
%**
"""
import numpy as np

define matrices A and B (do not use array)
A=np.matrix([[2, 0, 0],[-1,1,0],[3,2,-1]])
B=np.matrix([[1, 0, 0],[2,4,0],[-1,-2,3]])

print("A*B")
print(A*B)

print('\nInverse of A')
print(np.linalg.inv(A))

print("\nDeterminant of A={0:7.5f}".format(np.linalg.det(A)))

NNN

Program 8.2

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.2 *
%* filename: ch08pr02.py *
%* program listing number: 8.2 *
%* *
%* This program solves a upper-triangular linear equation with *
%* the backsubstitution method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/06/2017. *
%**
"""
import numpy as np

define matrix A and vector b
A=np.matrix([[3, -1, 4],[0,2,-1],[0,0,2]])
b=np.matrix([[-1],[-2],[4]])
x=b
backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

x[i] = (b[i]-Ax)/A[i,i]

print(x)

NNN

Program 8.3

PROBLEMS 229

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.3 *
%* filename: ch08pr03.py *
%* program listing number: 8.3 *
%* *
%* This program solves a simple linear equation with the Gaussian *
%* eliminationa and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/06/2017. *
%**
"""
import numpy as np

Set a linear equation
N=3;
A=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
b=np.matrix.transpose(np.matrix([2.,-1.,3.]))
x=np.matrix.transpose(np.matrix(np.zeros(N)))

#forward elimination
for n in range(0,N-1):

for i in range(n+1,N):
M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

x[i] = (b[i]-Ax)/A[i,i]

result
print('\nA=\n')
print(A)
print('\nb=\n')
print(b)
print('\nx=\n')
print(x)

NNN

Program 8.4

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.4 *
%* filename: ch08pr04.pu *
%* program listing number: 8.4 *

230 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* *
%* This program solves a simple linear equation with the Gaussian *
%* elimination with poartial pivoting and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""

Set a linear equation
N=3;
A=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
b=np.matrix.transpose(np.matrix([2.,-1.,3.]))
x=np.matrix.transpose(np.matrix(np.zeros(N)))
permutation matrix must be initially an identity matrix
P=np.matrix(np.identity(3,dtype=int))
S=np.zeros(3)

Find scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n :

for i in range(n,N) :
TMP=A.item(n,i)
A[n,i]=A.item(j,i)
A[j,i]=TMP

TMP=b.item(n)
b[n]=b.item(j)
b[j]=TMP
Record the permutation
P[n,n]=P[j,j]=0
P[n,j]=P[j,n]=1

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

PROBLEMS 231

x[i] = (b[i]-Ax)/A[i,i]

result
print('\nA=\n')
print(A)
print('\nb=\n')
print(b)
print('\nP=\n')
print(P)
print('\nx=\n')
print(x)

NNN

Program 8.5

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.5 *
%* filename: ch08pr05.py *
%* program listing number: 8.5 *
%* *
%* This program calculates the inverse of a given matrix using *
%* Gaussi-Jordin methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np

Set a linear equation
N=3
A0=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
A=np.identity(N)
A[:,:]=A0[:,:]
b=np.matrix(np.identity(N)) # permutation matrix is initially an identity matrix
x=np.matrix(np.identity(N))
S=np.zeros(N)
TMP2=np.zeros(N)

scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n:

for i in range(n,N):

232 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

TMP=A[n,i]
A[n,i]=A[j,i]
A[j,i]=TMP

TMP2[:]=b[n,:]
b[n,:]=b[j,:]
b[j,:]=TMP2[:]

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i,:]=M*b[n,:]+b[i,:]

A[n+1,n]=0.0

backsubstitution
Ax=np.zeros(N)
for i in range(N-1,-1,-1):

Ax=np.zeros(N)
for j in range(i+1,N):

for k in range(0,N):
Ax[k] = Ax[k]+A.item(i,j)*x[j,k]

x[i,:] = (b[i,:]-Ax[:])/A[i,i]

result
print('\nInvers of A=')
print(x)
print('\nA Aˆ(-1)=')
print(A0*x)

NNN

Program 8.6

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.6 *
%* filename: ch08pr06.py *
%* program listing number: 8.6 *
%* *
%* This program solves a simple linear equation with LU decomposition.*
%* MATLAB function lu() is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""

import numpy as np
import scipy.linalg as la

Define a matrix
A=np.matrix([[3., -1., 4.],[2., 0., -1.],[0., 3., 2.]])
b=np.matrix([2.,-1.,3.]).transpose()
x=np.matrix(np.zeros(3)).transpose()
y=np.matrix(np.zeros(3)).transpose()

LU dcomposition

PROBLEMS 233

P, L, U = la.lu(A)
P=np.matrix(P)
U=np.matrix(U)
L=np.matrix(L)

Rcover the original matrix
S=P*L*U
Show the results
print('\nA (Original Matrix)')
print(A)
print('\nL (Lower Triangular Matrix)')
print(L)
print('\nU (Upper Triangular Matrix)')
print(U)
print('\nP (Permutation Matrix)')
print(P)
print('\nP*L*U')
print(S)

b = P*b
forward substition
for i in range(0,3):

Ly=0.0
for j in range(0,i):

Ly = Ly+L[i,j]*y[j]

y[i] = (b[i]-Ly)/L[i,i]

backsubstitution
for i in range(2,-1,-1):

Ux=0.0
for j in range(i+1,3):

Ux = Ux+U[i,j]*x[j]

x[i] = (y[i]-Ux)/U[i,i]

print('\nSolution x')
print(x)

NNN

Program 8.7

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.7 *
%* filename: ch08pr07.py *
%* program listing number: 8.7 *
%* *
%* This program solves a tridiagonal system with backward elimination.*
%* Then, find solution by forward substitution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np

Define matrices. No need to use the full matrix.
d=[2,3,4,3] # diagonal elements

234 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

u=[2,3,3,0] # above diagonal
l=[0,2,3,3] # below diagonal
b=[1,2,3,4] # right hand side
D = np.zeros(4)
Y = np.zeros(4)
Z = np.zeros(4)
s = np.zeros(4)
x = np.zeros(4)
Calculation of determinant
D[0]=d[0]
D[1]=d[1]*D[0]-l[0]*u[0]
for i in range(2,4):

D[i]=d[i]*D[i-1]-l[i-1]*u[i-1]*D[i-2]

print('Determinant {0:8.3f}='.format(D[3]))
if D[3] == 0:

exit('Singular')

Decomposition by backword elimination
Y[2]=-l[3]/d[3]
Z[2]= b[3]/d[3]
for i in range(2,0,-1):

Y[i-1]=-l[i]/(d[i]+u[i]*Y[i])
Z[i-1]=(b[i]-u[i]*Z[i])/(d[i]+u[i]*Y[i])

Forward substitution
x[0]=(b[0]-u[0]*Z[0])/(d[0]+u[0]*Y[0])
for i in range(0,3):

x[i+1]=Y[i]*x[i]+Z[i]

Answer
print('Solution x')
print(x)

Check the errors.
s[0]= d[0]*x[0]+u[0]*x[1]-b[0]
s[1]=l[1]*x[0]+d[1]*x[1]+u[1]*x[2]-b[1]
s[2]=l[2]*x[1]+d[2]*x[2]+u[2]*x[3]-b[2];
s[3]=l[3]*x[2]+d[3]*x[3]-b[3]
print('Error')
print(s)

NNN

Program 8.8

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 8.6.3 *
%* filename: ch08pr08.py *
%* program listing number: 8.8 *
%* *
%* This program calculate the determinant of distance matrix for *
%* a tree graph using Gaussian elimination with partial pivoting. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**

PROBLEMS 235

"""
import numpy as np

Set a linear equation
N=10
A=[[0. , 1. , 2. , 3. , 4. , 4. , 3. , 4. , 4. , 5.],

[1. , 0. , 1. , 2. , 3. , 3. , 2. , 3. , 3. , 4.],
[2. , 1. , 0. , 1. , 2. , 2. , 1. , 2. , 2. , 3.],
[3. , 2. , 1. , 0. , 1. , 1. , 2. , 3. , 3. , 4.],
[4. , 3. , 2. , 1. , 0. , 2. , 3. , 4. , 4. , 5.],
[4. , 3. , 2. , 1. , 2. , 0. , 3. , 4. , 4. , 5.],
[3. , 2. , 1. , 2. , 3. , 3. , 0. , 1. , 1. , 2.],
[4. , 3. , 2. , 3. , 4. , 4. , 1. , 0. , 2. , 3.],
[4. , 3. , 2. , 3. , 4. , 4. , 1. , 2. , 0. , 1.],
[5. , 4. , 3. , 4. , 5. , 5. , 2. , 3. , 1. , 0.]]

A=np.matrix(A)
P=np.matrix(np.identity(N),dtype=int) # permutation matrix
b=np.matrix(np.zeros(N)).transpose()

S=np.zeros(N)
Find scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n :

for i in range(n,N):
TMP=A[n,i]
A[n,i]=A[j,i]
A[j,i]=TMP

TMP=np.asscalar(b[n])
b[n]=b[j]
b[j]=TMP

Record the permutation
P[n,n]=P[j,j]=0
P[n,j]=P[j,n]=1

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

p=P.sum()
D=(-1)**p
for i in range(0,N):

236 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

D=D*A[i,i]

D_GP=-(N-1)*(-2)**(N-2);
print('Gaussian Elimination: {0:f}'.format(D))
print(' Graham-Pollak: {0:d}'.format(D_GP))

NNN

Program 8.9

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.10 *
%* filename: ch08pr09.py *
%* program listing number: 8.9 *
%* *
%* This program solves a 2x2 linear equation by the steepest descent *
%* minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

A=np.matrix([[4.,1.],[1.,3.]])
b=np.matrix([1.,2.]).transpose()

steepest descent with line minimization

kmax=1000
tol = 1e-8
x=np.matrix([1,0.5]).transpose() # starting point
u=np.zeros(kmax)
v=np.zeros(kmax)
u[0]=np.asscalar(x[0]) # In numpy, a column vector must be
v[0]=np.asscalar(x[1]) # treated as matrix of (Nx1).

g = A*x-b;
gg=np.asscalar(g.transpose()*g)

n=0
while abs(gg)>tol and n<kmax:

n+=1
lam = gg/np.asscalar(g.transpose()*A*g)
x = x - lam * g
u[n]=np.asscalar(x[0])
v[n]=np.asscalar(x[1])
g = A*x-b
gg = np.asscalar(g.transpose()*g)

print('\nSolution=({0:f},{1:f})'.format(x.item(0),x.item(1)))

contour plot of the cost function
plt.figure(figsize=(5,6))
delta = 0.025
x = np.arange(-1.0, 1.2, delta)

PROBLEMS 237

y = np.arange(-1.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
c=np.array([-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1])

N=x.size
M=y.size
Z=np.zeros((M,N))

for i in range(0,M):
for j in range(0,N):

Z[i,j] = 0.5*(X[i,j]**2*A[0,0]+(A[0,1]+A[1,0])*X[i,j]*Y[i,j]
+A[1,1]*Y[i,j]**2) - X[i,j]*b[0]-Y[i,j]*b[1]

CS = plt.contour(X, Y, Z, c)
plt.clabel(CS, inline=1, fontsize=10)
plt.xlim(-1.0,1.2)
plt.ylim(-1.0,2.0)
plt.axes().set_aspect('equal', 'datalim')

plot the trajectory
plt.plot(u[0:n+1],v[0:n+1],'-r',linewidth=2)
plt.xlabel(r'x_1',fontsize=14)
plt.ylabel(r'x_2',fontsize=14)
plt.title('Steepest Descent Minimization')

plt.show()

NNN

Program 8.10

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.11 *
%* filename: ch08pr10.py *
%* program listing number: 8.10 *
%* *
%* This program solves a 2x2 linear equation by the conjugate *
%* gradient minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

A=np.matrix([[4.,1.],[1.,3.]])
b=np.matrix([1.,2.]).transpose()
p=np.matrix([0.,0.]).transpose()
r=np.matrix([0.,0.]).transpose()
r1=np.matrix([0.,0.]).transpose()

tol = 1e-8;

conjugate gradient method
kmax=1000
tol = 1e-8
x=np.matrix([1,0.5]).transpose() # starting point

238 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

u=np.zeros(kmax)
v=np.zeros(kmax)
u[0]=x[0,0] # In numpy, a column vector must be
v[0]=x[1,0] # treated as matrix of (Nx1).

r=b-A*x
p[:]=r[:]
rr=np.asscalar(r.transpose()*r)
n=0
while abs(rr)>tol and n<kmax:

n+=1
alpha = rr/np.asscalar(r.transpose()*A*r)
x = x + alpha*p
u[n]=x.item(0) # In numpy, a column vector must be
v[n]=x.item(1) # treated as matrix of (Nx1).
r1=b-A*x
rr1=np.asscalar(r1.transpose()*r1)
beta=rr1/rr
r[:]=r1[:]
rr=rr1
p[:]=r[:]+beta*p[:]

print('\nSolution=({0:f},{1:f})'.format(x.item(0),x.item(1)))

contour plot of the cost function
plt.figure(figsize=(5,6))
delta = 0.025
x = np.arange(-1.0, 1.2, delta)
y = np.arange(-1.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
c=np.array([-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1])

N=x.size
M=y.size
Z=np.zeros((M,N))

for i in range(0,M):
for j in range(0,N):

Z[i,j] = 0.5*(X[i,j]**2*A[0,0]+(A[0,1]+A[1,0])*X[i,j]*Y[i,j]
+A[1,1]*Y[i,j]**2) - X[i,j]*b[0]-Y[i,j]*b[1]

CS = plt.contour(X, Y, Z, c)
plt.clabel(CS, inline=1, fontsize=10)
plt.xlim(-1.0,1.2)
plt.ylim(-1.0,2.0)
plt.axes().set_aspect('equal', 'datalim')

plot the trajectory
plt.plot(u[0:n+1],v[0:n+1],'-r',linewidth=2)
plt.xlabel(r'x_1',fontsize=14)
plt.ylabel(r'x_2',fontsize=14)
plt.title('Conjugate Gradient Minimization')

plt.show()

NNN

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4th
edition, 2012.

[3] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. This is unpublished document. Use Google to find it., 1994.

[4] R. L. Graham and H. O. Polak. On the addressing problem for loop switching. Bell System Tech. J.,
50:2495–2519, 1971.

[5] Wigen Yan and Teong-Nan Yeh. A simple proof of graham and pollak’s theorem. Journal of Combinatorial
Theory, Series A, 113:892–893, 2006.

239

CHAPTER 9

MATRIX II: NONLINEAR EQUATIONS

In the previous chapter, we numerically solved a linear equation Ax = b. This equation can be also written
as a problem of finding zeros (root-finding) of a linear function

f(x) ≡ Ax− b = 0 (9.1)

where f , x, and b are column vectors, and A a matrix. We are able to solve this kind of problems by
Gaussian eliminations or its extension. However, those methods are limited to linear equations and cannot
solve non-linear equations. For example, a function of vector x = (x1, x2, x3)

f(x) =

−2x1 + 2x2 − 1

3x1 − x2 − x1x3 + 3

x1x2 − x3 + 2

 (9.2)

is nonlinear (the product of multiple elements such as x1x2 makes it nonlinear) and cannot be written in
the linear form Ax = b.

Although many physics problems are linear, non-linear problems are becoming increasingly important in
many areas of science. In this chapter, we develop numerical methods to solve nonlinear equations f(x) = 0,
which is a multivariable version of root finding problem. We have discussed the root finding methods
for nonlinear equations of single variable in Chapter 4. The bisection method obviously won’t work for
multivariable systems. However, the Newton-Raphson and secant method can be extended to multivariable
nonlinear systems.

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

241

242 MATRIX II: NONLINEAR EQUATIONS

f 1(x)>0

f 1(x)<0

f 2(x)>0

f 2(x)<0

f 1(x)=0

f 2(x)=0

Figure 9.1: Diagram of 2D Newton-Raphson step. Left: The landscape of f1(x). The thick line indicates the
nullcline f1(x) = 0. Starting at the initial guess (circle), −∇f1(x) (arrow) tells the steepest descent toward
the nullcline. Center : The landscape for f2(x). Similar to the left panel, the arrow point to the nullcline
f2(x) = 0. Right: The superimpose of the left and center panel. The crossing points of two nullclines are the
solutions. The vector sum of two steepest descent direction (black arrow) approximately points the solution.

9.0.1 Multi-Dimensional Newton-Raphson Methods

To begin with, we consider two variables case. The equations we want to solve is written explicitly with the
components as

f1(x) = 0 (9.3a)
f2(x) = 0 (9.3b)

where

x =

x1

x2

 (9.3c)

Figures 9.1 illustrate the landscape of fi(x) in contours. The thick lines are nullclines (9.3a) and (9.3b). The
solutions of Eq. (9.3) are crossing points of the two nullclines. See the right panel of the illustration.

Starting with an initial guess x(0) (a blue circle), we want to move toward the solution. The steepest
descent directions determined by −∇fi point to the corresponding nullclines. (See the left and middle panel.)
These directions not necessarily point to a root. However, the sum of the two steepest descent directions,
∇f1 +∇f2 approximately points to the root as the right panel of Fig. 9.1 shows. Using these slopes,

f1(x)− f1(x(0)) ≈ −∇f1(x(0)) · (x− x(0)) (9.4a)
f2(x)− f2(x(0)) ≈ −∇f2(x(0)) · (x− x(0)) (9.4b)

Since f1(x) = f2(x) = 0, we can estimate the root by solving

∇f1(x(0)) · (x− x(0)) = −f1(x(0)) (9.5a)
∇f2(x(0)) · (x− x(0)) = −f2(x(0)) (9.5b)

243

for x. This is a linear equation and can be solved by the methods discussed in the previous chapter. We
write this equation in a matrix form :

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

x1 − x(0)

1

x2 − x(0)
2

 =

f1(x(0))

f2(x(0))

 (9.6)

The 2-by-2 matrix is just a Jacobian matrix evaluated at x(0). Inverting the Jacobian matrix, the approximate
solution is x = x(0) − J−1f(x(0)). Although formally we use the inverse matrix, remember that we don’t
need to calculate J−1 to find the numerical solution as we learned in the previous Chapter. Once we find the
new position x, use it as the new starting point and repeat the procedure until ||x(n)−x(n−1)|| < tolerance.

Now, we generalize the above result to the N -dimension

f(x) =

f1(x)

f2(x)
...

fN (x)

 , where x =

x1

x2
...

xN

 (9.7)

We want to find zeros of this function. Starting with an initial guess x(0), we predict the root using the
“slope”. Expanding the function in a Taylor series about x(0),

f(x) = f(x(0)) + J (0)(x− x(0)) + · · · (9.8)

where J is the Jacobian matrix defined by

J
(0)
ij = ∂fi(x)

∂xj

∣∣∣∣
x=x(0)

(9.9)

Ignoring the higher order terms, the root finding equation is now

f(x) = f(x(0)) + J (0) (x− x(0)) = 0 (9.10)

and its solution is
x(1) = x(0) −

(
J (0)

)−1
f(x(0)) (9.11)

This is the root suggested by the Newton-Raphson’s method. If |f(x(1))| < tolerance, we have found a
solution. If not, we continue the iterative procedure:

x(n+1) = x(n) −
(
J (n)

)−1
f(x(n)) (9.12)

If the initial guess is far from the solution, the Newton-Raphson method often fails. This instability
can be avoided by reducing the jump size. For example, we modify the above iteration process slightly by
multiplying 0 < α < 1 to each step.

x(n+1) = x(n) − α
(
J (n)

)−1
f(x(n)). (9.13)

With a small step length, you might expect more iterations. That is not the case for many cases.

244 MATRIX II: NONLINEAR EQUATIONS

Algorithm 9.1 Multivariate Newton-Raphson Method
1. Choose a step factor α ∈ (0, 1].

2. Set an initial guess x(0).

3. Repeat the following procedure starting with n = 0.

4. Solve Ay = b using Gaussian elimination or LU decomposition methods, where A =
J (n) and b = −f(x(n)).

5. The new solution is given by x(n+1) = x(n) + αy.

6. If |f(x(n+1))| < tolerance. Then, x(n+1) is the solution.

7. If not, increment n and repeat from step 5.

EXAMPLE 9.1

We solve a two-dimensional nonlinear equation

2x+ 3xy = 1 (9.14a)
xy + 3y = −1 (9.14b)

using the Newton-Raphson method. See Program 9.1. When α = 1 is used, the output ends up with
NaN. When α = 0.1 is used , 698 iterations are needed to get a desired accuracy (10−8). With a larger
step size α = 0.5, more iterations are needed to get the same answer. Figure 9.2 shows how the iteration

approaches to the solution. The final values of the iteration agree with the exact solution x = −1 +
√

7
2

and y = −5 +
√

7
9 .

Iternations = 698
Solution= 8.228757e-01, -2.615832e-01

Exact= 8.228757e-01, -2.615832e-01

9.0.2 Broyden method: (Multidimentional Secant Method)

In the Newton-Raphson methods, the Jacobian matrix is absolutely necessary. However, the Jacobian matrix
is not always available. For a single variable case (See Section 3.2.3), the secant method estimates the gradient
numerically. We want to do the same here, that is to estimate the Jacobian matrix numerically.

To be written.

MINIMIZATION OF MUTIVARIABLE NON-LINEAR FUNCTIONS 245

0.75 0.8 0.85 0.9 0.95 1 1.05
x

-0.25

-0.2

-0.15

-0.1

-0.05

0

y

Figure 9.2: Convergence of Example 9.1. Starting at x = 1 and y = 0, the Newton-Raphson procedure
gradually improves the output toward the root of nonlinear equation (9.14). The step factor α = 0.1 is used
in this case.

9.1 Minimization of Mutivariable Non-Linear Functions

We want to minimize a nonlinear function d(x) with respect to x. When the gradient of f(x) is known, the
steepest descent or conjugate gradient method. If the gradient is not available XXXX should be used.

To be written.

9.2 Applications in Physics

9.2.1 Steady states in Laser Dynamics

In Section 4.3.2, we investigate the laser dynamics modeled by the Maxwell-Bloch equation. Type A and B
lasers reach a steady state where all variables are constant after some time. Then, the time derivatives in
the Maxwell-Bloch equations vanishes, and hence

f1 ≡ −γ1E + κ1P = 0 (9.15a)
f2 ≡ −γ2P + κ2ED = 0 (9.15b)
f3 ≡ −γ3(D − λ)− κ3EP = 0 (9.15c)

which is a multidimensional nonlinear system. The system has one trivial solution E = P = 0, and D = λ.
However, when a suitable amount of energy is injected, there is another solution. (We confirmed that in
Section 4.3.2.) For type A laser with λ = 5, find the nontrivial steady state values of E, P and D. In terms
of mathematical terminology, this is a stable fixed point of the nonlinear dynamical system.

Let x1 = E, x2 = P , and x3 = D. The analytic expression of the Jacobian matrix is given by

J =

−γ1 κ1 0

κ2D −γ2 κ2E

−κ3P −κ3E −γ3

 (9.16)

246 MATRIX II: NONLINEAR EQUATIONS

iteration
2 4 6 8 10

la
si

ng
 s

ta
te

1

1.5

2

2.5

3

3.5

4

4.5

5
E
P
D

Figure 9.3: Fixed points of the Maxwell-Bloch equations for typa A laser. (See Section 4.3.2 for parameter
values.) After several iteration, the Newton-Raphson method converges to the solution.

In Program 9.2, we use the multidimensional Newton-Raphson method and the Gaussian elimination with
partial pivoting. Starting with initial guess E = 2,P = 2, and D = 5, the original Newton-Raphson (α = 1)
experiences instability and even after a thousand iterations, the system variables are wildly changing. When
α = 0.5 is used, only several iterations (See Fig. 9.3.) are necessary to reach the solution which is in good
agreement with the result obtained in Section 4.3.2.

APPLICATIONS IN PHYSICS 247

MATLAB Source Codes

Program 9.1

%**
%* Example 9.1 *
%* filename: ch09pr01.m *
%* program listing number: 9.1 *
%* *
%* This program solves a two-dimensional non-linear equation *
%* by newton-raphson method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2015. *
%**
clear all;

% set a tolerance
tol = 1.0e-8;

% step factor (between 0 and 1)
a = 0.1;

%define functions
f1 = @(x,y) 2*x + 3*x*y - 1;
f2 = @(x,y) x*y + 3*y + 1;

%define Jacobian
J11 = @(x,y) 2+3*y;
J12 = @(x,y) 3*x;
J21 = @(x,y) y;
J22 = @(x,y) x+3;

% iniital guess
x(1) = 1;
y(1) = 0;

b(1)=-f1(x(1),y(1));
b(2)=-f2(x(1),y(1));
err=sqrt(b(1)*b(1)+b(2)*b(2));
if err < tol

not_found = false;
else

not_found = true;
end
n=1;

while not_found
% Construct linear equation
A(1,1)=J11(x(n),y(n));
A(1,2)=J12(x(n),y(n));
A(2,1)=J21(x(n),y(n));
A(2,2)=J22(x(n),y(1));
% solve the linear equation
z=A\b;
x(n+1)=x(n)+a*z(1);
y(n+1)=y(n)+a*z(2);

% check error
b(1)=-f1(x(n+1),y(n+1));

248 MATRIX II: NONLINEAR EQUATIONS

b(2)=-f2(x(n+1),y(n+1));
err=sqrt(b(1)*b(1)+b(2)*b(2));
fprintf('err= %f\n',err)
if err < tol

not_found = false;
else

n=n+1;
end

end

p=plot(x,y);
set(p,'linewidth',2,'color','black')
axis equal
xlabel(texlabel('x'),'fontsize',14)
ylabel(texlabel('y'),'fontsize',14)

xa = (-1+sqrt(7))/2;
ya = (-5+sqrt(7))/9;
fprintf('Iternations = %d\n',n)
fprintf('Solution= %d, %d\n',x(n),y(n))
fprintf(' Exact= %d, %d\n',xa,ya)

NNN

Program 9.2
%**
%* Section 9.3.1 *
%* filename: ch09pr02.m *
%* program listing number: 9.3-1 *
%* *
%* This program finds a fixed point of Maxwell-Bloch equation *
%* by newton-raphson method and Gaussian elimination. *
%* *
%* Use function gauss.m *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2015. *
%**
clear all;

% system parameters
g1=0.1; g2=2; g3=3;
k1=0.25; k2=0.2; k3=1;
lambda=5;

% control parameters
alpha = 0.5;
tol = 1e-4;
N=3;

%iniital guess
y(1,1:3)=[2;2;5];
i=1;
err = 1;

x(1:3)=y(i,:);
J=[[-g1,k1,0];[k2*x(3),-g2,k2*x(2)];[-k3*x(2),-k3*x(1),-g3]];
f=[-g1*x(1)+k1*x(2);-g2*x(2)+k2*x(1)*x(3);-g3*(x(3)-lambda)-k3*x(1)*x(2)];
while err > tol

i=i+1;
B=gauss(J,f);

APPLICATIONS IN PHYSICS 249

y(i,:)=y(i-1,:) - alpha*B;
x=y(i,:);
J=[[-g1,k1,0];[k2*x(3),-g2,k2*x(2)];[-k3*x(2),-k3*x(1),-g3]];
f=[-g1*x(1)+k1*x(2);-g2*x(2)+k2*x(1)*x(3);-g3*(x(3)-lambda)-k3*x(1)*x(2)];
err = f'*f;

end

fprintf('E=%.6f, P=%.6f, D=%.6f\n',x)

p=plot([1:i],y(:,1),'o-',[1:i],y(:,2),'o-',[1:i],y(:,3),'o-');
set(p,'linewidth',2)
xlabel('iteration','fontsize',14)
ylabel('lasing state','fontsize',14)
legend('E','P','D')
legend('location','northeast')

NNN

%**
%* Section 9.3.1 *
%* filename: gauss.m *
%* program listing number: 9.2-2 *
%* *
%* This program solves a linear equaion Ax=b using Gaussian *
%* elimination and partial pivoting. *
%* *
%* Input: A (N x N matrix) *
%* b (N-dimensional vector) *
%* *
%* Output: x (N-dimensional vector) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/04/2015. *
%**
function [x]=gauss(A,b)

% Set a linear equation
N=size(A,1);

% scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1
% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);

250 MATRIX II: NONLINEAR EQUATIONS

A(j,i)=TMP;
end
TMP=b(n);
b(n)=b(j);
b(j)=TMP;
% Record the permutation
P(n,n)=0; P(j,j)=0;
P(n,j)=1; P(j,n)=1;

end
% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i)=M*b(n)+b(i);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end
x(i) = (b(i)-Ax)/A(i,i);

end

NNN

Python Source Codes

Program 9.1

-*- coding: utf-8 -*-
"""
%**
%* Example 9.1 *
%* filename: ch09pr01.py *
%* program listing number: 9.1 *
%* *
%* This program solves a two-dimensional non-linear equation *
%* by newton-raphson method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/10/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

set a tolerance
tol = 1.0e-8

step factor (between 0 and 1)
a = 0.1

#define functions

APPLICATIONS IN PHYSICS 251

def f(x,y):
return [2.0*x + 3.0*x*y - 1.0, x*y + 3.0*y + 1.0]

#define Jacobian
def J(x,y):

return [[2.0+3.0*y,3.0*x],[y,x+3.0]]

nmax=1000
x=np.zeros(nmax+1)
y=np.zeros(nmax+1)
b=np.zeros(2)
A=np.zeros((2,2))

iniital guess
x[0] = 1.0
y[0] = 0.0

b=-np.array(f(x[0],y[0]))

err=np.sqrt(b[0]*b[0]+b[1]*b[1])
if err < tol:

found = True
else:

found = False

n=0
while not(found) and n<nmax:

Construct linear equation
A = np.array(J(x[n],y[n]))

solve the linear equation
z=np.linalg.solve(A,b)
x[n+1]=x[n]+a*z[0]
y[n+1]=y[n]+a*z[1]

check error
b=-np.array(f(x[n+1],y[n+1]))
err=np.dot(b,b)
print('err=',err)
if err < tol:

found = True
else:

n+=1

plt.figure(figsize=(6,5))
plt.plot(x[0:n],y[0:n],'ok',linewidth=2)
plt.axes().set_aspect('equal', 'datalim')
plt.text(x[0]+0.01,y[0],'Start Here')
plt.text(x[n]+0.01,y[n]-0.01,'Converged',color='r')
plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()

xa = (-1.0+np.sqrt(7.0))/2.0
ya = (-5.0+np.sqrt(7.0))/9.0
print('Iternations = {0:d}'.format(n))
print('Solution= {0:f}, {1:f}'.format(x[n],y[n]))
print(' Exact= {0:f}, {1:f}'.format(xa,ya))

NNN

252 MATRIX II: NONLINEAR EQUATIONS

Program 9.2

-*- coding: utf-8 -*-
"""
%**
%* Section 9.3.1 *
%* filename: ch09pr02.py *
%* program listing number: 9.2-1 *
%* *
%* This program finds a fixed point of Maxwell-Bloch equation *
%* by newton-raphson method and Gaussian elimination. *
%* *
%* Use function gauss.m *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
g1=0.1; g2=2.0; g3=3.0
k1=0.25; k2=0.2; k3=1.0
lam=5.0

def Jacob(x):
J = [[-g1,k1,0.0],[k2*x[2],-g2,k2*x[1]],[-k3*x[1],-k3*x[0],-g3]]
return J

def Func(x):
f= [-g1*x[0]+k1*x[1],-g2*x[1]+k2*x[0]*x[2],-g3*(x[2]-lam)-k3*x[0]*x[1]]
return f

control parameters
alpha = 0.5
tol = 1e-4

nmax=1000
y=np.zeros((3,nmax+1))
J=np.zeros((3,3))
f=np.zeros(3)
B=np.zeros(3)

#initial guess
x=np.array([2.0,2.0,5.0])
y[:,0]=x
#y[:,0]=[x.item(0),x.item(1),x.item(2)]

n=0
err=tol+1.0
J=np.array(Jacob(x))
f=np.array(Func(x))

while err > tol and n<nmax:
B=np.linalg.solve(J,f)
x=y[:,n] - alpha*B
y[:,n+1]=[x.item(0),x.item(1),x.item(2)]
J=np.array(Jacob(x))
f=np.array(Func(x))
err = np.dot(f,f)

APPLICATIONS IN PHYSICS 253

n+=1

print('E={0:f}, P={1:f}, D={2:f}'.format(x.item(0),x.item(1),x.item(2)))
print('err=',err)

t=np.linspace(0,n,n+1)
plt.figure()
plt.plot(t,y[0,0:n+1],'-ok',label='E')
plt.plot(t,y[1,0:n+1],'-ob',label='P')
plt.plot(t,y[2,0:n+1],'-or',label='D')
plt.xlabel('iteration')
plt.ylabel('lasing state')
plt.xlim(0.,9.)
plt.ylim(0.,6.)
plt.legend(loc=1)
plt.show()

NNN

Bibliography

254

CHAPTER 10

MATRIX III: EIGENVALUE PROBLEMS

In Chapter 7 we studied eigenvalue problems in ODE. Eigenvalue problems can be expressed also in matri:

Au = λu (10.1)

where λ is an eigenvalue and u is the eigenvector corresponding to the eigenvalue. The matrix A can be real
or complex. Even when A is real, the eigenvalues can be complex. When the matrix is self-adjoint (A† = A)
the eigenvalues are all real. The eigenvalue problem of a complex self-adjoint matrix can be converted to an
eigenvalue problem of a symmetric real matrix. Consider a self-adjoint matrix A = B + iC where B ans C
are real matrices. Its adjoint is A† = Bt − iCT. Since A is self-adjoint, B is symmetric (Bt = B) and C
is anti-symmetric (Ct = −C). Writing the eigenvalues in u = x + iy where x and y are real vectors, the
original eigenvalue problem is transformed to an eigenvalue problem of real symmetric matrix:

B −C

C B

x

y

 = λ

x

y

 . (10.2)

In this chapter, we focus only on real symmetric matrices.
In some cases we want to find all eigenvalues and in other cases we are interested in only the lowest

eigenvalue. For each case, there are suitable numerical algorithms. In this chapter we discuss some of them
which work well for relatively small problems. For very large matrices, there are more complicated algorithms
which are not covered in this lecture.

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

255

256 MATRIX III: EIGENVALUE PROBLEMS

10.1 The Power Method

We begin with a simple iterative method which converges to an eigenvalue whose absolute value is the largest
among all eigenvalues. Consider an eigenvalue problem of N dimension:

Aun = λnun, n = 1, · · · , N (10.3)

with eigenvalues λn ordered as
|λ1| > |λ2| ≥ · · · ≥ |λN−1| ≥ |λN | . (10.4)

Note that λ1 is strictly larger than λ2 and no degeneracy is allowed between them. This is not a severe
restriction. We will discuss how to resolve degeneracy later. The eigenvector un is assumed to be normalized.

Th iterative process starts with a normalized random vector x(0) which is expanded as

x(0) =
N∑
n=1

cnun (10.5)

where cn is an expansion coefficient. We assume that c1 6= 0. Since we do know the eigenvectors yet. We have
no way to guarantee it. We hope that the random vector will not accidentally orthogonal to u1. Multiplying
A to x(0) leads to

Ax(0) = A
∑
n

cnun =
∑
n

cnAun =
∑
n

cnλnun (10.6)

and after repeating it m times we obtain

Amx(0) =
∑
n

cnλ
m
n un = λm1

[
c1u1 +

N∑
n=2

cn

(
λn
λ1

)m
un

]
(10.7)

Noting that |λn/λ1| < 1 for n ≥ 2, |λn/λ1|m vanishes as m → ∞. Then, the dominant term and its norm
are given by

Amx(0) −−−−→
m→∞

c1λ
m
1 u1 (10.8)

and
‖Amx(0)‖ −−−−→

m→∞
|c1||λ1|m‖u1‖ . (10.9)

These equations still contain an unknown quantity c1, which is eliminated by taking the ratio of these
equations. The ratio now converges to the eigenvector up to the phase factor:

x(m) ≡ Amx(0)

‖Amx(0)‖
−−−−→
m→∞

c1λ
m
1 u1

|c1||λ1|m‖u1‖
= u1 . (10.10)

We can safely ignore the phase factor which is arbitrary in eigenvalue problems. (If u is a solution, so is
eiφu.). It is also noted that the final result is automatically normalized. Once we found the eigenvector u1,
the corresponding eigenvalue can be computed by

λ1 = (x(m))tAx(m) . (10.11)

The above iterative procedure is known as the power method for the “largest” eigenvalue in the sense of
Eq. (10.4). If we want to find the smallest eigenvalue λN , there is a trick to get it using the power method.
We invert the original equation as follows:

Au = λu =⇒ A−1u = λ−1u. (10.12)

THE POWER METHOD 257

Let B = A−1 and η = λ−1 and solve Bu = ηu by the power method. We will get the largest eigenvalue η
which is the smallest in the original expression λN = 1/η.

For other eigenvalues, we have another trick. First, we guess an eigenvalue λ′ and then subtract λ′u from
both sides of the original equation. The resulting equation is again an eigenvalue problem:

(A− λ′I)u = (λ− λ′)u (10.13)
where I represents an identity matrix. Letting B = A−λ′I and η = λ−λ′, we are solving another eigenvalue
equation: Bu = ηu. If we use the power method for the smallest eigenvalue, the resulting eigenvalue η is
the smallest. Transforming back to the original eigenvalue we have λ = λ′ + η. Since η is the smallest, we
found an eigenvalue closest to λ′. This method fails when the initial guess is too close to an eigenvalue since
x(m) diverges. If we should get a huge x(m), change the value of λ′.

For any iterative method, there must be a condition to stop the procedure. If a bad condition is used,
the process may falls into an endless loop. A typical condition is if a quantity changes significantly by a step
of the iteration. Since we update the vector x(m), it is a good quantity to check. So, we compare x(n) and
x(n−1). Typically the norm of the difference between two vectors

‖x(n) − x(n−1)‖ (10.14)
is used as the measure of error. If this quantity is smaller than a tolerance, we stop the iteration. However,
this method may fail in the present procedure. During the iterations the sign of the vector may flip. The sign
of the eigenvector is not significant. Both x(n) and −x(n) are equally good candidates for the eigenvector
although they are two different vectors. However, Eq. (10.14) is not a small quantity when the sign flips.
Therefore, we have to make it sure that the iteration does not flip the sign of x. If the sign flipped, we just
need to flip back the sign. See the Algorithm shown in the following box.

Algorithm 10.1 Power method for the largest eigenvalue

1. Pick a normalized random vector x(0).

2. Repeat the following iterative procedure starting with n = 1.

3. Calculate a new vevtor: y = Ax(n−1).

4. Normalize the vector: x(n) = y
‖y‖ .

5. If x(n)
1 < 0, then reverse the sign of the vector: x(n) = −x(n).

6. If ‖x(n) − x(n−1)‖ < tolerance, then and x(n) is the eigenvector. Otherwise
increment n and go to step 3.

7. Calculate the eigenvalue λ =
(
x(n))t

Ax(n).

EXAMPLE 10.1

We first calculate the largest eigenvalue of

A =

2 1 0

1 2 1

0 1 2

 (10.15)

258 MATRIX III: EIGENVALUE PROBLEMS

using the power method. Try a random initial vector x0. Then, try another initial vector x0 =
[2,−

√
2, 0]t.

The exact eigenvalues of this matrix is λ1 = 2+
√

2 = 3.4142135, λ2 = 2, and λ3 = 2−
√

2 = 0.585786.
The corresponding eigenvectors are

u1 =

1/2

1/
√

2

1/2

 , u2 =

1
√

2

0

−1/
√

2

 , u1 =

1/2

−1/
√

2

1/2

 (10.16)

Program 10.1 implements the power method and find the eigenvalue and eigenvector. Starting
with a random vector, the power method iterated 26 times with the tolerance=1 × 10−7 and con-
verged to a large eigenvelue 3.414214, in good agreement with the exact value. The eigenvector
[0.500000, 0.707107, 0.500000]t also agrees well. However, when the other initial vector [2,

√
2, 0]t is used,

the iteration apparently converged to the second eigenvalue 2.00000 and the eigenvector [0.707107, 0.000000,−0.707107]t.
This is because the initial vector happens to be orthogonal to the first eigenvector and c1 in Eq. (10.8)
vanishes. To avoid such accident we should try a few different initial conditions. Can we use such an
initial vector to compute the second largest eigenvalue? Yes, if we know u1. We can chose any vector
orthogonal to it. However, if the initial condition is not perfectly orthogonal to u1, that is exactly c1 = 0,
the iteration eventually converges to the largest eigenvalue.

% With a random initial vector
Eigenvalue=3.414214
Eigenvector
0.500000
0.707107
0.500000

% With the other initial vector
Eigenvalue=2.000000
Eigenvector
0.707107
-0.000000
-0.707107

EXAMPLE 10.2

Next, we try to find the smallest eigenvalue of the matrix in Example 10.1. The inverse of the matrix A
(we can use the Gaussian elimination to get it) is

A−1 =

3/4 −1/2 1/4

−1/4 1 −1/2

1/4 −1/2 3/4

 (10.17)

Replacing the matrix in Program 10.1 with this one, we obtain the following output. Both the eigenvalue
and the eigenvector are in excellent agreement with the exact solution.

Eigenvalue= 0.585786
Eigenvector
0.500000

-0.707107
0.500000

THE POWER METHOD 259

EXAMPLE 10.3

Finally, we try to find an eigenvalue close to λ′ = 1.5 for the matrix in Example 10.1. First, we compute
B−1 = (A− λ′I)−1 using MATLAB inv(). Using Program 10.1. , we obtain the floowin output. Both
eigenvalue and eigenvector from the code is in a perfect agreement with the exact solution. If λ′ = 2.1
is used, the result is Inf. This is not an error. When the assumed eigenvalue λ′ is too close to the real
eigenvalue, the power method diverges.

260 MATRIX III: EIGENVALUE PROBLEMS

Eigenvalue= 2.000000
Eigenvector
0.707107

-0.000000
-0.707107
\end{Verbatim}

\normalsize
\end{minipage}
\end{center}
\end{example}

\noindent
\section{Inverse Iteration Method}

Consider a linear problem
\begin{equation}\label{eq:eigen_inv}
(A - \xi I) \mathbf{y}=\mathbf{b}
\end{equation}
where \mathbf{b} is a unit vector and ξ is a guess close to λ_j, one of the eigenvalues of A.
Expanding \mathbf{y} and \mathbf{b} using the eigenvectors \mathbf{u}_i as base vectors,
\begin{equation}\label{eq:y_expansion}
\mathbf{y} = \sum_i a_i \mathbf{u_i}, \qquad \mathbf{b}=\sum_i b_i \mathbf{u}_i
\end{equation}
and substituting them into Eq. (\ref{eq:eigen_inv}) we obain an equality:
\begin{equation}
\sum_i a_i (\lambda_i - \xi) \mathbf{u}_i = \sum_i b_i \mathbf{u}_i\,.
\end{equation}
Since \mathbf{u}_i are linearly independent, $a_i = b_i / (\lambda_i - \xi)$. Here, we assumed that $\xi \ne \lambda_i, \forall i$.
Putting a_i back to the expansion (\ref{eq:y_expansion})
\begin{equation}
\mathbf{y} = \sum_i \frac{b_i}{\lambda_i - \xi} \mathbf{u}_i
\end{equation}
Since $\xi \approx \lambda_j$, $i=j$ dominates and thus \mathbf{y} is close to \mathbf{u}_j up to the normalization. (We assume $b_j\ne 0$.) Now, let $\mathbf{b} = \mathbf{y}/\|\mathbf{y}\|$ and solve Eq. (\ref{eq:eigen_inv}) again for new \mathbf{y}, you will get
\begin{equation}
\mathbf{y}=\sum_i \left (\frac{b_i}{\lambda_i - \xi}\right)ˆ2 \mathbf{u}_i
\end{equation}
The dominance of $i=j$ is further enhanced and by repeating this procedure, \mathbf{y} approaches to \mathbf{u}_j up to its normalization. After $n\gg 1$ iteration,
\begin{equation}
\mathbf{y}ˆ{(n)} = \left (\frac{b_j}{\lambda_j - \xi}\right)ˆn \mathbf{u}_j
\end{equation}
and all other terms are negligibly small. It is important to mention here that if $b_j/(\lambda_j-\xi) < 0$, the direction of the vector is reversed every iteration. Be reminded that we must adjust the phase of the eigenvector as explained in the previous section since the sign of \mathbf{y} may flip at each iteration.

\bigskip
\begin{samepage}
\begin{center}
\Algorithm{Inverse iteration method}
\fbox{\colorbox{cream}{
\begin{minipage}{5.0in}
\begin{enumerate}
\item Pick a normalized random vector $\mathbf{b}ˆ{(0)}$.
\item Guess an initial eigenvalue $\xiˆ{(0)}$.
\item Repeat the following procedure stating with $n=0$.
\item Solve $(A-\xiˆ{(n)}I) \mathbf{y} = \mathbf{b}ˆ{(n)}$
\item Set a new \mathbf{b}: $\quad \mathbf{b}ˆ{(n+1)} = \displaystyle\frac{\mathbf{y}}{\|\mathbf{y}\|}$.
\item If $b_1ˆ{(n+1)}<0$, then reverse the vector: $\mathbf{b}ˆ{(n+1)} = -\mathbf{b}ˆ{(n+1)}$.
\item If $\|\mathbf{b}ˆ{(n+1)}-\mathbf{b}ˆ{(n)}\| < \text{tolerance}$, $\mathbf{b}ˆ{(n+1)}$ is the eigenvector. Otherwise, increment n and go to Step 4.
\item Evaluate the eigenvalue $\lambda=(\mathbf{b}ˆ{(n+1)})ˆ\textsc{t} A \mathbf{b}ˆ{(n+1)}$.
\end{enumerate}
\end{minipage}
}}
\end{center}
\end{samepage}

\bigskip

\medskip
\begin{example}

We solve the same eigenvalue problem as Example \ref{ex:eigen_power_large} but with the inverse iteration method.
Program \ref{prog:inverse_eigen} implements the above inverse iterative method. Starting with $\xiˆ{(0)}=0.5,1,1.5,2.0,2.5,3.0,3.5$, the iterations converge to an eigenvalue closest to the guess except for
$\xiˆ{(0)}=2$. Since this initial guess accidentally hits the exact value, the calculation diverges.

\begin{center}
\begin{minipage}[t]{0.45\textwidth}
\begin{Verbatim}[frame=single]
Guess=0.500, Eigenvalue=0.585786
Guess=1.000, Eigenvalue=0.585786
Guess=1.500, Eigenvalue=2.000000
Guess=2.000, calculation diverge.
Guess=2.500, Eigenvalue=2.000000
Guess=3.000, Eigenvalue=3.414214
Guess=3.500, Eigenvalue=3.414214

JACOBI TRANSFORMATION 261

10.2 Jacobi Transformation

There is a robust method to find all eigenvalues of a symmetric matrix A. First, we look at an important
property of orthogonal transformation O. Suppose that the transformed matrix A′ = OtAO has an eigen-
value λ and the corresponding eigenvector x. The following diagram shows that the transformed matrix A′
has the same eigenvalues as the original matrix A:

A′x = λx, → OtAOx = λx → AOx = λOx (10.18)

where we used Ot = O−1. The eigenvector of the original matrix is Ox. In general, any orthogonal
transformation preserves the eigenvalues of the matrix. The eigenvectors are transformed by the same
transformation matrix.

Now, we try to find an orthogonal transformation that transforms A to a diagonal matrix D. The
eigenvalues of D are λi = Dii, i = 1, · · · , N , which are also eigenvalues of A. The corresponding eigenvector
of D are simply

ui =

...

0

1i
0
...

(10.19)

where 1i indicates that the i-component is 1. Then, the corresponding eigenvector of the original matrix A
is xi = Oui, which means that the i-th column of O is the i-th eigenvector of A.

It is difficult to zero all off-diagonal elements at once. We try one by one. Let us begin with Aij and Aji.
We define the Jacobi rotation matrix by

O =

1
. . .

c · · · s
... 1

...

−s · · · c

. . .

1

(10.20)

where all the diagonal elements are unity except for Oii = Ojj = c and all the off-diagonal elements are zero
except for Oij = s and Oji = −s where i < j. When cs+s2 = 1, this matrix is an orthogonal transformation.

262 MATRIX III: EIGENVALUE PROBLEMS

Applying this orthogonal transformation, the matrix A is transformed to a new matrix

A′ =

A′1i A′1j
...

...

A′i1 · · · A′ii · · · A′ij · · · A′iN
...

...

A′j1 · · · A′ji · · · A′jj · · · A′jN
...

...

A′Ni A′Nj

(10.21)

Only two rows and columns are modified by the transformation. Our goal is to make A′ij = A′ji = 0 by
adjusting c and s. Explicitly writing the new element using the original elements

A′ij = (c2 − s2)Aij + s c (Aii −Ajj) = 0 (10.22)

Hence,
c2 − s2

sc
= Ajj −Aii

Aij
. (10.23)

Taking into account c2 + s2 = 1, we find

c = 1√
t2 + 1

, s = t√
t2 + 1

(10.24)

where

t =

1 for Aii = Ajj

sgn(β)
|β|+

√
β2 + 1

, β = Aii −Ajj
2Aij

othersies (10.25)

We are able to eliminate the off-diagonal element Aij and Aji. The same transformation changes the
other elements

A′ii = c2Aii + s2Aj,j − 2scAij (10.26a)
A′jj = s2Ajj + c2Aj,j + 2scAij (10.26b)
A′ki = cAki − sAkj (10.26c)
A′kj = cAkj + sAki (10.26d)
A′ik = A′ki (10.26e)
A′jk = A′kj (10.26f)

where k = 1, · · · , N excluding k = i and k = j.
Now, Aij = Aji = 0. Next, we move to another off-diagonal element Amn and Anm and apply the same

procedure, which zeroes the elements. Note that the second procedure may makes the previous elements
Aij and Aji non-zero again. However, the new value is smaller than the original value. We just repeat this
procedure for all off-diagonal elements until all off-diagonal elements are sufficiently small. This is the Jacobi
transformation (also known as Jacobi rotation) method. After N transformations, we have a diagonal form
and the total orthogonal transformation is

O = O1 · O2 · · · ON (10.27)

JACOBI TRANSFORMATION 263

whose columns are eigenvetors of A.

Algorithm 10.2 Jacobi Transformation to Diagonal Form

1. Let P = I (identity matrix).
2. Evaluate S =

∑
i 6=j |Aij |

2

3. If S < tolerance, the matrix is now diagonal. Stop.
4. If S ≥ tolerance, do Steps 5-9 for ∀(i, j), j > i.
5. Compute c and s using Eq. (10.24).
6. Transform Aki, Akj and their transpose (except for Aij and Aji using Eq. (10.26).
7. Set Aij = Aji = 0.
8. Construct transformation matrix O [Eq. (10.20)].
9. Accumulate the transformation by P = P · O.

10. Repeat from Step 1
11. Diagonal elements of the final A are eigenvalues and the columns of the final P are

the eigenvectors.

EXAMPLE 10.4

Let us find all eigenvalues of matrix
1 −4 2

−4 1 −2

2 −2 −2

 (10.28)

using the Jacobi transformation method. Program xxx The exact eqigenvalues and the corresponding
eigenvectors are

λ1 = 6, x1 =

2
3

− 2
3

− 1
3

 ; λ2 = −3, x2 =

1√
2

1√
2

0

 ; λ3 = −3, x3 =

−
√

2
6√
2

6
2
√

2
3

 (10.29)

Since the last two eigenvalues are degenerate, any linear combination of x2 and x3 is an eigenvector.
Program 10.3 solves this problem using the Jacobi transformation method. The output shows that the
transformed matrix is indeed diagonal and its diagonal elements agree with the eigenvalues. Each column
of the transformation matrix is exactly matches to the eigenvector except for the sign of some elements.
Remember that the phase factor is arbitrary for eigenvectors.

Final A Matrix
6.0000 0.0000 0.0000
0.0000 -3.0000 0.0000
0.0000 0.0000 -3.0000

Transformation Matrix
-0.6667 -0.7071 -0.2357
0.6667 -0.7071 0.2357

-0.3333 0.0000 0.9428

264 MATRIX III: EIGENVALUE PROBLEMS

10.3 Advanced Methods

The Jacobi transformation method works great for small matrices. Unfortunately, it is too slow for larger
matrices. There are more efficient methods. The theoretical background of such advanced methods involves
a bit of elaborate mathematics. Therefore, only the basic ideas are introduced here.

10.3.1 Triangular Matrices

To begin with we consider a simple case. Finding eigenvalues of upper or lower triangular matrices is trivial.
We consider an upper triangular matrix

A =

A11 A12 A13 · · · A1N

0 A22 A23 · · · A2N

0 0 A33 · · · A3N
...

...
...

0 0 0 · · · AN N

(10.30)

as example but the resulot is exactly the same for the lower triangular matrix.
Recall that eigenvalue λ is a solution to the characteristic equation P (λ) ≡ det(A− λI) = 0. If A is

triangular, then A−λI is also the same type of triangular matrix. The determinant of the triangular matrix
is just a product of all diagonal elements [See Eq. (7.18)]. Hence, P (λ) =

∏N
i (Aii − λ) = 0. Obviously,

the solution is λi = Aii. Hence, the eigenvalues of a triangular matrix are its diagonal elements. The
corresponding eigenvectors are given by Eq. (10.19). Therefore, numerical calculation is not needed for the
triangular matrices. This is another nice property of triangular matrices in addition to other properties
discussed in Chapter 7. If we can transform a general matrix to a triangular matrix by an orthogonal
transformation, then we have the eigenvalues of the original matrix.

10.3.2 Tridiagonal Matrices

Finding eigenvalues of tridiagonal matrices is also not difficult although we need numerical methods. Consider
eigenvalues of the tridiagonal matrix

A =

A11 A12 0

A21 A22 A23

A32 A33
. . .

. AN N−1

0 AN−1N AN N

(10.31)

We want to find a characteristic equation P (λ) ≡ det(A− λI) If A is tridiagonal, so is A − λI. Using Eq
(7.36). the recursive equation for the characteristic equation is

Pn(λ) = ((Ann − λ)Pn−1(λ)−Ann−1An−1nPn−2(λ), P0 = 1, P−1 = 0. (10.32)

Then, we solve PN (λ) = 0 which is nothing but a root finding problem. It can be numerically solved with
the root finding methods discussed in Chapter 3.

ADVANCED METHODS 265

10.3.3 Householder Reduction

Now, we want to find eigenvalues of a general symmetric function. Unfortunately, there is no simple method.
However, recall that we can transform the matrices using orthogonal transformation preserving the eigen-
values. The Householder reduction transforms a symmetric matrix to a tridiagonal matrix. Then, you can
use the method discussed above. However, the following QR algorithm is more efficient.

To be written.

10.3.4 QR Method

It is known that a matrix can be written as a product of orthogonal matrix Q and an upper triangular
matrix R. This is called QR decomposition. Using this decomposition we can transform a symmetric matrix
to an upper triangular matrix. Suppose that the original matrix A is decomposed to A = QR. Then,
consider a new matrix A1 = RQ = Q−1QRQ = QtAQ. A1 is an orthogonal transform of A. Therefore, A
and A1 has the same eigenvalues. We repeat the procedure: QR decomposition Ai = QiRi and orthogonal
transformation Ai+1 = RiQi. After many iterations, Ai approaches an upper triangular matrix. When
all the lower triangle elements are zero (smaller than a tolerance), the iteration ends. If A is originally
symmetric, Ai is also symmetric since the orthogonal transformation preserves the symmetry. A matrix that
is upper triangle and also symmetric must be diagonal. Hence, Ai approaches to a diagonal matrix as i
increases.

If we need to find eigenvectors along with the eigenvalues, we accumulate the all orthogonal transformation:

Q = Q1 ·Q2 · · ·QN (10.33)

where N is the number of iterations. Since the eigenvector of the final matrix AN is given by Eq. (10.19),
the eigenvector coresspoing to the i-th eigenvalue is simply Qui, which means that the i − th column of Q
is the i-th eigenvector.

Although QR algorithm works with general form of matrices, the computation time is the order of N3

per iteration. On the other hand, if the matrix is tridiagonal, it is only order of N per iteration. Therefore,
it is more practical to transform the symmetric matrix to a tridiagonal form by the Householder reduction
before applying the QR algorithm.

The algorithms of QR decomposition are a little bit complicated and not elaborated here. Interested
readers are encouraged to read advanced books.[1, 2] We rely on the routines in the well established libraries.
MATLAB has a built-in function qr(). For C and C++, gsl linalg QR decomp() in GSL works well.[3]

Algorithm 10.3 QR method for Eignvalue Problem

1. Let P = I (identity matrix).
2. Evaluate S =

∑
i>j
|Aij |2

3. If S < tolerance, the matrix is now upper triangular. Go to the final step
4. If S ≥ tolerance, do the following steps
5. Find Q and R by QR decomposition: A = QR.
6. Calculate A = RQ. This is a new A transformed from the previous A.
7. Accumulate the transformation by P = P Q.
8. Repeat from Step 2
9. The diagonal elements of the final A are eigenvalues and the columns of the final P

are the eigenvectors.

266 MATRIX III: EIGENVALUE PROBLEMS

EXAMPLE 10.5

We solve Example 10.4 using the QR algorithm. See Program 10.4. The QR decomposition is done
by MATLAB built-in function. After 17 iterations the final matrix appears to be nearly diagonal. A
small residual is seen at one element. The use of a smaller tolerance removed it. The eigenvalues and
eigenvectors are all in good agreement with exact values.

of iterations = 17

Transformed Matrix
6.0000 0.0001 0.0000
0.0001 -3.0000 0.0000
0.0000 0.0000 -3.0000

Transformation Matrix
-0.6667 -0.7071 -0.2357
0.6667 -0.7071 0.2357

-0.3333 -0.0000 0.9428

10.4 Applications in Physics

10.4.1 Coupled Harmonic Oscillators

First, we solve a popular problem in classical mechanics[4]. Three particles of mass mi, i = 1, · · · , 3 are
chained with four springs of spring constant, ki, i = 1, · · · , 4 as shown in Figure. The equations of motion
for these particles are

m1ẍ1 = −k1x1 + k2(x2 − x1) (10.34a)
m2ẍ2 = −k2(x2 − x1) + k3(x3 − x2) (10.34b)
m3ẍ3 = −k3(x3 − x2)− k4x3 (10.34c)

where xi, i = 1, · · · , 3 are the displacement of each particle from its equilibrium position. Equation (10.34)
can be written in a matrix form

M ẍ = −Kx (10.35)
where

x =

x1

x2

x3

 (10.36)

K =

k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3 + k4

 (10.37)

To find normal frequency ω, we assume x(t) = ueiωt where u is a constant vector to be determined. The
equation of motion is now written as

ω2Mu = Ku → M−1Ku = ω2u (10.38)

APPLICATIONS IN PHYSICS 267

Since M is a diagonal matrix, its inverse is

M−1 =

1/m1 0 0

0 1/m2 0

0 0 1/m3

 (10.39)

Letting A = M−1K and λ = ω2, Eq (10.38) is just an eigenvalue equation. A is clearly symmetric. All
eigenvaules must be positive (ω is real). Hence, A is positive definite.

In principle, we can solve this equation analytically since this is just a 3-by-3 problem. However, the result
can be very complicated and not very useful (try to find them using Maple or Mathematica). Therefore,
we want to numerically find all eigenvalues. In Program 10.5, first, we calculate the largest and smallest
eigenvalues using the power method. The remaining eignevalue must be between them. We use the inverse
iterative method starting with ξ(0) in the middle of the largest and smallest eigenvalues, hoping that it
is close to the last eigenvalue. This approach is not efficient for this problem since we are looking for all
eigenvalues. The Jacobi transformation or the QR method is better. We just use the present methods simply
for practice.

Using the spring constants k1 = k4 = 2 and k2 = k3 = 4, and mass m1 = 2, m2 = 4, and m3 = 3, we
obtain three normal modes:

Frequency=2.056127
Eigenvector
0.813313

-0.499234
0.298810

Frequency=1.540700
Eigenvector
0.652911
0.204441

-0.729322

Frequency=0.631338
Eigenvector
0.508680
0.661643
0.550883

Let look at the lowest frequency mode. The eigenvector indicates that all particles move in the same
direction (in phase) and their amplitude of the oscillation is similar. On the other hand, the eigenmode of
the largest frequency show that the middle particle moves in the opposite direction to the two others. (out
of phase) and the first particle oscillates with bigger amplitude than the others.

10.4.2 Chains of Atoms

A Linear Chain
Next example is a popular problem in quantum mechanics. Consider a linear chain of N atoms shown in
Fig 10.1a. All atoms are identical. Based on a simple tight-binding model[5], the Hamiltonian of the system
is a tridiagonal matrix:

H =

α β 0

β α β

.

β α β

.

β α β

0 β α

(10.40)

where α and β are site energy and hopping matrix element.[5] Te orbital energy of electrons in the polymer
is determined by the equation

Hψn = Enψn (10.41)

268 MATRIX III: EIGENVALUE PROBLEMS

1 2 K N-1 N

(a) A linear chain of atoms. The edge atoms interacts
with only one neighboring atom.

3

2
1

N

N-1

K

(b) A circular chain of atoms. All atoms interacts
with two adjacent atoms.

Figure 10.1: Two different boundary conditions for the chain of atoms.

where En and ψn are energy and wave function of the electron, respectively. Mathematically speaking, they
are eigenvalue and eigenvector.

This problem can be solved analytically. For α = −2 and β = −1, En = −4 sin2
(

nπ

2(N + 1)

)
. Program

10.6 tries to get the same result using the QR algorithm. Form N = 10, it took 141 iterations. The resulting
numerical eigenvalues perfectly agree with the exact solution Figure 10.2a plots the wavefunctions for the
lowest three eigenvalues. The result resemble to those of the particle in the infinite square well[6]. In fact,
the present model is the discrete version of the infinite square well.

numerical exact
n= 1 : E=-3.9190 (-3.9190)
n= 2 : E=-3.6825 (-3.6825)
n= 3 : E=-3.3097 (-3.3097)
n= 4 : E=-2.8308 (-2.8308)
n= 5 : E=-2.2846 (-2.2846)
n= 6 : E=-1.7154 (-1.7154)
n= 7 : E=-1.1692 (-1.1692)
n= 8 : E=-0.6903 (-0.6903)
n= 9 : E=-0.3175 (-0.3175)
n=10 : E=-0.0810 (-0.0810)

A Circular Chain: Periodic Boundary Condition

We continue the previous model of the atomic chain. This time it is not a linear chain but a ring of atoms
(see Fig. 10.1b. Atom 1 and N are connected so that electron can hop between them. The Hamiltonian
is similar to Eq (). Place β at the top-right corner (H1N) and the bottom-left corner (HN1). The exact
solution is E = α + 2β cos(2nπ/N), n = 0, · · · , N − 1.[5] Changing the Hamiltonian in Program 10.6 we
obtain the following results. Again the agreement is perfect. Note the two-fold degeneracy except for n = 1
and n = 10. This degeneracy is due to the rotational symmetry. Clockwise and counterclockwise circular
motions must have the same energy. Waveufnctions plotted in Figure 10.2b illustrates it. The lowest energy
state is uniform. Recalling that the momentum of the particle is proportional to the inverse of the wave
function. This state has the infinitely long wavelength and thus the particle must be at rest (in the classical
sense). There is only one such state. The next two wave functions look like sin and cos functions since

APPLICATIONS IN PHYSICS 269

x
1 2 3 4 5 6 7 8 9 10

A

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A1
A2
A3

(a) A linear chain of atoms. The wavefunctions cor-
responding to the lowest three energy are plotted.

x
1 2 3 4 5 6 7 8 9 10

A

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A1
A2
A3

(b) A circular chain of atoms (periodic boundary con-
dition).

Figure 10.2: Tight binfing model of atomic chains with two different boundary conditions. The wavefunctions
corresponding to the lowest three energy are plotted.

their phases are shifted by π/2. Since they have the same eigenvalue, any linear combination of the two
wavefunctions is again the solution. we can create two traveling waves one in the clockwise and the other in
counterclockwise.

numerical exact
n= 1 : E=-4.0000 (-4.0000)
n= 2 : E=-3.6180 (-3.6180)
n= 3 : E=-3.6180 (-3.6180)
n= 4 : E=-2.6180 (-2.6180)
n= 5 : E=-2.6180 (-2.6180)
n= 6 : E=-1.3820 (-1.3820)
n= 7 : E=-1.3820 (-1.3820)
n= 8 : E=-0.3820 (-0.3820)
n= 9 : E=-0.3820 (-0.3820)
n=10 : E= 0.0000 (0.0000)

Impurity in the Chain

Previous two examples have simple analytic solutions and thus no numerical calculation is necessary. How-
ever, the agreement between numerical results and exact solutions makes us confident with the numerical
methods. Now, we try a slightly difficult case. Consider again the chain of atoms shown in Fig. 10.1. The
K-th atom is replaced with an impurity. Accordingly, the Hamiltonian matrix must be modified. Assuming
that the impurity weakly interacts with the adjacent atoms, we use HK-1 K = HK,K+1 = −0.1. We use
Program 10.6 again. Placing the impurity at K = 3, we obtain the following eigenvalues. The exact solution
is not known. To see what is happening near the impurity, we plot the wavefunctions of three lowest energy
state in Figure 10.3. The waveufnctions of the two lowest energy are nearly zero at atoms 1 through 3. The
low energy particle can’t hop to the impurity since the hopping matrix element is too small. It is possible to
confine the electron on atom 1 and 2 but that state must have very high energy due to the uncertainty prin-
ciple. (The momentum becomes large and thus the kinetic energy is also high.). The third state seems not
sensitive to the presence of the impurity. All higher energy states are only slightly affected by the impurity.

270 MATRIX III: EIGENVALUE PROBLEMS

x
1 2 3 4 5 6 7 8 9 10

A

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

A1
A2
A3

Figure 10.3: A chain of atoms with an impurity at K = 3. The wavefunctions of lowest three energy states
are plotted. Note that electrons in the lowest two energy states do not hop to atom 1 and 2. The impurity
seems blocking it.

n= 1 : E=-3.8499
n= 2 : E=-3.4244
n= 3 : E=-3.0526
n= 4 : E=-2.7874
n= 5 : E=-2.1448
n= 6 : E=-1.8552
n= 7 : E=-1.2125
n= 8 : E=-0.9474
n= 9 : E=-0.5756
n=10 : E=-0.1501

Exercise 10.1 What will happen if the hopping matrix elements between the impurity and its neighbors
are bigger than other hopping matrix elements?

PROBLEMS 271

10.5 Problems

10.1 A Triangular Molecule
Consider a triangular molecule consisting of three identical atoms as shown
in Figure. A simple model assume that electrons are hopping between
potential wells, Vn (n=1,2,3). The distance between spheres is short enough
for electrons to jump from one well to another. Following a tight-binding
method, we use a basis, |ψn〉 representing an electron in the potential well
Vn . Using this base set, the Hamiltonian of the system can be written in
a matrix form as

H =

ε β β

β ε β

β β ε

 (10.42)
β

β β

ϵ

ϵ

ϵ

1

2 3

where ε and βi denote the energy of an electron trapped in a potential well and a hopping matrix element
between the potential wells, respectively. Here we assume ε < 0 and β < 0.
A state of the particle is given by a column vector

u =

u1

u2

u3

 (10.43)

Energy eigenstates are determined by Schrönger equation

Hu = Eu (10.44)

which is an eigenvalue problem. We want to find all eigenvalues using the QR method. We can use
Program 10.4. Assuming that ε = −2 and β = −1, the exact solutions are λ1 = −4 and λ2 = λ3 = −1.
The corresponding eigenvectors are

x1 =

1√
3

1√
3

1√
3

 , x2 =

1√
2

− 1√
2

0

 , x3 =

− 1√

6

− 1√
6

2√
6

 (10.45)

Find numerically the all eigenvalues and the corresponding eigenvectors. Compare the results with the
exact values.

272 MATRIX III: EIGENVALUE PROBLEMS

MATLAB Source Codes

Program 10.1

%%***
%* Example 10.1 - 10.3 *
%* filename: ch10pr01.m *
%* program listing number: 10.1 *
%* *
%* This program finds eigenvalues and eigenvectors of a symmetric *
%* matrix using the power method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**
clear all;

% system
A=[[2,1,0];[1,2,1];[0,1,2]];
% A=inv(A); % Example 9.2
% lambda0=1.5; % Example 9.3
% A=inv(A-lambda0*eye(3,3)); % Example 9.3

% tolerance
tol = 1e-7;
found=false;
n=1;

% initial guess
x=rand(3,1);
x=[2;-sqrt(2);0];

% normalization
u0=x/sqrt((x'*x));

% power method iteration
while not(found)

x=A*x; % update x
u1=x/sqrt(x'*x); % normalization
err=sqrt((u1-u0)'*(u1-u0)); %error
if err < tol

found=true;
else

u0=u1;
n=n+1;

end
end

% eigenvalue
lambda=u1'*A*u1;
lambda=1/lambda; % Example 9.2
%lambda = lambda0+1/lambda; % Example 9.3

fprintf('Eigenvalue=%.6f \n',lambda)
fprintf('Eigenvector\n');
fprintf('%.6f\n',u1);

NNN

PROBLEMS 273

Program 10.2
%**
%* Example 10.4 *
%* filename: ch10pr02.m *
%* program listing number: 10.2 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the inverse iteration method method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**
clear all;

% Matrix
A=[[2,1,0];[1,2,1];[0,1,2]];

for i=1:6;
% generate an initial guess
if i<4

q=0.5*i;
else

q=0.5*(i+1);
end

% tolerance
tol = 1e-7;

found=false;
n=1;

% Generate a random vector
b0=rand(3,1);
b0=b0/sqrt(b0'*b0);

B=A-q*eye(3,3);

% inverse iteration method
while not(found)

y=gauss(B,b0); % solve linear equation by the Gaussian elimination
b1=y/sqrt(y'*y);
if b1(1)<0 % correct the phase.

b1=-b1;
end
err=sqrt((b1-b0)'*(b1-b0));
if err < tol

found=true;
else

b0=b1;
n=n+1;

end
end

% eigenvalue
lambda=(b1'*A*b1);
fprintf('Guess=%.3f, Eigenvalue=%.6f \n',q,lambda)

end

NNN

274 MATRIX III: EIGENVALUE PROBLEMS

Program 10.3

%**
%* Example 10.5 *
%* filename: ch10pr03.m *
%* program listing number: 10.3 *
%* *
%* This program finds eigenvalues and eigenvectors of a symmetric *
%* matrix using the Jacobi transformation method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all

% Define the matrix
A=[[1,-4,2];[-4,1,-2];[2,-2,-2]];

% Tolerance
tol = 1e-4;

% Evalkuate error
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

P=eye(3,3); %Initial transformation matrix

while S > tol
for i=1:3

for j=i+1:3
if A(i,j) ˜= 0

% Jacobian rotation
if A(j,j)==A(i,i)

c=-1/sqrt(2);
s=-1/sqrt(2);

else
beta=(A(j,j)-A(i,i))/(2*A(i,j));
t=sign(beta)/(abs(beta)+sqrt(betaˆ2+1));
c=1/sqrt(tˆ2+1);
s=t/sqrt(tˆ2+1);

end
r=s/(1+c);
ai = cˆ2*A(i,i)+sˆ2*A(j,j)-2*s*c*A(i,j);
aj = sˆ2*A(i,i)+cˆ2*A(j,j)+2*s*c*A(i,j);
A(i,i)=ai;
A(j,j)=aj;
% Transformation matrix
Q=eye(3,3);
Q(i,i)=c;
Q(j,j)=c;
Q(i,j)=s;
Q(j,i)=-s;
P=P*Q;
for k=1:3

if k˜=i && k˜=j
aki=c*A(k,i)-s*A(k,j);
akj=c*A(k,j)+s*A(k,i);
A(k,i)=aki;

PROBLEMS 275

A(i,k)=aki;
A(k,j)=akj;
A(j,k)=akj;

end
end
A(i,j)=0;
A(j,i)=0;

end
end

end

% Evaluate error
S=0;
for i=1:3

for j=i+1:3
S=S+abs(A(i,j));

end
end

end

fprintf('\nTransformed Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',A')

fprintf('\nTransformation Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',P')

NNN

Program 10.4
%**
%* Example 10.6 *
%* filename: ch10pr04.m *
%* program listing number: 10.4 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the QR algorithm method. *
%* *
%* Uses MATLAB function qr() *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all

% Define the matrix
A=[[1,-4,2];[-4,1,-2];[2,-2,-2]];

% Tolerance
tol = 1e-8;

% Magnitude of total off-diagonal elements
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

P=eye(3,3);
while S > tol

[Q, R] =qr(A); % QR decomposition

276 MATRIX III: EIGENVALUE PROBLEMS

A = R*Q; % Orthogonal transformation
P=P*Q; % Accumulating the transformation
% Error evaluation
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

end

fprintf('# of iterations = %d\n',n)

fprintf('\nTransformed Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',A')

fprintf('\nTransformation Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',P')

NNN

Program 10.5
%**
%* Section 10.5.1 *
%* filename: ch10pr05.m *
%* program listing number: 10.5 *
%* *
%* This program finds eigen modes of harmonic oscillators. *
%* The highest and lowest frequencies are obtained by the power *
%* method and the remaining frequency is computed by the inverse *
%* iteration method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all;

% system parameters
k1=2; k2=4; k3=4; k4=2;
m1=2; m2=4; m3=3;
K=[[k1+k2, -k2, 0];[-k2,k2+k3,-k3];[0,-k3,k3+k4]];
Minv=[[1/m1,0,0];[0,1/m2,0];[0,0,1/m3]];
A0=Minv*K;

tol = 1e-7; % tolerance

% Find the largest/smallest eigenvalues
% by the power method.
for i=1:2

if i==1
A=A0; % for largest eigenvalue

else
A=inv(A0); % for smallest

end

found=false;
n=1;

x=rand(3,1); % initial guess
u0=x/sqrt((x'*x)); % normalization

PROBLEMS 277

% power method iteration
while not(found)

x=A*x; % update x
u1=x/sqrt(x'*x); % normalization
err=sqrt((u1-u0)'*(u1-u0)); %error
if err < tol

found=true;
else

u0=u1;
n=n+1;

end
end

if i==1
lambda(1)=u1'*A*u1; % largest eigenvalue
u(1:3,1)=u1;

else
lambda(3)=1/(u1'*A*u1); % smallest
u(1:3,3)=u1;

end
end

% The other eigenvalue by the inverse
% iterative method.
% guess=middle between the largest and
% the lowest.
q = (lambda(1)+lambda(2))/2;
A = A0;

b0=rand(3,1); % random vector
b0=b0/sqrt(b0'*b0);
B=A-q*eye(3,3); % shifted matrix

found=false;
n=1;

% inverse iteration method
while not(found)

y=gauss(B,b0);
b1=y/sqrt(y'*y);
if b1(1)<0 % correct the phase.

b1=-b1;
end
err=sqrt((b1-b0)'*(b1-b0));
if err < tol

found=true;
else

b0=b1;
n=n+1;

end
end

% eigenvalue
lambda(2)=(b1'*A*b1);
u(1:3,2)=b1;

% output
for i=1:3

fprintf('\nFrequency=%.6f \n',sqrt(lambda(i)))
fprintf('Eigenvector\n');

278 MATRIX III: EIGENVALUE PROBLEMS

fprintf('%.6f\n',u(:,i));
end

NNN

Program 10.6
%**
%* Section 10.5.2 - 10.5.4 *
%* filename: ch10pr06.m *
%* program listing number: 10.6 *
%* *
%* This program finds energy and wavefunction of a chain of atoms *
%* using the QR algorithm method. *
%* *
%* Uses MATLAB function qr() *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/09/2015. *
%**
clear all
%
N=10;
alpha=-2;
beta=-1;

% Define the matrix
A=zeros(N,N);

for i=1:N
A(i,i)=alpha;

end

for i=1:N-1
j=i+1;
A(i,j)=beta;
A(j,i)=beta;

end

% Tolerance
tol = 1e-8;

% Magnitude of total off-diagonal elements
S=0;
for i=1:N

for j=1:i-1
S=S+A(i,j)ˆ2;

end
end

P=eye(N,N);
n=0;
while S > tol

n=n+1;
[Q, R] =qr(A); % QR decomposition
A = R*Q; % Orthogonal transformation
P=P*Q; % Accumulating the transformation
% Error evaluation
S=0;
for i=1:N

for j=1:i-1
S=S+A(i,j)ˆ2;

PROBLEMS 279

end
end

end

fprintf('# of iterations = %d\n',n)

fprintf('Eigenvalues\n')
for n=1:N

E=-4*sin((N-n+1)*pi/(2*(N+1)))ˆ2;
fprintf('n=%2d : E=%6.4f (%6.4f)\n',n,A(n,n),E)

end

fprintf('\nTransformation Matrix\n')
P

p=plot([1:N],P(:,1),'-o',[1:N],P(:,2),'-o',[1:N],P(:,3),'-o');
set(p(1),'linewidth',2,'color','blue')
set(p(2),'linewidth',2,'color','green')
set(p(3),'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel(texlabel('psi'),'fontsize',14)
legend(p,{texlabel('psi_1'),texlabel('psi_2'),texlabel('psi_3')});
legend(p,'Location','SouthEast');

NNN

Python Source Codes

Program 10.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 10.1 -10.3 *
%* filename: ch10pr01.m *
%* program listing number: 10.1 *
%* *
%* This program finds eigenvalues and eigenvectos of a 3x3symmetric *
%* matrix using the power method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**
"""
import numpy as np

def evpower(A):

tolerance
tol=1.0e-7
found=False

create arrays
u0=np.matrix(np.zeros(3)).transpose()
u1=np.matrix(np.zeros(3)).transpose()

280 MATRIX III: EIGENVALUE PROBLEMS

initial guess
x=np.matrix(np.random.rand(3)).transpose()

normalization
u0=x/np.sqrt(np.asscalar(x.transpose()*x))

power method iteration
n=0
while not(found):

x=A*x # update x
u1=x/np.sqrt(np.asscalar(x.transpose()*x)) # normalization
err=np.sqrt(np.asscalar((u1-u0).transpose()*(u1-u0))) #error
if err < tol:

found=True
else:

u0[:]=u1[:]

n+=1

eig=np.asscalar(u1.transpose()*A*u1)

return [n, eig, u1]

A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])

SOlution by eignvalue solver in numpy
eig_np, u_np = np.linalg.eig(A)

Example 10.1
[n, eig, u] = evpower(A)
Eigenvalue

print('\nLargest Eigenvalue (Example 10.1)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[0]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,0],u_np[1,0],u_np[2,0]))
eig_max=eig

Example 10.2
A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])
A=np.linalg.inv(A)
[n, eig, u] = evpower(A)
Eigenvalue
eig=1.0/eig

print('\nSmallest Eigenvalue (Example 10.2)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[2]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,2],u_np[1,2],u_np[2,2]))
eig_min=eig

Example 10.3
A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])
eig0=0.5*(eig_min+eig_max)

PROBLEMS 281

A=np.linalg.inv(A-eig0*np.identity(3))
[n, eig, u] = evpower(A)
eig=1.0/eig+eig0

print('\nThe Eigenvalue between the smallest and largest (Example 10.3)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[1]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,1],u_np[1,1],u_np[2,1]))

NNN

Program 10.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 10.4 *
%* filename: ch10pr02.py *
%* program listing number: 10.2 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the inverse iteration method method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/17/2017. *
%**
"""
import numpy as np

Set a matrix
A=np.matrix([[2,1,0],[1,2,1],[0,1,2]])

for q in (0.5,1.0,1.5,2.5,3.0,3.5):

#tolerance
tol = 1e-7

found=False
n=1

Generate a random vector
b0=np.random.rand(3,1)
b0=b0/np.linalg.norm(b0)

B=A-q*np.identity(3)

inverse iteration method
while not(found):

y=np.linalg.solve(B,b0)
b1=y/np.linalg.norm(y)
if b1[0]<0: # correct the phase.

b1=-b1

err=np.linalg.norm(b1-b0)
if err < tol:

found=True
else:

282 MATRIX III: EIGENVALUE PROBLEMS

b0=b1
n+=1

eigenvalue
eig= np.asscalar(b1.transpose()*A*b1)
print('Guess={0:6.3f}, Eigenvalue={1:10.6f}'.format(q,eig))

NNN

Program 10.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 10.5 *
%* filename: ch10pr03.m *
%* program listing number: 10.3 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the Jacobi transformation method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
"""
import numpy as np

Define the matrix
A=np.matrix([[1.,-4.,2.],[-4.,1.,-2.],[2.,-2.,-2.]])

Tolerance
tol=1.0e-4

Evaluate error
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+abs(A[i,j])

Initial transformation matrix
P=np.matrix(np.identity(3))

while S > tol:
for i in range(0,3):

for j in range(i+1,3):
if A[i,j] != 0:

Jacobian rotation
if A[j,j]==A[i,i]:

c=-1./np.sqrt(2.)
s=-1./np.sqrt(2.)

else:
beta=(A[j,j]-A[i,i])/(2.0*A[i,j])
t=np.sign(beta)/(np.abs(beta)+np.sqrt(beta**2+1.0))
c=1./np.sqrt(t**2+1.0)
s= t/np.sqrt(t**2+1.0)

r=s/(1.0+c)
ai = c**2*A[i,i]+s**2*A[j,j]-2.0*s*c*A[i,j]
aj = s**2*A[i,i]+c**2*A[j,j]+2.0*s*c*A[i,j]
A[i,i]=ai
A[j,j]=aj

PROBLEMS 283

Transformation matrix
Q=np.matrix(np.identity(3))
Q[i,i]=c
Q[j,j]=c
Q[i,j]=s
Q[j,i]=-s
P=P*Q

for k in range(0,3):
if k!=i and k!=j:

aki=c*A[k,i]-s*A[k,j]
akj=c*A[k,j]+s*A[k,i]
A[k,i]=aki
A[i,k]=aki
A[k,j]=akj
A[j,k]=akj

A[i,j]=0.0
A[j,i]=0.0

Evaluate error
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+abs(A[i,j])

print('\nTransformed Matrix\n')
print(A)

print('\nTransformation Matrix\n')
print(P)

NNN

Program 10.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 10.6 *
%* filename: ch10pr04.py *
%* program listing number: 10.4 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the QR algorithm method. *
%* *
%* Uses NUMPY function qr() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np

Define the matrix
A=np.matrix([[1.,-4.,2.],[-4.,1.,-2.],[2.,-2.,-2.]])

Tolerance
tol = 1e-8;

Magnitude of total off-diagonal elemens

284 MATRIX III: EIGENVALUE PROBLEMS

S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+A[i,j]**2

Initial transformation matrix
P=np.matrix(np.identity(3))

n=0
while S > tol:

n+=1
[Q, R] =np.linalg.qr(A) # QR decomposition
A=R*Q # Orthogonal transformation
P=P*Q # Accumulating the transformation
Error evaluation
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+A[i,j]**2

print('# of iterations ={0:d}'.format(n))

print('\nTransformed Matrix\n')
print(A)

print('\nTransformation Matrix\n')
print(P)

NNN

Program 10.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 10.5.1 *
%* filename: ch10pr05.py *
%* program listing number: 10.5 *
%* *
%* This program finds eigenmodes of cpoupled harmonic oscillators. *
%* The higest and lowest frequencies are obgtained by the power *
%* method and the remaining frequency is computed by the inverse *
%* iteration method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np

system parameters
k1=2.0; k2=4.0; k3=4.0; k4=2.0
m1=2.0; m2=4.0; m3=3.0
K=np.matrix([[k1+k2, -k2, 0.0],[-k2,k2+k3,-k3],[0.0,-k3,k3+k4]])
Minv=np.matrix([[1.0/m1,0.0,0.0],[0.0,1.0/m2,0.0],[0.0,0.0,1/m3]])
A0=Minv*K
A=np.matrix(np.zeros((3,3)))
u=np.matrix(np.zeros((3,3)))
eig=np.zeros(3)

tol = 1e-7 # tolerance

PROBLEMS 285

Find the largest/smallest eigenvalues
by the power method.
for i in (0,1,2):

if i==0:
A[:,:]=A0[:,:] # for largest eigenvalue

else:
A=np.linalg.inv(A0) # for smallest

found=False
x=np.matrix(np.random.rand(3)).transpose() # initial guess
u0=x/np.linalg.norm(x) # normalization

power method iteration
n=1
while not(found):

x=A*x # update x
u1=x/np.linalg.norm(x) # normalization
err=np.linalg.norm(u1-u0) # error
if err < tol:

found=True
else:

u0=u1
n+=1

if i==0:
eig[0]=u1.transpose()*A*u1 # largest eigenvalue
u[:,0]=u1

else:
eig[2]=1.0/(u1.transpose()*A*u1) # smallest
u[:,2]=u1

The other eigenvalue by the inverse
iterative method.
guess=middle between the largest and
the lowest.

u0=np.matrix(np.random.rand(3)).transpose() # random vector
u0=u0/np.linalg.norm(u0)
q = (eig[0]+eig[2])/2.0
A=A0-q*np.identity(3) # shifted matrix

found=False
n=1

inverse iteration method
while not(found):

x=np.linalg.solve(A,u0)
u1=x/np.linalg.norm(x)
if u1[0]<0: # correct the phase.

u1=-u1

err=np.linalg.norm(u1-u0)
if err < tol:

found=True
else:

u0=u1
n+=1

eigenvalue

286 MATRIX III: EIGENVALUE PROBLEMS

eig[1]=u1.transpose()*A0*u1
u[:,1]=u1

output
for i in range(0,3):

print('\nFrequency={0:f}'.format(np.sqrt(eig[i])))
print('Eigenvector')
print(u[:,i])

NNN

Program 10.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 10.5.2 - 10.5.4 *
%* filename: ch10pr06.py *
%* program listing number: 10.6 *
%* *
%* This program finds energy and wavefunction of a chain of atoms *
%* using the QR algorithm method. *
%* *
%* Uses NUMPY method qr() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=10 # The size of the chain molecule
alpha=-2.0
beta=-1.0

Define the tridiagonal matrix
A=np.zeros((N,N))
for i in range(0,N):

A[i,i]=alpha
for i in range(0,N-1):

A[i,i+1]=beta
A[i+1,i]=beta

A=np.matrix(A)

Tolerance
tol = 1.0e-8

Magnitude of total off-diagonal elemens
S=0.0
for i in range(0,N):

for j in range(0,i):
S=S+A[i,j]**2

P=np.matrix(np.identity(N))

n=0
while S > tol:

n+=1
Q, R=np.linalg.qr(A); # QR decomposition
A=R*Q #Orthogonal transformation

PROBLEMS 287

P=P*Q #Accumulating the transformation
Error evaluation
S=0.0
for i in range(0,N):

for j in range(0,i):
S=S+A[i,j]**2

print('# of iterations={0:d}'.format(n))
print('Eigenvalues\n')
for n in range(0,N):

E=-4.*np.sin((N-n)*np.pi/(2*(N+1)))**2
print('n={0:d} : E={1:f} ({2:f})'.format(n,A[n,n],E))

print('\nTransformation Matrix\n')
print(P)

plt.figure(figsize=(6,5))
plt.plot(np.linspace(0,N-1,N),P[:,0],'-ob',label=r'ψ_1')
plt.plot(np.linspace(0,N-1,N),P[:,1],'-og',label=r'ψ_2')
plt.plot(np.linspace(0,N-1,N),P[:,2],'-or',label=r'ψ_3')

plt.xlabel('x',fontsize=14)
plt.ylabel(r'ψ',fontsize=14)
plt.legend(loc=4)
plt.show()

NNN

Bibliography

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[2] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4th
edition, 2012.

[3] Brian Gough, editor. GNU Scientific Library Reference Manual. Network Theory Ltd., 3rd edition, 2009.
Free online documentation is available at http://www.gnu.org/software/gsl/.

[4] John R. Taylor. Classical Mechanics. University Science Books, 2005. Chapter 11.

[5] David McIntyre, Corinne A Manogue, and Janet Tate. Quantum Mechanics: A Paradigms Approach.
Pearson Addison-Wesley, 2012. Chapter 15.

[6] David McIntyre, Corinne A Manogue, and Janet Tate. Quantum Mechanics: A Paradigms Approach.
Pearson Addison-Wesley, 2012. Section 5.4.

288

CHAPTER 11

DISCRETE FOURIER TRANSFORM

To begin with, let us review the definition and some properties of Fourier transform since it is confusing in
some cases. The Fourier theorem states that

f(t) = 1
2π

∫ ∞
−∞

∫ ∞
−∞

f(t′) eiω(t′−t) dt′ dω . (11.1)

where the function f(t′) in the right hand side is the same function in the left hand side. You can express
this theorem in two separate integrals. First, we extract the integral with respect to t′ from Eq.(11.1) and
define a function

f̃(ω) =
∫ ∞
−∞

f(t′) eiωt
′

dt′ (11.2)

and then we write the theorem as

f(t) = 1
2π

∫ ∞
−∞

f̃(ω) e−iωt dω . (11.3)

Equations (11.2) and (11.3) are commonly called forward and inverse Fourier transform, respectively. In
Physics t and ω indicate time and angular frequency. Therefore, ”forward” and ”inverse” can be distinguished.
The forward transformation changes the function from the time domain to the frequency domain. There is
some confusion regarding the sign on the exponential function. If ω in Eq (11.1) is replaced with −ω, the
theorem still holds. That means we could call Eq. (11.3) forward transformation and Eq. (11.2) inverse

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

289

290 DISCRETE FOURIER TRANSFORM

transformation. In fact, when we use position x in place of t and wave number k in place of ω, we use the
opposite convention of the sign

f̃(k) =
∫ ∞
−∞

f(x) e−ikx dx (11.4a)

f(x) = 1
2π

∫ ∞
−∞

f̃(k) eikx dk . (11.4b)

This expression is more convenient in physics because a traveling wave is mathematically expressed by
ei(kx−ωt) where spacial and time domains have the opposite sign.

Mathematically speaking, however, t and ω are just two different variables. Apart from the prefactor
1/2π and the sign of ω in the exponential function, the two integrals have the identical form. f̃(ω) is Fourier
transform of f(t) and f(t) is Fourier transform of f̃(ω). It does not make a sense to call one as forward and
the other as inverse. In mathematics literature, the Fourier transform is often defined by

f̃(ω) = 1√
2π

∫ ∞
−∞

f(t) eiωt dt (11.5a)

f(t) = 1√
2π

∫ ∞
−∞

f̃(ω) e−iωt dω . (11.5b)

so that the same prefactor appears in both transformation.
In some comunity, yet another expression

f̃(ω) =
∫ ∞
−∞

f(t′) e2πift′ dt′ (11.6)

is used. Then we write the inverse transformation as

f(t) =
∫ ∞
−∞

f̃(ω) e−2πift df . (11.7)

where f = ω/2π is regular frequency.
As you can see slightly different definitions are used in different communities. Accordingly, Fourier

transform programs provided by a computational software package use a different sign convention and a
prefactor. You must check the definition used by the package carefully. For example, in MATLAB fft() is
the forward Fourier transform and ifft() is the inverse Fourier transform. By default, MATLAB uses Eq.
(11.5). However, MATLAB provides options to use different definitions.

11.1 Discrete Fourier Transform

If we want to know f̃(ω) just for a particular value of ω, the transformation (11.2) is simply an improper
integral and thus the numerical methods we studied in Chapter 2 is sufficient. In general that is not what we
want. We want to know the function f̃(ω) for −∞ < ω <∞. That is a big challenge for digital computers.
If t is discretized with N points and ω with M points, the transformation needs the order of NM operations.
In 3 dimensional space, N can be easily 1×106. M is also in the similar order. Hence, the number operation
can be huge. Fortunately, there is an ingenious method called fast fourier tranform or FFT. We will briefly
study the general aspect of discrete Fourier transform. The algorithm of FFT will be explained in next
section.

DISCRETE FOURIER TRANSFORM 291

First, we need to replace the infinite integration interval (−∞,+∞) in Eq. (11.2) with [−T/2,+T/2]
where T > 0 is assumed to be sufficiently large so that f(t) ≈ 0 for |t| ≥ T/2. Second, we introduce
discrete time tn = n∆t (n = −N/2, · · · , N/2) where ∆t = T/N . Then, the transform (11.2) is replaced with
numerical integration

f̃(ω) =
N/2−1∑
n=−N/2

f(tn) einω∆t ∆t . (11.8)

Here we use the trapezoidal rule for numerical integration.∗ Since we have chosen T so that f(−T/2) =
f(T/2) ≈ 0, the rectangula rule is OK provided that ∆t is small enough. Note that there are N +1 sampling
points of t but only N rectangles to sum up. That is why the upper limit of the summation is N/2 − 1.
We need to do the same for ω. Introducing the integration interval [−Ω/2,+Ω/2] and discrete frequency
ωm = m∆ω (m = −M/2, · · · ,M/2) where ∆ω = Ω/M , the inverse transform (11.3) is expressed as a
numerical integral

f(t) = 1
2π

M/2−1∑
m=−M/2

f̃(ωm) e−im∆ωt ∆ω . (11.9)

Now, the discrete forms of transformations must consistent with the Fourier theorem. Substituting Eq.
(11.8) to Eq. (11.9), the discrete version of the Fourier theorem is

f(tk) = 1
2π

M/2∑
m=−M/2

N/2∑
n=−N/2

f(tn)ei(n−k)m∆ω∆t∆ω∆t. (11.10)

f̃(ωk) = 1
2π

N/2∑
n=−N/2

M/2∑
m=−M/2

f̃(ωm)e−i(m−k)n∆ω∆t∆ω∆t. (11.11)

These equations hold simultaneously when N = M and ∆ω∆t = 2π/N . Commonly, ∆t = T/N and
∆ω = 2π/T are used. The bound of ω is now Ω = 2πN/T . Considering the periodicity of the exponential
function, the bound of the summation (−N/2, N/2− 1) may be shifted to (0, N − 1).

In practice, the choice of T is sometime tricky. Normally, we choose T such that f(T/2) ≈ 0 and N such
that the resolution ∆t = T/N is small enough. However, we also need a reasonable resolution of frequency
∆ω = 2π/T . If T is too small, the resolution of the frequency becomes poor. Therefore, a larger T is better
for the frequency. On the other hand, if T is large, N has to be large so that the resolution of time is fine
enough. (See Example 11.1.)

In summary, the discrete version of Fourier transforms (DFT) are defined by

f̃m = T

(
1
N

N−1∑
n=0

fn e2πimn/N

)
(11.12a)

fn = 1
T

(
N−1∑
m=0

f̃m e−2πinm/N

)
(11.12b)

where function values are abbreviated with fn ≡ f(tn) and f̃m ≡ f̃(ωm). An important consequence of
the discretization is that the discretized functions are periodic even when the original functions are not.

∗It looks like the rectangular rule but recall that when f(−T/2) = f(T/2) = 0, the rectangular rule is identical to trapezoidal
rule.

292 DISCRETE FOURIER TRANSFORM

Explicitly writing it,

fn+N = fn or f(t+ T) = f(t) (11.13a)
f̃n+N = f̃n or f̃(ω + Ω) = f̃(ω). (11.13b)

DFT can be expressed in a matrix form,

f̃ = F f , f = F−1 f̃ (11.14)

where the matrix is defined by

Fmn = T

N
e2πimn/N , n,m = 0, · · · , N − 1 (11.15)

and the functions are expressed as vectors

f =

f1

f2
...

fN

 , f̃ =

f̃1

f̃2
...

f̃N

 (11.16)

The multiplication of a matrix and a vector involves N2 of multiplications and N2 of additions, which can
be too large if we need to perform Fourier transform many times.

11.2 Fast Fourier Transform

An remarkable algorithm was developed in 19 century but not very popular until modern computers appeared
in 1960’s. It allows us to perform Fourier transform with only N log2N operations instead of N2. When
N = 1024, N log2N = 10240 where as N2 ≈ 1× 106 which is 100 times large. The saving is even bigger as
N increases. The algorithm, known as Fast Fourier Transform (FFT), is very popular and widely used in a
variety of applications in science, engineering and beyond.†

†FFT is built in many computational environments such as MATLAB. FFT libraries are available for almost any computer
language, among them Fast Fourier Transform in the West (FFTW) is popular and available for a variety of languages including
C/C++, Fortran, Python, Java, etc. See www.fftw.org.

www.fftw.org

FAST FOURIER TRANSFORM 293

The FFT utilizes the structure the matrix F . Consider N = 8 for example, the matrix is

F = T

8

1 1 1 1 1 1 1 1

1 eiπ/4 ei2π/4 ei3π/4 ei4π/4 ei5π/4 ei6π/4 ei7π/4

1 ei2π/4 ei4π/4 ei6π/4 ei8π/4 ei10π/4 ei12π/4 ei14π/4

1 ei3π/4 ei6π/4 ei9π/4 ei12π/4 ei15π/4 ei18π/4 ei21π/4

1 ei4π/4 ei8π/4 ei12π/4 ei16π/4 ei20π/4 ei24π/4 ei28π/4

1 ei5π/4 ei10π/4 ei15π/4 ei20π/4 ei25π/4 ei30π/4 ei35π/4

1 ei6π/4 ei12π/4 ei18π/4 ei24π/4 ei30π/4 ei36π/4 ei42π/4

1 ei7π/4 ei14π/4 ei21π/4 ei28π/4 ei35π/4 ei42π/4 ei49π/4

(11.17)

= T

8

1 1 1 1 1 1 1 1

1 eiπ/4 i −e−iπ/4 −1 −eiπ/4 −i e−iπ/4

1 i −1 −i 1 i −1 −i

1 −e−iπ/4 −i eiπ/4 −1 e−iπ/4 i −eiπ/4

1 −1 1 −1 1 −1 1 −1

1 −eiπ/4 i e−iπ/4 −1 eiπ/4 −i −e−iπ/4

1 −i −1 i 1 −i −1 i

1 e−iπ/4 −i −eiπ/4 −1 −e−iπ/4 i eiπ/4

(11.18)

In the second matrix (11.18), the exponential functions are simplified as much as possible. You can see easily
that Matrix (11.18) is much simpler than Matrix (11.17). You notice that many matrix elements share the
same value. A simple trick reveals further the simplicity of the transformation matrix. First, we reorder the
elements of the vector in a “magic” order:

f ′ =

f0

f4

f2

f6

f1

f5

f3

f7

, and f̃ ′ =

f̃0

f̃4

f̃2

f̃6

f̃1

f̃5

f̃3

f7

(11.19)

294 DISCRETE FOURIER TRANSFORM

and then reorder the columns and rows of (11.18) accordingly so that Eq. (11.14) holds.

F ′ = T

8

1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 i i −i −i

1 1 −1 −1 −i −i i i

1 −1 i −i eiπ/4 −eiπ/4 −e−iπ/4 e−iπ/4

1 −1 i −i −eiπ/4 eiπ/4 e−iπ/4 −e−iπ/4

1 −1 −i i −e−iπ/4 e−iπ/4 eiπ/4 −eiπ/4

1 −1 −i i e−iπ/4 −e−iπ/4 −eiπ/4 eiπ/4

(11.20)

Writing f̃ ′ = F ′f ′ explicitly,

f̃0 = [(f0 + f4) + (f2 + f6)] + [(f1 + f5) + (f3 + f7)] (11.21a)
f̃4 = [(f0 + f4) + (f2 + f6)]− [(f1 + f5) + (f3 + f7)] (11.21b)
f̃2 = [(f0 + f4)− (f2 + f6)] + i[(f1 + f5)− (f3 + f7)] (11.21c)
f̃6 = [(f0 + f4)− (f2 + f6)]− i[(f1 + f5)− (f3 + f7)] (11.21d)
f̃1 = [(f0 − f4) + i(f2 − f6)] + [eiπ/4(f1 − f5)− e−iπ/4(f3 − f7)] (11.21e)
f̃5 = [(f0 − f4) + i(f2 − f6)]− [eiπ/4(f1 − f5)− e−iπ/4(f3 − f7)] (11.21f)
f̃3 = [(f0 − f4)− i(f2 − f6)]− [e−iπ/4(f1 − f5)− eiπ/4(f3 − f7)] (11.21g)
f̃7 = [(f0 − f4)− i(f2 − f6)] + [e−iπ/4(f1 − f5)− eiπ/4(f3 − f7)], (11.21h)

we clearly see the regularity in the matrix. Now look at the additions in the regular parentheses (· · ·).
Many additions are identical. In fact, there are 32 additions but only 8 different ones. We can reduce
the computation by factor 4. Furthermore, the additions inside the square bracket [· · ·] are duplicated in
the following line. Hence, we reduce the calculation by factor 2. For a large matrix we can save a lot of
computation time.

The permutation of rows and columns gives us the clear picture of this redundant additions. How do
we determine the permutation? It turns out to be very simple. Express the element indexes in binary, e.g.
3 = 011, then reverse the order of the bits, 011 → 110 which is 7. Then, we swap column 3 and 7. Figure
11.1 illustrates the bit reversed order.

The above algorithm of FFT works only when N = 2k. In modern FFT libraries other values of N can be
used. However, the power of 2 gets the best performance. If we have a data set whose size is not the power
of two, we can just add 0 to the data set until the total number of data becomes the power of 2. This zero
padding does not cause a problem since the data outside the bounds is already assumed to be zero.

11.3 Remarks on the use of canned routines in MATLAB and Python

The detail use of the FFT package strongly depends on their implementation. It is important to read the
manual carefully before using it. The most popular FFT package is FFTW[1] which earned J. H. Wilkinson
Prize for Numerical Software in 1999. MATLAB is based on FFTW. Numpy package in Python includes
its own FFT based on Cooley and Tukey algorithm[2] which is well explained in Numerical Recipes[3].
PyFFTW, which calls FFTW, is currently being deveopled. MATLAB and Numpy have build-in functions

REMARKS ON THE USE OF CANNED ROUTINES IN MATLAB AND PYTHON 295

0=000
1=001
2=010
3=011
4=100
5=101
6=110
7=111

000
001
010
011
100
101
110
111

Figure 11.1: Bit reversed order for N = 8.

fft() and ifft() which work in similar way. fft() computes

Fk =
N−1∑
m=0

fm exp
(
−i2π km

N

)
(11.22)

and ifft()

fm = 1
N

N−1∑
k=0

Fk exp
(
i
2π km
N

)
(11.23)

using the FFT algorithm.
The users must prepare the input data set {fm} suitable for their application and converts output data

{Fk} to suitable form by reordering and a multiply constant. Some key points we need to know are given
below.

11.3.1 Forward or Backward Transformation

Apart from the factor T/N and 1/T , the difference between forward and backward transformation is the sign
in the exponent. It is just the convention issue. FFTW, used e−iωt as forward, which is opposite to ours.
My forward transformation may be your backward transformation. We just have to use a routine which has
a desired sign. MATLAB and Numpy use the same convention as FFTW.

11.3.2 Prefactor in front of the Summation

FFTW does not multiply T/N in Eq. (11.12a) nor 1/T in Eq. (11.12b). It is up to the users to multiply
an appropriate prefactors. This means that the output of the FFTW does not satisfy the Fourier theorem
(11.1) unless 1/N is multiplied by the user. MATLAB and Numpy use a different convention. The inverse
FFT function ifft() defined by Eq. (11.23), differs from Eq. (11.12a) by factor T and the forward FFT
function fft() defined by Eq. (11.22) differs from Eq. (11.12b) by factor 1/T . The user must multiply
these factors manually.

11.3.3 Input/Output Format: Bit Reversed or Not

Most FFT routines carry out the bit reversal permutation internally. So, the users don’t have to do it by
themselves. However, the order of output depends on the FFT routines. Some FFT routines return the
results in the original order but others in the bit reversed order. Advanced packages allow the users to
specify the output order. Why do we want the result in bit reversed order? In some cases, we repeat FFT
many times but we need only the final output. Therefore, there is no need to change the order back and
forth every time. If the bit-reversed order is kept during the repeated FFT, computing time is significantly
saved. By default, MATLAB and Numpy return the data in the regular order.

296 DISCRETE FOURIER TRANSFORM

11.3.4 Input/Output format: Periodicity

Even when the output is not in the bit reversed order, the order of input/output data is often very confusing.
Recall that we replaced

∑N/2−1
n=−N/2 with

∑N−1
n=0 . FFT assumes that t = 0,∆t, 2∆t, · · · , (N − 1)∆t and that

the function values are stored in this order. There is no negative t!. Suppose that we have a function data fn
for n = 0, · · · , N − 1 with tn = (n−N/2)∆t. Although t begins with a negative value −N/2, FFT doesn’t
care about it and assume that the first data f0 is at t = 0. That is obviously wrong. Therefore, we need to
change the order of the input data. Since the functions in DFT are periodic, we can add the period T to t
without changing the function value. For t < 0, use f(t+ T). Now the function is evaluated at positive time
only. In summary, the input data must be reordered as follows.

fraw data =

f0
...

fN/2

fN/2+1
...

fN−1

=⇒ f input =

fN/2+1
...

fN−1

f0
...

fN/2

(11.24)

Similarly, the order of the output data is shifted in the same way as the input order. Usually, you want
to get a function f̃(ω) from −Ω/2 to Ω/2. The output from FFT is not like that. The first half of the data
is for ω = 0 to ω = Ω/2 and the latter half begins with ω = −Ω/2 to ω = −∆ω. The user must reordered
the output before plotting it as following:

f̃output =

f̃0
...

f̃N/2

f̃N/2+1
...

f̃N−1

=⇒ f̃plot =

f̃N/2+1
...

f̃N−1

f̃0
...

f̃N/2

(11.25)

Both MATLAB and Numpy provide functions fftshift() and ifftshift() to carryout the above trans-
formation. The following example explains how to prepare the input data and recover the output you need.

EXAMPLE 11.1 Foureir Transform of a Gaussian Function

Let us compute the Fourier transform of a normalized Gaussian function

f(t) = 1√
π

e−t
2
. (11.26)

The analytic solution is given by

f̃(ω) = 1√
π

∫ ∞
−∞

e−t
2
eiωt dt = e−ω

2/4 (11.27)

REMARKS ON THE USE OF CANNED ROUTINES IN MATLAB AND PYTHON 297

−20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

f(
t)

Original data

−20 −10 0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

f(
t)

Swapped data

−50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

ω

f̃
(ω

)

FT Raw

−50 0 50 100
0

0.2

0.4

0.6

0.8

1

1.2

ω

f̃
(ω

)

FT Swapped

Figure 11.2: Fast Fourier transform of a gaussian function. Top left: The original function value centered
around t = 0. The dashed lines indicate the lower and upper bounds at ±T/2. Bottom left: The lower half
(t < 0) of the function is shifted by T . Now the bounds are (0, T) indicaed by the dashed line. Top right:
Fourier transform of the Gaussian generated by MATLAB function ifft(). The lower and upper bounds
of the frequency is 0, Ω = 2πN/T indicated by the dashed line. Bottom right: The upper half of the data is
shifted by −Ω. Now, the Fourier transform is peaked around ω = 0.

298 DISCRETE FOURIER TRANSFORM

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

ω

f̃
(ω

)

FFT
Exact

Figure 11.3: Fourier transform of the Gaussian distribution, which is again Gaussian in the Fourier space.
The output of FFT agrees well with the exact solution.

First, we have to decide the parameter values. T = 50 and N = 1024 = 210 makes time resolution
∆t ≈ 0.05 fine enough. The function value at the bound f(±T/2) ≈ 10−272 seems unnecessarily too
small. A smaller T could be used. However, the resolution of the frequency is ∆ω = 2π/T ≈ 0.1, barely
small enough. Therefore, we cannot reduce T .

A raw data set f is created using a domain −T/2 < t < T/2, which is plotted in Fig 11.2 (top left).
Then, the lower half of the data is shifted by T . In the program, we just swap the lower and upper half
of the column vector. The resulting function is plotted in Fig 11.2 (bottom left). MATLAB’s function
ifft() calculate our forward Fourier transform (11.12a). The raw output is plotted in Fig 11.2 (top
right). The frequency domain is bounded by 0 and Ω = 2π/T , indicated by the dashed line. It is difficult
to see the profile. Therefore, we swap the lower and upper half of the output array to get a normal plot
for −Ω/2 < ω < Ω/2, which is plotted in Fig 11.2 (bottom right). It is still difficult to see the detail
because the result is nearly zero for the most part. These zero regions are needed to keep the resolution
of t small enough. Finally, we zoom into the important region. In Fig 11.3, the final result and exact
solution are compared. The agreement is nearly perfect.

11.4 Applications in Physics

11.4.1 Laplacian operator

The Laplacian operator ∇2 is everywhere in physics. We try to evaluate one-dimensional Laplacian acting
on a function using FFT. Consider

g(x) = d2

dx2 f(x). (11.28)

APPLICATIONS IN PHYSICS 299

−6 −4 −2 0 2 4 6

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

g(
x)

FFT
exact

Figure 11.4: Laplacian by FFT: Output of Example 11.1.

Introducing the Fourier transform of f(x), the above equation can be written as

g(x) = d2

dx2
1

2π

∫ ∞
−∞

f̃(k)eikxdk

= 1
2π

∫ ∞
−∞

(−k2)f̃(k)eikxdk (11.29)

(11.30)

The last integral is just an inverse Fourier transform of −k2f̃(k). To solve this problem, we use FFT twice.
First, we transform the original function f(x) to f̃(k) and multiply −k2 to it. Then, Fourier transform back
to the original space. The result is g(x).

As an example, we apply the Laplacian to a Gaussian function f(x) = e−x2
/
√
π. The analytic solution

is g(x) = (4x2 − 2)e−x2 . The following code uses MATLAB’s fft() and ifft. Note that we don’t have
to multiply prefacters. When both forward and inverse transformations are carried out, they canceled out.
If you use FFTW, you must divide the final output by N . Figure 11.4 plots the result which is in a good
agreement with the analytic solution.

11.4.2 Correlation Functions

The convolution of functions f(t) and g(t) is defined by

(f ◦ g)(τ) ≡
∫ ∞
−∞

f(t)g(τ − t) dt (11.31)

This kind of integral is used as a definition of autocorrelation functions

〈x(τ)x(0)〉 ≡
∫ ∞
−∞

x(t)x(t+ τ) dt . (11.32)

300 DISCRETE FOURIER TRANSFORM

The convolution can be evaluated by using FFT twice. Introducing Fourier transform of x(t),

〈x(τ)x(0)〉 =
∫ ∞
−∞

(
1

2π

∫ ∞
−∞

x̃∗(ω)eiωt dω
)(

1
2π

∫ ∞
−∞

x̃(ω′)e−iω
′(t+τ) dω′

)
dt

= 1
2π

∫ ∞
−∞

dω
∫ ∞
−∞

dω′ x̃∗(ω)x̃(ω′)e−iω
′τ

(
1

2π

∫ ∞
−∞

ei(ω−ω
′)t dt

)
= 1

2π

∫ ∞
−∞

dω
∫ ∞
−∞

dω′ x̃∗(ω)x̃(ω′)e−iω
′τδ(ω − ω′)

= 1
2π

∫ ∞
−∞
|x̃(ω)|2e−iωτ dω (11.33)

where we used a delta function
δ(ω) = 1

2π

∫ ∞
−∞

eiωt dt . (11.34)

The last expression of Eq. (11.33) is just an inverse Fourier transform. The function |x̃(ω)|2 is called power
spectrum of the temporal function x(t) and the relation between the convolution and the power spectrum is
known as Wiener-Khinchin theorem.

To compute the autocorrelation function, compute the Fourier transform x̃(ω), evaluate the power spec-
trum |x̃(ω)|2 , and then transform it back to the t domain. The result is the autocorrelation function. We
will use this method in Chap XX to investigate the correlation in stochastic processes.

11.4.3 Spectral Analysis

In Sections 7.5.2 and 9.3.1, we investigated coupled harmonic oscillators. First, we obtained the equilibrium
positions of oscillators using a root finding method. Then, we calculated the eigenfrequencies of the normal
modes by solving an eigenvalue problem. Here, we try to find the eigenfrequencies by solving Newton’s
equation (9.24) directly. We use the Verlet algorithm to integrate the equation of motion. Initially all
oscillators are assumed to be at the equilibrium position. Then, we kick one of the mass at t = 0. The other
masses are initially at rest. The trajectories of the oscillators are plotted in the left panel of Fig 11.5. It
looks random and difficult to see any periodic motion. Therefore, it is impossible to identify the frequencies
of the normal mode. Since we know the normal modes from the previous investigation in Sec 9.3.1. we could
excite just one of them. Then, we will be able to see a periodic motion. However, there is a better way.

Writing the trajectory as a linear combination of normal modes:

x(t) =
3∑
i=1

ciuieiωit (11.35)

where ui and ωi are ith normal mode and its frequency. The complex coefficient ci is determined by the
initial condition. Now, we calculate the Fourier transform of x(t).

x̃(ω) =
3∑
i=1

ciui
∫ ∞
−∞

ei(ωi−ω)t dt =
3∑
i=1

2πciuiδ(ω − ωi). (11.36)

This result suggests that the Fourier transform of the trajectory has sharp peaks at the eigenfrequencies.
However, we don’t have a data for the entire time. Suppose we have a trajectory from t = 0 to t = T and
calculate “Fourier transform” using FFT. Since the trajectory is not zero after t = T , this is not a true
Fourier transformation. This “limited” Fourier transformation misses some long time behaviors. However, it
captures short time behavior correctly. More precisely, the resolution of ω domain is limited by ∆ω = 2π/T .

APPLICATIONS IN PHYSICS 301

0 50 100 150 200
0

1

2

3

4

5

6

7

t

x
(t
)

x1
x2
x3

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

ω

S
(ω
)

Figure 11.5: Normal modes of coupled oscillators by spectral analysis. Left: Trajectories of each oscillators. It
looks quite random. However, they are just a combination of three periodic motion. Right Power spectrum
of the trajectory. Three peaks corresponding to eigenfrequencies are sharp and clear. The dashed lines
indicates the eigenfrequencies obtained by eigenvalue anaysis in Sec. 9.3.1. They all match to the peak
positions.

We cannot see any fine structure smaller than ∆ω. For example the width of peaks cannot be smaller than
∆ω. Anys slow oscillation whose frequency smaller than ∆ω will not be detected by the FFT. However, if
∆ω < ωi < Ω, we will be able to identify the peaks. If the peak is not sharp enough, just calculate the
trajectory a little longer. As T increases, the peaks become sharper.

The right panel of Fig. 11.5 show the power spectra. The total period T = 200 provides a fine resolution
of ∆ω ≈ 0.03, small enough to build sharp peaks. All three eigenfrequencies are clearly identifiable and they
match well to the values obtained from the eigenvalue analysis in Sec. 9.3.1.

11.4.4 Wave Function in Momentum Space

In quantum mechanics, the probability to find the particle in a region between x and x+ dx is given by

|ψ(x)|2dx (11.37)

where ψ(x) is a wave function in the position space. Similarly the probability that the momentum of the
particle is between p and p+ dp is given by

|ψ̃(p)|2dp (11.38)

where ψ̃(p) is a wave function in the momentum space. These two wave functions are related by

ψ(x) = 1√
2π~

∫ ∞
−∞

f̃(p)eipx/~dp (11.39)

This is nothing but a Fourier transform except for the prefactors. It is more convenient to use wave number
k = p/~. ‡

‡In atomic units ~ = 1. Then p = k.

302 DISCRETE FOURIER TRANSFORM

-5 0 5
|A

0(k
)|

2
0

2

4

-5 0 5

|A
1(k

)|
2

0

1

2

3

k
-5 0 5

|A
2(k

)|
2

0

1

2

3

Figure 11.6: The probability density in momentum space for a quantum harmonic oscillator

Now consider the energy eigenstates of a quantum harmonic oscillator. Here, we show the wave functions
of the lowest three states using a normalized coordinate x (assume that mω/~ = 1),

ψ0(x) = 1√√
π

e−x
2/2 (11.40a)

ψ1(x) = 2√
2
√
π
xe−x2/2 (11.40b)

ψ2(x) = 1√
2
√
π

(2x2 − 1)e−x
2/2 (11.40c)

we have already calculated the Fourier transform the ground state in Example 10.1. Program XXX computes
the wave functions in momentum space and plot them. The result is plotted in Fig 11.6. In classical mechanics
the lowest energy state corresponding to the particle is still at x = 0. In quantum case, the mean momentum
is zero as the plot shows. However, the probability to find a particle with non-zero momentum is not small
due to the uncertainty principle. As energy increases, the second and third states allow higher momentum.
Note that the mean momentum is zero even for the higher energy states since the particle moves both
directions and thus the momentum cancels out.

PROBLEMS 303

11.5 Problems

11.1 Power Spectrum of Chaotic Motion

Solve the Lorentz equations

ẋ = σ(y − x) (11.41a)
ẏ = x(ρ− z) (11.41b)
ż = xy − βz (11.41c)

for Parameter values σ = 10, β = 8/3, and ρ = 28. Plot the power spectra of x(t) and y(t) and z(t).
Do you see any peak? Do you see any distinct pattern in the spectrum?

304 DISCRETE FOURIER TRANSFORM

MATLAB Source Codes

Program 11.1

%**
%* Example 11.1 *
%* filename: ch11pr01.m *
%* program listing number: 11.1 *
%* *
%* This program calculates the Fourier transform of Gaussian. *
%* *
%* Uses MATLAB function ifft() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all

% control parameters
N=1024;
T=50; %size of time domain
W=2*pi*N/T; % size of the frequency domain
dt=T/N; % resolution int
dw=2*pi/T; % resolution in omega

t0=[-N/2:N/2-1]*dt;% original time
t1=[0:N-1]*dt;% shifted time
w0=[-N/2:N/2-1]*dw; %original frequeny
w1=[0:N-1]*dw; %shifted frequency

% function in normal order
f0=exp(-t0.ˆ2)/sqrt(pi);

% function in swapped order
f1(1:N/2)=f0(N/2+1:N);
f1(N/2+1:N)=f0(1:N/2);

% FFT
g1=ifft(f1)*T;% do not forget to multiply T

% swap back to normal order
g0(1:N/2)=g1(N/2+1:N);
g0(N/2+1:N)=g1(1:N/2);

% analytic FT
g2=exp((-w0.ˆ2)/4);

subplot(2,2,1)
p=plot(t0,f0);
set(p,'linewidth',2);
hold on

axis([-T/2*1.05 T*1.05 0 1.0]);
legend('Original data')
legend('location','northwest')
xlabel('t','fontsize',14)
ylabel('f(t)','fontsize',14)
q=plot([-T/2,-T/2],[0,1],'--',[T/2,T/2],[0,1],'--');

PROBLEMS 305

set(q,'color','black')
hold off

subplot(2,2,3)
p=plot(t1,f1);
set(p,'linewidth',2);
axis([-T/2*1.05 T*1.05 0 1.0]);
legend('Swapped data')
legend('location','northwest')
xlabel('t','fontsize',14)
ylabel('f(t)','fontsize',14)
hold on
q=plot([0,0],[0,1],'--',[T,T],[0,1],'--');
set(q,'color','black')
hold off

subplot(2,2,2)
p=plot(w1,real(g1));
set(p,'linewidth',2');
axis([-W/2*1.05 W*1.05 0 1.3])
legend('FT Raw')
legend('location','northwest')
xlabel('ω','Interpreter','LaTex','fontsize',14)
ylabel('$\tilde{f}(\omega)$','Interpreter','LaTex','fontsize',14)
hold on
q=plot([0,0],[0,1.3],'--',[W,W],[0,1.3],'--');
set(q,'color','black')
hold off

subplot(2,2,4)
p=plot(w0,g0);
set(p,'linewidth',2');
axis([-W/2*1.05 W*1.05 0 1.3])
legend('FT Swapped')
legend('location','northwest')
xlabel('ω','Interpreter','LaTex','fontsize',14)
ylabel('$\tilde{f}(\omega)$','Interpreter','LaTex','fontsize',14)
hold on
q=plot([-W/2,-W/2],[0,1.3],'--',[W/2,W/2],[0,1.3],'--');
set(q,'color','black')
hold off

figure
p=plot(w0,g0,'-o',w0,g2);
axis([-5 5 0 1.3])
set(p(1),'linewidth',2')
set(p(2),'color','red')
legend('FFT','Exact')
xlabel('ω','Interpreter','LaTex','fontsize',16)
ylabel('$\tilde{f}(\omega)$','Interpreter','LaTex','fontsize',16)

NNN

Program 11.2
%**
%* Example 11.2 *
%* filename: ch11pr02.m *
%* program listing number: 11.2 *
%* *
%* This program calculates the fourier transform of the second order *
%* derivative. *

306 DISCRETE FOURIER TRANSFORM

%* *
%* Uses MATLAB function ifft() and fft() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all;

% control parameters
N=1024;
L=50; %size of time domain
K=2*pi*N/L; % size of the frequency domain
dx=L/N; % resolution int
dk=2*pi/L; % resolution in wave number

x0=[-N/2:N/2-1]*dx;% original time
x1=[0:N-1]*dx;% shifted time
k0=[-N/2:N/2-1]*dk; %original frequeny
k1(1:N/2)=k0(N/2+1:N);
k1(N/2+1:N)=k0(1:N/2);

f0=exp(-x0.ˆ2)/sqrt(pi); % function in normal order

f1(1:N/2)=f0(N/2+1:N); % function in swapped order
f1(N/2+1:N)=f0(1:N/2);

% FFT
F1=ifft(f1); % prefactor not need this time
F1=-F1.*(k1.ˆ2); % because we perform both forward
g1=fft(F1); % and inverse transformation.

g0(1:N/2)=g1(N/2+1:N); % swap back to normal order
g0(N/2+1:N)=g1(1:N/2);

g2=exp(-x0.ˆ2)/sqrt(pi).*(4*x0.ˆ2-2); % analytic FT

p=plot(x0,real(g0),x0,g2);
set(p(1),'linewidth',2,'color','red')
set(p(2),'color','blue')
axis([-6 6 -1.4 0.8])
xlabel('x','fontsize',14)
ylabel('g(x)','fontsize',14)
legend('FFT','exact')
legend('location','southeast')

NNN

Program 11.3
%**
%* Section 11.4.3 *
%* filename: ch11pr03.m *
%* program listing number: 11.3 *
%* *
%* This program calculates the power spectrum of coupled oscillators. *
%* *
%* Uses MATLAB function fft() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all

PROBLEMS 307

% system parameters
m=[2,4,3];
k=[2,4,4,2];
L=[1,2,1,2,8];
K=[[k(1)+k(2),-k(2),0];[-k(2),k(2)+k(3),-k(3)];[0,-k(3),k(3)+k(4)]];
b=[k(1)*L(1)-k(2)*L(2); k(2)*L(2)-k(3)*L(3);k(3)*L(3)+k(4)*(L(5)-L(4))];
M=[[1/m(1),0,0];[0,1/m(2),0];[0,0,1/m(3)]];

% initial conditions
x0=[5/3;4;16/3]; % at the equilibrium
v0=[1,0,0];

% control parameters
T=200;
N=4096;
dt=T/N;
dw=2*pi/T;
w=linspace(0,N-1,N)*dw;

% First we calculate the trajectory of oscillators
x(1:3,1)=x0;
v(1:3,1)=v0;
t(1)=0;
% 1st step (Euler step)
x(:,2) = x(:,1)+v(:,1)*dt;
t(2)=t(1)+dt;

% Verlet algorithm
for i=3:N

f = -K*x(:,i-1)+b;
x(:,i)=2*x(:,i-1)-x(:,i-2)+(M*f)*dtˆ2;
v(:,i-1)=(x(:,i)-x(:,i-2))/(2*dt);
t(i)=t(1)+(i-1)*dt;

end

% Now, we analyze the trajectories.
X=x(1,:)-x0(1); % deviation form the equilibrium
y=fft(X(1,:))/T; % Fourer transform
S = abs(y(1,:).ˆ2); % power spectrum

Figure1=figure(1);clf;
set(Figure1,'defaulttextinterpreter','latex');
subplot(1,2,1)
plot(t,x(1,:),t,x(2,:),t,x(3,:))
xlabel('t','fontsize',14,'interpreter','latex')
ylabel('$x(t)$','fontsize',14,'interpreter','latex')
axis([0 T 0 7])
h=legend('x_1','x_2','x_3');
set(h,'Interpreter','latex')

subplot(1,2,2)
r=plot(w,S);
axis([0 3 0 8])
xlabel('ω','fontsize',14,'interpreter','latex')
ylabel('$S(\omega)$','fontsize',14,'interpreter','latex')
set(r,'linewidth',2)
hold on
q=plot([2.056127, 2.056127], [0, 8], '--',...

[1.540700, 1.540700], [0, 8], '--',...
[0.631338, 0.631338], [0, 8], '--');

308 DISCRETE FOURIER TRANSFORM

set(q,'color','black')
hold off

NNN

Program 11.4
%**
%* Section 11.4.4 *
%* filename: ch11pr04.m *
%* program listing number: 11.4 *
%* *
%* This program calculates the probability distribution of a harmonic *
%* oscillator in the momentum spapce.
%* *
%* Uses MATLAB function ifft() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
clear all

% control parameters
N=1024;
X=100; %size of position space
K=2*pi*N/X; % size of momentum space
dx=X/N; % resolution int
dk=2*pi/X; % resolution in omega

x0=[-N/2:N/2-1]*dx;% original time
x1=[0:N-1]*dx;% shifted time
k0=[-N/2:N/2-1]*dk; %original frequeny
k1=[0:N-1]*dk; %shifted frequency

% function in normal order
psix0=exp(-x0.ˆ2/2)/sqrt(sqrt(pi));
psix1=2*x0.*exp(-x0.ˆ2/2)/sqrt(2*sqrt(pi));
psix2=(2*x0.ˆ2-1).*exp(-x0.ˆ2/2)/sqrt(2*sqrt(pi));

f(1:N/2)=psix0(N/2+1:N); % function in swapped order
f(N/2+1:N)=psix0(1:N/2);
g=ifft(f)*X;% do not forget to multiply T
psik0(1:N/2)=g(N/2+1:N);% swap back to normal order
psik0(N/2+1:N)=g(1:N/2);

f(1:N/2)=psix1(N/2+1:N); % function in swapped order
f(N/2+1:N)=psix1(1:N/2);
g=ifft(f)*X;% do not forget to multiply T
psik1(1:N/2)=g(N/2+1:N);% swap back to normal order
psik1(N/2+1:N)=g(1:N/2);

f(1:N/2)=psix2(N/2+1:N); % function in swapped order
f(N/2+1:N)=psix2(1:N/2);
g=ifft(f)*X;% do not forget to multiply T
psik2(1:N/2)=g(N/2+1:N);% swap back to normal order
psik2(N/2+1:N)=g(1:N/2);

subplot(3,1,1)
p1=plot(k0(N/4:3*N/4),abs(psik0(N/4:3*N/4)).ˆ2);

PROBLEMS 309

ylabel(texlabel('|psi_0(k)|ˆ2'))
subplot(3,1,2)
p2=plot(k0(N/4:3*N/4),abs(psik1(N/4:3*N/4)).ˆ2);
ylabel(texlabel('|psi_1(k)|ˆ2'))
subplot(3,1,3)
p3=plot(k0(N/4:3*N/4),abs(psik2(N/4:3*N/4)).ˆ2);
ylabel(texlabel('|psi_2(k)|ˆ2'))
xlabel('k')
hold off

NNN

Python Source Codes

Program 11.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 11.1 *
%* filename: ch11pr01.py *
%* program listing number: 11.1 *
%* *
%* This program calculates the fourier transform of Gaussian. *
%* *
%* Uses Numpy fft package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

control parameters
N=1024

Setting time domain
T=50. # size of time domain
dt=T/N # time interval
tmin=-T/2.
tmax=tmin+dt*(N-1)
t0=np.linspace(tmin,tmax,N) # original time
t1=np.linspace(0.0,dt*(N-1),N) # fft ordered time

setting frequency domain
W=2.0*np.pi*N/T # size of the frequency domain
dw=W/N # frequency resolution
wmin=-W/2.0
wmax=wmin+dw*(N-1)
w0=np.linspace(wmin,wmax,N) # frequency domain we want
w1=np.linspace(0.0,dw*(N-1),N) # fft frequency domain

original Gaussian function in time domain
f0=np.exp(-t0**2)/np.sqrt(np.pi)
function in fft order

310 DISCRETE FOURIER TRANSFORM

f1=np.fft.fftshift(f0)

FFT from time to frequency domain in ffto order
g1=np.fft.ifft(f1)*T # do not forget to multiply T

Get the normal frequenx=cy domain order
g0=np.fft.ifftshift(g1)

analytic FT
g2=np.exp((-w0**2)/4.0)

plt.figure(figsize=(12,10))
plt.subplot(2,2,1)
plt.plot(t0,f0,'-r',label=r'original input',linewidth=2)
plt.plot([-T/2,-T/2],[0,1],'--k')
plt.plot([T/2,T/2],[0,1],'--')
plt.axis([-T/2*1.05, T*1.05, 0.0, 1.0])
plt.legend(loc=2)
plt.xlabel(r't',fontsize=14)
plt.ylabel(r'$f(t)$',fontsize=14)

plt.subplot(2,2,3)
plt.plot(t1,f1,'-r',label='fft input',linewidth=2)
plt.plot([0,0],[0,1],'--k')
plt.plot([T,T],[0,1],'--k')
plt.axis([-T/2*1.05, T*1.05, 0.0, 1.0])
plt.legend(loc=2)
plt.xlabel(r't',fontsize=14)
plt.ylabel(r'$f(t)$',fontsize=14)

plt.subplot(2,2,2)
plt.plot(w1,np.real(g1),'-r',label='fft output',linewidth=2)
plt.plot([0,0],[0,1.3],'--k')
plt.plot([W,W],[0,1.3],'--k')
plt.axis([-W/2*1.05, W*1.05, 0.0, 1.3])
plt.legend(loc=2)
plt.xlabel(r'ω',fontsize=14)
plt.ylabel(r'$\tilde{f}(\omega)$',fontsize=14)

plt.subplot(2,2,4)
plt.plot(w0,g0,'-r',label='desired output',linewidth=2)
plt.plot([-W/2,-W/2],[0,1.3],'--k')
plt.plot([W/2,W/2],[0,1.3],'--k')
plt.axis([-W/2*1.05, W*1.05, 0.0, 1.3])
plt.legend(loc=2)
plt.xlabel(r'ω',fontsize=14)
plt.ylabel(r'$\tilde{f}(\omega)$',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
plt.plot(w0,g0,'-or',label='FFT',linewidth=2)
plt.plot(w0,g2,'-k',label='Exact',linewidth=2)
plt.xlabel(r'ω',fontsize=14)
plt.ylabel(r'$\tilde{f}(\omega)$',fontsize=14)
plt.show()

NNN

Program 11.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-

PROBLEMS 311

"""
%**
%* Example 11.2 *
%* filename: ch11pr02.py *
%* program listing number: 11.2 *
%* *
%* This program calculates the fourier transform of the second order *
%* derivative. *
%* *
%* Uses Numpy FFT package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

control parameters
N=1024

position domain
X=50. # size of position domain
dx=X/N # position interval
xmin=-X/2.
xmax=xmin+dx*(N-1)
x0=np.linspace(xmin,xmax,N) # position space in natural order
x1=np.linspace(0.0,dx*(N-1),N) # position space in fft order

momentum domain
K=2.0*np.pi*N/X # size of the momentum domain
dk=K/N # resolution in momentum space
kmin=-K/2.
kmax=kmin+dk*(N-1)
k0=np.linspace(kmin,kmax,N) # momentum space in natural order
k1=np.fft.fftshift(k0) # momentum space in shifted order

f0=np.exp(-x0**2)/np.sqrt(np.pi) # input in natural order
f1=np.fft.fftshift(f0) # input in fft order

FFT from position to momentum domain
F1=np.fft.fft(f1) # prefactor not need this time
F1=-F1*(k1**2) # because we perform both forward
g1=np.fft.ifft(F1) # and inverse transformation.
g0=np.fft.ifftshift(g1) # output in natural order

g2=np.exp(-x0**2)/np.sqrt(np.pi)*(4.0*x0**2-2.0) # analytic FT

plt.figure(figsize=(6,5))
plt.plot(x0,np.real(g0),'-or',label='FFT')
plt.plot(x0,g2,'-b',label='exact')
plt.axis([-6., 6., -1.4, 0.8])
plt.xlabel('x',fontsize=14)
plt.ylabel('g(x)',fontsize=14)
plt.legend(loc=4)
plt.show()

NNN

Program 11.3
#!/usr/bin/env python3

312 DISCRETE FOURIER TRANSFORM

-*- coding: utf-8 -*-
"""
%**
%* Section 11.4.3 *
%* filename: ch11pr03.m *
%* program listing number: 11.3 *
%* *
%* This program calculates the power spectrum of coupled oscillators. *
%* *
%* Uses MATLAB function fft() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
m=[2.,4.,3]
k=[2.,4.,4.,2.]
L=[1.,2.,1.,2.,8.];
K=[[k[0]+k[1],-k[1],0], [-k[1],k[1]+k[2],-k[2]], [0,-k[2],k[2]+k[3]]]
b=[k[0]*L[0]-k[1]*L[1], k[1]*L[1]-k[2]*L[2],k[2]*L[2]+k[3]*(L[4]-L[3])]
M=[[1./m[0],0.,0.],[0.,1./m[1],0.],[0.,0.,1./m[2]]]
b=np.array(b)
K=np.array(K)
M=np.array(M)

initial conditions
x0=np.array([5./3.,4.,16./3.]) # at the equilibrium
v0=np.array([1.,0.,0.])

control parameters
T=200.
N=4096
dt=T/N
dw=2.*np.pi/T
w=np.linspace(0.,dw*(N-1),N)
t=np.linspace(0.,dt*(N-1),N)
x=np.zeros((3,N))
v=np.zeros((3,N))
f=np.zeros(3)
X=np.zeros(N)
Y=np.zeros(N)
First we calculate the trajectory of oscillators
x[:,0]=x0
v[:,0]=v0

#1st step (Euler step)
x[:,1] = x[:,0]+v[:,0]*dt

Verlet algorithm
for i in range(2,N):

f= -np.dot(K,x[:,i-1])+b
x[:,i]=2.0*x[:,i-1]-x[:,i-2]+np.dot(M,f)*dt**2
v[:,i-1]=(x[:,i]-x[:,i-2])/(2.0*dt)

Now, we analyze the trajectories.
X=x[0,:]-x0[0] # deviation form the equilibrium
Y=np.fft.fft(X)/T # Fourer transform

PROBLEMS 313

S = np.abs(Y**2) # power spectrum

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,x[0,:],'-b',label=r'x_1')
plt.plot(t,x[1,:],'-g',label=r'x_2')
plt.plot(t,x[2,:],'-r',label=r'x_3')
plt.xlabel(r't',fontsize=14)
plt.ylabel(r'$x(t)$',fontsize=14)
plt.axis([0, T, 0, 7,])
plt.legend(loc=2)

plt.subplot(1,2,2)
plt.plot(w,S,'-b')
plt.axis([0, 3, 0, 8,])
plt.xlabel(r'ω',fontsize=14)
plt.ylabel(r'$S(\omega)$',fontsize=14)
plt.plot([2.056127, 2.056127], [0, 8], '--k')
plt.plot([1.540700, 1.540700], [0, 8], '--k')
plt.plot([0.631338, 0.631338], [0, 8], '--k')
plt.show()

NNN

Program 11.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 11.4.4 *
%* filename: ch11pr04.py *
%* program listing number: 11.4 *
%* *
%* This program calculates the probability distribution of a harmonic *
%* oscillator in the momentum spapce. *
%* *
%* Uses Numpy FFT package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

control parameters
N=1024

position domain
X=100. # size of position domain
dx=X/N # position interval
xmin=-X/2.
xmax=xmin+dx*(N-1)
x0=np.linspace(xmin,xmax,N) # position space in natural order
x1=np.linspace(0.0,dx*(N-1),N) # position space in fft order

momentum domain
K=2.0*np.pi*N/X # size of the momentum domain
dk=K/N # resolution in momentum space
kmin=-K/2.
kmax=kmin+dk*(N-1)

314 DISCRETE FOURIER TRANSFORM

k0=np.linspace(kmin,kmax,N) # momentum space in natural order
k1=np.linspace(0.0,dk*(N-1),N) # momentum space in shifted order

function in normal order
psix0=np.exp(-x0**2/2.0)/np.pi**(1./4.)
psix1=2.0*x0*np.exp(-x0**2/2.0)/np.pi**(1./4.)/np.sqrt(2.0)
psix2=(2.0*x0**2-1.0)*np.exp(-x0**2/2.0)/np.pi**(1./4.)/np.sqrt(2.0)

Ground state (n=0)
f=np.fft.fftshift(psix0) # function in swapped order
g=np.fft.ifft(f)*X # do not forget to multiply X
psik0=np.fft.ifftshift(g)
1st excited state (n=1)
f=np.fft.fftshift(psix1) # function in swapped order
g=np.fft.ifft(f)*X # do not forget to multiply X
psik1=np.fft.ifftshift(g)
2nd excited state (n=2)
f=np.fft.fftshift(psix2) # function in swapped order
g=np.fft.ifft(f)*X # do not forget to multiply X
psik2=np.fft.ifftshift(g)

N1=np.int(N/3)
N2=2*N1

plt.figure(figsize=(6,15))
plt.subplot(3,1,1)
plt.plot(k0[N1:N2],abs(psik0[N1:N2])**2)
plt.ylabel(r'$|\psi_0(k)|ˆ2$')

plt.subplot(3,1,2)
plt.plot(k0[N1:N2],abs(psik1[N1:N2])**2)
plt.ylabel(r'$|\psi_1(k)|ˆ2$')

plt.subplot(3,1,3)
plt.plot(k0[N1:N2],abs(psik2[N1:N2])**2)
plt.ylabel(r'$|\psi_2(k)|ˆ2$')

plt.xlabel(r'k')
plt.show()

NNN

Bibliography

[1] Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in the west. Technical Report MIT-
LCS-TR-728, Massachusetts Institute of Technology, September 1997. The source codes and manuals are
available at http://www.fftw.org/.

[2] James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex fourier
series. Math Comput, 19:297–301, 1965.

[3] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

315

CHAPTER 12

DATA FITTING

In many numerical methods, we evaluate a function f(x) at a set of sampling points xi, i = 0, · · · , N . We
have been using the set of function values Fi = f(xi) as a discrete expression of the function. Now, we
consider the opposite operation. Suppose that we are given a data set (xi, Fi), i = 0, · · · , N . Can we find
the original function f(x)? Strictly speaking, that is not possible. Since the data set provides only a limited
information, there is no way to define a unique function. Many different functions can generate the same
data set. Nevertheless, we want to find a function with the help of additional conditions. This is the data
fitting problem.

The fitting methods depend on what you want to learn from the data. There are two major different
classes of problems. In one class, we want to know the function value between the data points. What is
the value of f(x) at x between xi and xi+1? This is the interpolation problem. In some cases, we also
want to know the derivative of the function. Of course we have no way to know it exactly. Therefore, we
have to assume various properties of the function. The minimum requirement is that the function must be
continuous. In addition, the continuity of f ′(x), and f ′′(x) can be optionally required. In most cases, our
focus is on the small region and we don’t need to find f(x) for the wide range of x. Piece-wise polynomials
are good enough to fill the gap between data points. Such methods are called spline. Usually, this kind of
problems assume that the data points are exact and thus all data points must be exactly on the fitted curve.
On the other hand, the function f(x) not necessary corresponds to a theoretical prediction based on physics.
We just want to express the discrete data sets with a continuous function so that we can find the function
values between the data points.

The second kind of problem is quite different. We know the type of function f(x) predicted by a theory
or by a conjecture, say, a Gaussian function. We want to compare the prediction with the data set obtained
by an experiment. However, the function often contains parameters whose values are unknown. For the

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

317

318 DATA FITTING

Gaussian function, the mean and variance are the parameters. If the theory is correct, we should be able
to determine the parameter values by fitting the parameter values to the experimental data. Unlike the
previous problems, the data set is usually noisy and erroneous. It is not necessary to fit the function exactly
to the data. Furthermore, the number of parameters are much smaller than the size of the data set. It is
not possible to satisfy all conditions by adjusting a few parameters. Therefore, the “fitness” is not uniquely
defined. In statistics, this kind of analysis is called regression. In general this is an optimization problem.

In this chapter we discuss the two classes of the problems, spline and least square fitting. More advanced
optimization methods will be used in Chapter 18.

12.1 Spline

Consider a data set (xi, Fi), i = 0, · · · , N . We expect that these data are sampled from an continuous
function f(x). However, we have no knowledge of the function. We want to find the function so that we can
see the function values between data points. However, there is no way to determine the function uniquely
since we have only a finite number of the data. There are infinitely many functions which match to the data.
Therefore, we need further assumptions. We consider two different approaches. In one approach, we assume
that f(x) is a polynomial of order N . This single function covers the whole region x ∈ [x0, xN]. We will
discuss this approach later. The other approach uses a different function for each segment. For the segment
x ∈ [xi, xi+1], we introduce a function fi(x). Usually, information given in the data set is not enough to
determine the function and some additional conditions are needed for this approach.

12.1.1 Linear Spline

We begin with the simplest spline. This method is not very useful in practice but leads us to a better
method. For simplicity, we introduce a new variable

t = x− xi
hi

, t ∈ [0, 1] (12.1)

where the gap distance between xi and xi+1 is denoted as hi = xi+1 − xi. When x varies from xi to xi+1, t
changes from 0 to 1.

Between two adjacent points xi and xi+1, we assume that the function takes a linear form

fi(t) = ait+ bi . (12.2)

The function must agree with the data points and thus

fi(0) = Fi, fi(1) = Fi+1 (12.3)

which is the mandatory condition. These two conditions are sufficient to determine the parameters ai and
bi. No other conditions are needed. We immediately find ai = Fi+1 − Fi and bi = Fi and thus the function
is.

fi(t) = (1− t)Fi + tFi+1 (12.4)
which interpolates the function values between the two data points.

The present scheme simply connects data points by straight lines as we do when we plot a data. A major
draw back of this method is that the function is not smooth at every data point. (See Example) The required
condition (12.3) guarantees that the function is continuous but its derivative is not necessarily continuous.
WE could impose additional condition such that the derivative is continuous at the data points. However,
the parameters ai and bi in the linear interpolation (12.2) are already uniquely determined by the condition
(12.3. There is no room to impose additional conditions. Therefore, higher order polynomials must be used
if we need a smooth function,

SPLINE 319

Table 12.1: Data for polynomial fitting

x 0 1 2 3 4 5

F 0.0000 0.6889 0.6095 0.0774 -0.3401 -0.3528

x 6 7 8 9 10

F -0.0842 0.1620 0.1997 0.0681 -0.0736

EXAMPLE 12.1

A data set is given in Table 12.1. We will interpolate between these data points by linear functions.
Program ?? uses Eq. (12.4) to fill the gap between the data points. The result is shown in Fig. 12.1a.
Although all data points are exactly connected, the curve is not smooth at the data points. The data
(Table 12.1) is actually sampled from sin(x)e−x/5, which is the dashed line in Fig. 12.1a. The large
difference between the linear spline and the original function is seen hear the maxima and minima of the
function. A high order method is needed to improve it.

12.1.2 Cubic Spline

In order to make it sure that the function is smooth, we require that the first and second order derivatives are
continuous. A function fi(t) interpolates between the two points xi and xi+1. In addition to the mandatory
conditions (12.3), we impose

f ′i−1(1) = f ′i(0), f ′i(1) = f ′i+1(0) (12.5)
f ′′i−1(1) = f ′′i (0), f ′′i (1) = f ′′i+1(0) (12.6)

where the single and double prime indicate the first and second order derivatives, respectively. These four
additional conditions allows two more parameters in fi(t). (Note that these conditions are shared by the
neighboring segments and thus only two additional degrees of freedom are allowed.) Therefore, fi(t) must
be a cubic function of t.

Detailed derivation is given in Appendix. Here we show the final result. The following function satisfied
three conditions (12.3), (12.5) and (12.6).

fi(t) = h2
i

6 t(t+ 1)(t− 1)Qi −
h2
i

6 t(t− 1)(t− 2)Qi+1 + (1− t)Fi + tFi+1, i = 0, · · · , N − 1 (12.7)

where Q0 = QN = 0 and remaining Qi is the solution of linear equation

d1 h1 0 · · · 0

h1 d2 h2 0

0 h2 d3
.

... hN-2

0 0 · · · hN-2 dN-1

Q1

Q2
...

QN-2

QN-1

=

G1

G2
...

GN-2

GN-1

(12.8)

where di = 1
2(hi + hi−1) and Gi = 3

(
Fi+1 − Fi

hi
− Fi − Fi−1

hi−1

)
. The matrix in Eq (12.8) is tridiagonal,

which makes it relatively easy to solve the equation for a large data set. This is one reason cubic spline is
popular.

320 DATA FITTING

x
0 2 4 6 8 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Spline
Data
Original

(a) Linear spline: The linear interpolation is contin-
uous but it is not smooth at every data point. In
particular, it looks bad near the extrema.

x
0 2 4 6 8 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cubic Spline
Data
Original

(b) Cubic spline: The curve is now smooth.

Figure 12.1: Linear and cubic spline of the data given in Exampel 12.1. The dashed curve is the original
function from which the data set was generated.

EXAMPLE 12.2

We fits the data in Example 12.1 using cubic spline. Program 12.1 solves the linear equation (12.8) and
constructs the cubic functions (12.7). The result is shown in Fig. 12.1b. The curve is now smooth and
looks more natural than the linear spline.

12.1.3 Vandermonde matrix

Since we are given N + 1 data, we can, in principle, determine N + 1 unknown parameters. Thus we can
interpolate the data with a polynomial of degree N ,

f(x) = a0 + a1x+ a2x
2 + · · · aNx

N . (12.9)

The fitting rule is simply f(xi) = Fi, , ∀i. Substituting the data points to this equation, we have a set of
equations that the coefficients ai must satisfy,

Fi = a0 + a1xi + a2x
2
i + · · ·+ aNx

N , i = 0, · · · , N (12.10)

which can be written in a matrix form Xa = f where

X =

1 x0 x2

0 · · · xN0

1 x1 x2
1 · · · xN1

...

1 xN-1 x2
N-1 · · · xN

N

 , a =

a0

a1
...

aN

 , f =

F0

f1
...

FN

 . (12.11)

Then the solution is a = X−1f . The matrix X is called the Vandermonde matrix.

SPLINE 321

x
0 1 2 3 4 5 6 7 8 9 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Data
Vandermonde fit
Original

Figure 12.2: Polynomial Fitting of random data given in Table 12.1. The open circles show the original data
and the line plots the interpolation by the polynomial obtained by the Vandermonde matrix.

In general the Vandermonde matrix is not a nice matrix to solve due to round-off errors which grows as N
increases. In addition, unlike the tridiagonal matrix for the cubic spline method, the Vandermonde matrix
is not a sparse matrix and it takes longer time to solve Eq. (12.11).

EXAMPLE 12.3 Vandermode matrix

We fit the data in Table 12.1 again. This time we fit the data to a polynomials of degree 10 using the
Vandermonde method. Program 12.2 implements the above method and the result is plotted in Fig.
12.2. The fitted curve looks more natural than the cubic spline (Fig. 12.1b). It is essentially identical
to the original function from which the data set was genrated.

The following code executes the above method. The result is plotted in Fig. 12.2. The curve passes
through the given data points precisely as it should. However, the interpolation is reasonable only
between x = 3 and x = 7. Suspicious dips can be seen between x = 0 and x = 1 and also between x = 9
and x = 10. Off course, we cannot tell that those are false. Simply we don’t have sufficient data to
interpolate near the boundaries. However, those dips violate our underlying assumption. Therefore, we
conclude that the interpolation is good only in the central region. In this example, the Vandermonde
matrix is able to fit the data very well.

12.1.4 Lagrange Polynomial

There is another way to determine the coefficients of the polynomial. Expanding the function near the
sampling point,

Fi = f(xi) = f(x) + (x− xi)f ′(x) + 1
2(x− xi)2f ′′(x) + · · · , i = 0, · · · , N (12.12)

Since there is N + 1 equations, we can solve them for f(x), f ′(x), ..., f (N)(x). For example if N = 1, we
have two equations upto the first order derivatives

F0 = f(x) + (x− x0)f ′(x) (12.13a)
F1 = f(x) + (x− x1)f ′(x) (12.13b)

322 DATA FITTING

Solving these equations for f(x), we just get Eq. (12.4). For N = 2, we include the second order derivatives
and the equations to solve is given by

F0 = f(x) + (x− x1)f ′(x) + 1
2(x− x1)2f ′′(x) (12.14a)

F1 = f(x) + (x− x2)f ′(x) + 1
2(x− x2)2f ′′(x) (12.14b)

F2 = f(x) + (x− x3)f ′(x) + 1
2(x− x3)2f ′′(x) (12.14c)

and the solution is

f(x) = (x− x2)(x− x3)
(x1 − x2)(x1 − x3)F0 + (x− x1)(x− x3)

(x2 − x1)(x2 − x3)F1 + (x− x1)(x− x2)
(x3 − x1)(x3 − x2)F2 (12.15)

which is equivalent to the quadratic fitting.
The solution for general N is known as Lagrange polynomials

f(x) =
N∑
n=0

`n(x)Fn (12.16)

where Lagrange basis polynomials are defined by

`n(x) =
N∏

m=0,m 6=n

x− xm
xn − xm

(12.17)

= (x− x1)
(xn − x1) ·

(x− x2)
(xn − x2) · · ·

(x− xn−1)
(xn − xn−1) ·

(x− xn+1)
(xn − xn+1) · · ·

(x− xN−1)
(xn − xN−1) . (12.18)

This method does not have to invert the matrix and thus numerically stable. However, you have to evaluate
the product for each x.

The results of the Lagrange polynomial interpolation is identical to those obtained from the Vandermonde
matrix method. As we saw in the previous section, fitting all data to a high degree of polynomial is not a
good way to interpolate. Use a several point, say 5 points, from xj−2 to xj+2. Then, the result is reasonable
near xj .

EXAMPLE 12.4

We solve the same problem as Example 12.3 using the Lagrange polynomial method. Program 12.3 fits
the polynomial to the data. Although the algorithm is different, this method must agree with the result
of the Vandermonde method. Indeed, the program produces the plot identical to Fig. 12.2.

12.2 Least Square Fitting

12.2.1 General Theory

Consider a data set (xi, Fi), i = 0, · · · , N measured at sampling points xi. The data Fi is supposed to be
a measured value of a known function f(xi). However, the measurement is noisy and the data carries error

LEAST SQUARE FITTING 323

bars σi. That means Fi − σi . f(xi) . Fi + σi. Now, we want to determine the original function f(x)
from the data set as accurate as possible. Unlike the interpolation problem, f(xi) = Fi is not a required
condition (not a fitting rule) since there is uncertainty in the data set. Furthermore, the size of the data set
N is usually much bigger than the number of adjustable parameters M . Then, it is not possible to satisfy
the condition f(xi) = Fi, ∀i.

Now, we need to find a rule of “fitness”. Look at Fig. 12.3, humans can tell which line fits the data point
better. We need to quantify the degree of “better”. A commonly used method is the least square fit. We try
to fit a target function f(x;λ) to the data by adjusting a set of parameters λ = {λ1, · · · , λM}. Although we
don’t require f(xi;λ) = Fi, we certainly want f(xi;λ) as close to Fi as possible. We measure the deviation
of the target function from the data point by

∆i(λ) = f(xi;λ)− Fi. (12.19)

and defined the overall deviation by

∆2(λ) =
N−1∑
i=0

∆2
i (λ). (12.20)

As mentioned above, it is not possible to make ∆i vanish for all i and thus ∆2 cannot be zero. Now, our
goal is to find parameter values which minimize the deviation (12.20). This is the fitting rule. In optimization
theory, functions to be optimized is called cost function (or loss function, objective function,). Equation
(12.20) is one example of the cost function.

The cost function (12.20) treats the every data equally. However, the data with larger error bars are less
reliable than other data. It is a good idea to discriminate such data. (Do not ignore them completely. They
still contain some useful information.) A common cost function that takes into account the error bars is the
χ2 function defined by

χ2(λ) =
N−1∑
i=0

[
∆i(λ)
σi

]2
. (12.21)

∆2(λ) is a special case of χ2(λ) where σi = 1,∀i.
To find the minimum of χ2, we calculate its gradient with respect to λ and set it to zero,

∂χ2

∂λi
= 2

N−1∑
i=0

∂f(xi;λ)
∂λj

∆i(λ)
σ2
i

= 0 (12.22)

or in matrix form
∇χ2 = Jb = 0 (12.23)

where the Jacobian matrix is defined by

J =

 Jij = 1
σi

∂f(xi;λ)
∂λj

 , b =

∆0/σ0

...

∆N−1/σN−1

 (12.24)

Since b 6= 0, Eq. (12.23) indicates that J is a singular matrix when χ2 is at the minimum. This makes
the least square fitting numerically tough. Note that there is no this kind of problems for the interpolation
problems because b = 0 is the solution and J does not have to be singular. (This does not mean that the
Vandermonde matrix is nice. Actually, it is also ill-conditioned.)

324 DATA FITTING

Table 12.2: Data set for Example 12.5.

x 0 1 2 3 4 5 6 7 8 9 10

F 0.1 0.90 1.7 3.4 4.5 4.7 6.2 7.6 7.85 9.03 9.6

12.2.2 Linear Regression

Fitting the data to a straight line known as linear regression is a common task in analyzing experimental
data. The straight line has two parameters

f(x;λ) = λ1 + λ2x (12.25)

In the Lagrange polynomial interpolation, we needed only two data points to determine the parameters.
However, the size of the experimental data can be very large. The χ2 function for this target function is

χ2(λ) =
N∑
i=0

[
Fi − λ1 − λ2xi

σi

]2
(12.26)

and at the extremum

∂χ2

∂λ1
= −2

N∑
i=0

Fi − λ1 − λ2xi
σ2
i

= 2
[(∑ 1

σ2
i

)
λ1 +

(∑ xi
σ2
i

)
λ2 −

(∑ Fi
σ2
i

)]
= 0 (12.27a)

∂χ2

∂λ2
= −2

N∑
i=0

xi(Fi − λ1 − λ2xi)
σ2
i

= 2
[(∑ xi

σ2
i

)
λ1 +

(∑ x2
i

σ2
i

)
λ2 −

(∑ xiFi
σ2
i

)]
= 0 (12.27b)

and the solution is

λ1 =

(∑ Fi

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)(∑ xiFi

σ2
i

)
(∑ 1

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)2 (12.28a)

λ2 =

(∑ 1
σ2

i

)(∑ xiFi

σ2
i

)
−
(∑ xi

σ2
i

)(∑ Fi

σ2
i

)
(∑ 1

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)2 (12.28b)

EXAMPLE 12.5

We fit the data given in Table 12.2 with a straight line using the linear regression method. Progrm 12.4
determines the coefficients (12.28). Since no error bar is given, σi = 1 is assumed (no discrimination).
Figure 12.3 plots the resulting curve which is fitted well to the data.

LEAST SQUARE FITTING 325

x
0 2 4 6 8 10

f(
x)

0

2

4

6

8

10

Figure 12.3: Linear regression: The solid line is obtained by the linear regression formula (12.28) with σi = 1.
Despite that the data is noisy, the fitted line represents the data set very well.

12.2.3 General Linear Least Square Fitting

It is straight forward to extend the linear regression method and fit the data with a linear combination of
basis functions ui(x)

f(x) =
M∑
k=1

λkuk(x). (12.29)

To minimize the χ2 function, we calculate

∂χ2

∂λj
= ∂

∂λj

N∑
i=0

1
σ2
i

[
M∑
k=1

λkuk(xi)− f̄i

]2

= 2
N∑
i=0

uj(xi)
σ2
i

[
M∑
k=1

λkuk(xi)− Fi

]
= 0 (12.30)

and thus
N∑
i=0

M∑
k=1

uj(xi)uk(xi)
σ2
i

λk =
N∑
i=0

uj(xi)Fi
σ2
i

(12.31)

or writing it in a matrix form
JtJλ = Jtb (12.32)

where

J =

 Jij = uj(xi)
σi

 , λ =

λ1
...

λM

 , b =

F0/σ0

...

FN/σN

 (12.33)

Note that the matrix J is N by M and not necessarily a square matrix. In most cases, N �M . Noting that
JtJ is a square matrix, Eq. (12.32) can be solved by Gaussian elimination or other methods in Chapter XX.

If ui(x) = xi, then J is the Vandermonde matrix. When N = M , it is exactly the same as the polynomial
interpolation and χ2 = 0.

326 DATA FITTING

Table 12.3: Data set for Example 12.5.

x -4.85 -3.99 -3.10 -2.10 -0.83 -0.004 0.94 1.95 2.84 4.18 4.89

f̄ -47.9 -35.0 -20.5 -12.5 -1.46 1.71 -0.14 -8.09 -12.9 -37.7 -46.5

σ 2.2 1.8 1.2 1.8 2.9 1.7 1.2 1.5 1.3 2.2 1.7

x
-6 -4 -2 0 2 4 6

f(
x)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

data
fitted curve

Figure 12.4: Least square fitting of the data set in Table 12.3 with a quadratic function. THe error bar is
large where the data is close to zero. The χ2 function allows those points to stay off the curve but not too
far.

EXAMPLE 12.6

Using the least square fitting method, we fit the data given in Table 12.3 with a quadratic curve. Using
the basis functions u1(x) = 1, u2(x) = x, and u3(x) = x2, the target function is quadratic. Program
12.5 implements the above method and the result is plotted in Fig. 12.4. At the data points where the
error bar is small, the fitted curve is almost right on the data points. The data points with large error
bar are off the curve but most of them are within the errorbars.

12.2.4 Nonlinear Least Square Fitting: Gauss-Newton method

So far, the target functions are linear with the fitting parameters. The least square fitting can be used even
for nonlinear functions. An iterative method is commonly used. Starting with an initial guess λ(0), we repeat
the following procedure until the χ2 does not change significantly, First, we expand the target function with
respect to λ around the current value of λ(n) and keep only the first order terms:

f(xi;λ) = f(xi;λ(n)) +
M∑
j=1

∂f(xi;λ)
∂λj

∣∣∣∣
λ(n)

(λj − λ(n)
j) = f(xi;λ(n)) +

M∑
i=1

J
(n)
ij (λj − λ(n)

j) (12.34)

where the Jacobian matrix is defined by

J
(n)
ij = ∂f(xi;λ)

∂λj

∣∣∣∣
λ(n)

(12.35)

LEAST SQUARE FITTING 327

Now the target function is approximated by a linear function with respect to λ. Therefore, we can use the
method discussed in Sec XX. The residual vector is given by

∆i = f(xi;λ)− Fi = f(xi;λ(n)) +
M∑
j=1

J
(n)
ij (λj − λ(n)

j)− Fi (12.36)

and the corresponding χ2 function is

χ2(λ) =
N∑
i=0

(
∆i

σi

)2
=

N∑
i=1

1
σi

f(xi;λ(n)) +
M∑
j=1

J
(n)
ij (λj − λ(n)

j)− f̄i

2

(12.37)

We minimize this chi2 with respect to λ by setting the gradient to zero:

∂χ2

∂λk
= 2

N∑
i=0

J
(n)
ik

f(xi;λ(n)) +
M∑
j=1

J
(n)
ij (λj − λ(n)

j)− Fi

= 2

 N∑
i=0

M∑
j=1

J
(n)
ik J

(n)
ij (λj − λ(n)

j)−
N∑
i=0

J
(n)
ik

{
Fi − f(xi;λ(n))

} = 0 (12.38)

Since this equation is linear with respect to λ, we can find a new λ(n+1) by solving it. Writing the equation
in matrix form (

J (n)
)t
J (n)(λ(n+1) − λ(n)) =

(
J (n)

)t
b (12.39)

the solution is
λ(n+1) = λ(n) +

[(
J (n)

)t
J (n)

]−1 (
J (n)

)t
b (12.40)

where b is a vector whose element is bi = f(xi;λ(n)) − f̄i. Repeat the above process until you reach the
minimum of χ2. This method is called the Gauss-Newton algorithm.

The condition to stop the iteration can be ‖λ(n+1) − λ(n)‖ < tolerance. However, there is a big problem.
Recall that J (n) becomes singular as χ2 is minimized. As the iteration proceeds, at certain point, J (n)

becomes nearly singular and Gaussian elimination fails to find a correct solution. Then, ‖λ(n+1) − λ(n)‖
starts erroneously increases. We must stop the iteration before it happens. Usually, the solution is good
enough just before the Gaussian elimination fail. In Section 12.3.2, we measure χ2 and if it goes up the
iteration is terminated.

The nonlinear least square fitting encounters many other difficulties. First of all, Eq. (12.23) can have
many solutions, corresponding to local minimums of the χ2 function. The above method is not guaranteed
to find the global minimum (best fit). Some solutions are not the best fit but still reasonable. Others are
not close to the the data set at all. Unfortunately, there is no numerical method that guarantees the global
minimum. In Chapter 18 we will discuss stochastic method that have a higher chance to find the global
minimum. Secondly, the above method often diverges because the step size is too large. Instead of Eq.
(12.40), update λ by the following equation

λ(n+1) = λ(n) + α

[(
J (n)

)t
J (n)

]−1 (
J (n)

)t
b (12.41)

with a sufficiently small value of α > 0. In Section 12.3.2, we fit a Lorentzian distribution to a noisy data
using the nonlinear least square fitting..

328 DATA FITTING

Table 12.4: Reaction rate k as a function of absolute temperature T . The reaction rate is in an arbitrary
unit. The bottom two rows show log k as a function pf β = 1/kbT .

T 200 220 240 260 280 300 320 340 360 380 400

k 0.471 0.515 0.576 0.639 0.734 0.742 0.833 0.830 0.932 0.918 0.939

β 58.0 52.7 48.4 44.6 41.4 38.7 36.3 34.1 32.2 30.5 29.0

log k -0.327 -0.288 -0.240 -0.194 -0.134 -0.130 -0.0793 -0.0808 -0.0307 -0.0371 -0.0273

12.3 Applications in Physics

12.3.1 Arrhenius Plot

The temperature dependency of a chemical reaction rate is known to obey the Arrhenius equation

k = Ae−Ea/kBT (12.42)

where T and Ea are the absolute temperature and an activation energy, respectively. The temperature
multiplied by the Boltzmann constant kB = 8.6173324 × 10−5eV/K has the dimension of energy. The
constant A depends on reactants but does not depend on the temperature. Table 12.4 shows an experimental
measurement of the reaction rate. The data is a bit noisy. We want to determine the activation energy of
this reaction. If we fit the data directly to the Arrhenius equation (12.42), we must use a non-linear fitting,
which is not a simple task. Instead, we take the logarithmic of the Arrhenius equation:

log k = −Eaβ + logA (12.43)

where β = 1/kbT . Equation (12.43) indicates that log k is linear with respect to β. Therefore, a simple linear
least square fitting can determine Ea. Program XXX does it. Figure 12.5(a) shows that the measured data
log k as a function of β is almost straight line but significant noises are seen at higher temperature (smaller
β). The solid line determined by the least square fitting matches well to the data. Figure 12.5(b) plots it in
the original variables k vs T . The fitted curve represents the data very well despite it is not a strait line.
The fitting finds that the activation energy is 0.0256eV .

12.3.2 Life Time Broadening in Optical Spectrum

Atoms emit distinctive spectrum of light. In the absence of thermal noise, the intensity of the light has a
peek at the frequency ω0 = ∆E/~ where ∆E is the change of electron energy in the atom. However, the
light with slightly different frequency is also observed. The excited atom has a finite life time due to the
spontaneous emission of the light. Theory predicts that the spectrum is Lorentzian

I(ω) ∝ 1
π

Γ
2

(ω − ω0)2 +
(

Γ
2

)2 (12.44)

Determining the peak position ω0 and the life time τ = Γ−1 out of the noisy experimental data is important
task for experimentalists.

The data set given in Table 12.5 is expected to have a Lorentzian distribution:

f(x) = λ1
(x− λ2)2 + λ3

. (12.45)

APPLICATIONS IN PHYSICS 329

-
20 30 40 50 60

lo
g

k

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

T
200 250 300 350 400

k

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 12.5: The least square fitting of the reaction rate. (a) The fitting is done with variables log k and
β sicne the theory perdict a straight line with those variables. The fitted line (solid line) matches well to
the data set (open circle). (b) The fitted curve is shown in the original variable k and T . The cureve is no
longer a straight line but represent the data set quite well.

Table 12.5: Data set for Lorentzian

x -2.01 -1.47 -0.97 -0.52 -0.04 0.52 0.99 1.53 2.03 2.51 2.96 3.47 4.02

f̄ 0.28 0.57 0.62 0.68 1.26 1.29 1.57 1.11 0.91 0.94 0.65 0.80 0.31

σ 0.10 0.11 0.17 0.06 0.15 0.11 0.15 0.10 0.11 0.14 0.16 0.18 0.15

We want find the precise peak position λ2 and the broadening λ3 using the Gauss-Newtom method. The
derivatives of the function are given by

∂f(x; (λ))
∂λ1

= 1
(x− λ2)2 + λ3

(12.46a)

∂f(x; (λ))
∂λ2

= 2(x− λ2)
[(x− λ2)2 + λ3]2 (12.46b)

∂f(x; (λ))
∂λ3

= −λ1
[(x− λ2)2 + λ3]2 (12.46c)

The iteration begin with an initial guess λ1 = 1, λ2 = 0 and λ3 = 1. The χ2 function is optimized by
a step factor α = 0.02. After 40 iterations, the value of χ2 rose up and thus the iteration was terminated.
The result is plotted in Fig. (12.6). The left panel shows the raw data and the fitted curve. The fitting
appeared to be reasonable. The right panel shows the decreasing χ2. The converged parameter values are
λ1 = 4.2527, λ2 = 0.9442, and λ3 = 3.1223.

The Gauss-Newton method works very well for this problem. However, the same method often completely
fails for Gaussian distribution. We need more advanced method for that, which will be introduced in Chapter
18.

330 DATA FITTING

x
-5 0 5 10

f(
x)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iteration
0 1000 2000

@
2

101

102

103

Figure 12.6: Nonlinear least square fitting of the noisy data set in Table 12.5 with a Lorentzian function.
Left; Depite of the error bars, the Gauss-Newton method managed to fit the data to the desired function.
Right: The χ2 decreases as the iteration proceeds.

12.4 Problems

12.1 Life Time of Radio Active Nucleus
A radioactive nuclide spontaneously decays to a different nuclide by emitting a particle such as α particle.
Suppose that there are initially N0 radioactive nuclides of the same kind. As time t proceeds, the number
of the nuclides decreases as

N(t) = N0e−λt (12.47)

where λ is a decay constant. It is difficult to measure N(t) directly. However, we can detect particles
emitted by the nuclides. In experiments, we measure the number of emitted particles per second which
corresponds to the decay rate[1]

R(t) = −dN
dt = λN0e−λt . (12.48)

Table 12.6 show the experimental data. Find the decay constant using an appropriate data fitting.

Table 12.6: Decay rate of a radioactive nuclide.

t(min.) 30 60 90 120 150 180 210 240 270 300

R (counts/s) 461.9 211.6 103.3 45.7 21.7 12.1 5.72 2.52 1.07 0.523

PROBLEMS 331

Appendix

12.I Cubic Spline

q′′i (t) = tq′′i + (1− t)q
′′

i+1 (12.49)

where
t = x− xi

xi+1 − xi
(12.50)

q
′

i(t) = hi
2 t

2q′′i + hi
2 t(2− t)q

′′
i+1 + ai (12.51)

qi(t) = h2
i

6 t
3q′′i + h2

i

6 t
2(3− t)q′′i+1 + hiait+ bi (12.52)

The first condition requires that the function q(t) must matches the data set. That is qi(0) = f̃i and
qi(1) = f̃i+1 which leads to ai and bi

ai = f̃i+1 − f̃i
hi

− hi
6 (2q′′i + q′′i+1) (12.53a)

bi = f̃i (12.53b)

The second condition requires that the first order derivative is continuous at the data points. That is
q′i(1) = q′i+1(0), which leads to

hiq
′′
i+1 + 2(hi + hi−1)q′′i + hi−1q

′′
i−1 = 6

(
f̃i+1 − f̃i

hi
− f̃i − f̃i−1

hi−1

)
(12.54)

At the boundary we assume q′′1 = q′′N = 0. This is a linear equation with tridiagonal matrix. We can solve
it a method discussed in Section 7.3.1. Now, we have all q′′i , ai, and bi. Plugin these, we obtain qi(t) which
connects data points smoothly.

332 DATA FITTING

MATLAB Source Codes

%**
%* Example 12.1 *
%* filename: ch12pr01.m *
%* program listing number: 12.1 *
%* *
%* This program interpolates 11-point data with linear spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2)-1;
h=X(2:N+1)-X(1:N);

M=10;
dt=1.0/M;
t=linspace(0.,dt*(M-1),M);

n=0;
for i=1:N-1

% linear interpolation between two adjacent data points
for j=1:M

n=n+1;
x(n)=t(j)*h(i)+X(i);
y(n)=(1-t(j))*F(i)+t(j)*F(i+1);

end
end

n=n+1;
x(n)=X(N+1);
y(n)=F(N+1);
z=sin(x).*exp(-0.2*x);

p=plot(x,y,X,F,'o',x,z,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Spline','Data','Original');
legend('location','northeast');

NNN

Program 12.1
%**
%* Example 12.2 *
%* filename: ch12pr02.m *
%* program listing number: 12.2 *
%* *
%* This program interpolates 11-point data with cubic spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *

PROBLEMS 333

%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2)-1;
h=X(2:N+1)-X(1:N);

% Set up linear equation A*P=G
for j=1:N-1

G(j)=3*((F(j+2)-F(j+1))/h(j+1)-(F(j+1)-F(j))/h(j));
end

A=zeros(N-2,N-2);
for j=1:N-1

A(j,j)=(h(j+1)+h(j))/2;
end
for j=1:N-2

A(j,j+1)=h(j+1);
A(j+1,j)=h(j+1);

end

P=A\G'; %Solve the linear equation

% Shift the index to our convention.
for j=1:N-1

Q(j+1)=P(j);
end

% Amend the boundary values.
Q(1)=0;
Q(N+1)=0;

M=10;
dt=1.0/M;
t=linspace(0.,dt*(M-1),M);

n=0;
for k=1:N

for j=1:M
n=n+1;
x(n)=X(k)+t(j)*h(k);
y(n)=h(k)ˆ2/6 * Q(k) * t(j)*(t(j)+1)*(t(j)-1) ...

-h(k)ˆ2/6 * Q(k+1) * t(j)*(t(j)-1)*(t(j)-2) ...
+F(k+1)*t(j) + (1-t(j))*F(k);

end
end

v=sin(x).*exp(-0.2*x);
p=plot(x,y,X,F,'o',x,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Cubic Spline','Data ', 'Original');
legend('location','northeast');

NNN

Program 12.2

334 DATA FITTING

%**
%* Example 12.3 *
%* filename: ch12pr03.m *
%* program listing number: 12.3 *
%* *
%* This program interpolates 11-point data with the Vandermonde *
%* matrix. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2);

% construction of the Vandermonde matrix
x = zeros(N,N);
x(:,1)=1;
for i=2:N

x(:,i)=X(:).ˆ(i-1);
end

% solve the linear equation x*a=F
a=x\F';

% evaluate the function value
% between the sampling points.
M=101;
z=linspace(0,X(N),M);

for j=1:M
y(j)=a(1);
for i=2:N

y(j)=y(j)+a(i)*z(j)ˆ(i-1);
end

end

v = sin(z).*exp(-0.2*z);

p=plot(X,F,'o',z,y,z,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Data','Vandermonde fit','Original');
legend('location','northeast');

NNN

Program 12.3
%**
%* Example 12.4 *
%* filename: ch12pr04.m *
%* program listing number: 12.4 *
%* *
%* This program interpolates 11-point data with the Lagrange *
%* polynomial method. *
%* *

PROBLEMS 335

%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2);

M=101;
z=linspace(0,X(N),M);
for j=1:M

L=1;
y(j)=0;
for n=1:N

L=1; % Lagrange basis polynomial
for m=1:N

if n˜=m
L=L*(z(j)-X(m))/(X(n)-X(m));

end
end
y(j)=y(j)+L*F(n);

end
end

v=sin(z).*exp(-0.2*z);

p=plot(X,F,'o',z,y,z,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Data','Lagrange polynomial','Original');
legend('location','northeast');

NNN

Program 12.4
%**
%* Example 12.5 *
%* filename: ch12pr05.m *
%* program listing number: 12.5 *
%* *
%* This program interpolates 11-point data with the linear *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% Data set (no error bar)
x=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
y=[0.1,0.90,1.7,3.4,4.5,4.7,6.2,7.6,7.85,9.03,9.6];
N=size(y,2);

% Linear regression
F=sum(y);
X=sum(x);
X2=sum(x.ˆ2);

336 DATA FITTING

XF=sum(x.*y);
b=(F*X2-X*XF)/(N*X2-Xˆ2);
a=(N*XF-X*F)/(N*X2-Xˆ2);

% fitted curve
f=a*x+b;

p=plot(x,f);
set(p,'linewidth',2,'color','red')
hold on
r=plot(x,y,'o');
set(r,'linewidth',2,'color','black')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off

NNN

Program 12.5
%**
%* Example 12.6 *
%* filename: ch12pr06.m *
%* program listing number: 12.6 *
%* *
%* This program interpolates 11-point data with the quadratic *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% Generate a noisy data set
N=13;
sm=5.0;
for i=1:N

x(i)=i-7.+random('unif',-0.2,0.2);
s(i)=random('norm',0,sm/2)+sm;
y(i)=-2*x(i)ˆ2+s(i)*random('unif',0.2,0.9);

end

M=3; % number of parameters

% Construct Jacobian matrix and a vector
for i=1:N

for j=1:M
J(i,j)=x(i)ˆ(j-1)/s(i);

end
b(i)=y(i)/s(i);

end

% Solve the linear equation
A=J'*J;
c=J'*b';
lambda=A\c;

% constructe the fitted curve
K=121;
z=linspace(-6.0,6.0,K);
f=lambda(1)+lambda(2)*z+lambda(3)*z.ˆ2;

PROBLEMS 337

r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','black')
hold on

p=plot(z,f);
set(p,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
legend('data','fitted curve')
legend('location','south')
xlim([-7 7]);
hold off

NNN

Program 12.6
%**
%* Section 12.3.1 *
%* filename: ch12pr07.m *
%* program listing number: 12.7 *
%* *
%* This program finds the activation energy of a reaction from a data *
%* set using the linear regression. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

k=8.617e-5; % Boltzmann constant [eV/K]

% Generate a new dataset
%E=0.025;
%A=2.0;
%for i=1:11
% T(i) = 180+20*i;
% f(i)=2.0*exp(-E/(k*T(i)))*(1+random('unif',-0.05,+0.05));
%end

T=[200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400];
f=[0.471,0.515,0.576,0.639,0.734,0.742,0.833,0.830,0.932,0.918,0.939];
N=size(f,2);

for i=1:N
x(i)=1/(k*T(N+1-i));
y(i)=log(f(N+1-i));

end

F=sum(y);
X=sum(x);
X2=sum(x.ˆ2);
XF=sum(x.*y);
b=(F*X2-X*XF)/(N*X2-Xˆ2);
a=(N*XF-X*F)/(N*X2-Xˆ2);
g=a*x+b;
A=exp(b);
z = A*exp(a./(k*T));

fprintf('Activation Energy = %6.2d eV\n',abs(a))

subplot(1,2,1)

338 DATA FITTING

p=plot(x,g);
set(p,'linewidth',2,'color','red')
hold on
r=plot(x,y,'o');
set(r,'linewidth',2,'color','black')
xlabel(texlabel('beta'),'fontsize',14)
ylabel('log k','fontsize',14)
hold off
subplot(1,2,2)
p=plot(T,f,'o');
set(p,'linewidth',2,'color','black')
hold on
r=plot(T,z);
set(r,'linewidth',2,'color','red')
xlabel('T','fontsize',14)
ylabel('k','fontsize',14)
hold off

NNN

Program 12.7
%**
%* Section 12.3.2 *
%* filename: ch12pr08.m *
%* program listing number: 12.8 *
%* *
%* This program finds the peak position and life-time broadening *
%* of atomic emmision spectrum. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% Generate a sample noisy data

x=[-2.01,-1.47,-0.97,-0.52,-0.04,0.52,0.99,1.53,2.03,2.51,2.96,3.47,4.02];
y=[0.28,0.57,0.62,0.68,1.26,1.29,1.57,1.11,0.91,0.94,0.65,0.80,0.31];
s=[0.10,0.11,0.17,0.06,0.15,0.11,0.15,0.10,0.11,0.14,0.16,0.18,0.15];
N=size(y,2);

%control parametrs
alpha=1e-2;
found=false;

%initial guess
M=3;
lambda(:,1)=[1,0,1];

% Gauss-Newton iteration
n=1;
% evaluate initial chi sqaure
for i=1:N

F=lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n));
b(i)=y(i)-F;

end
b=b./s;
chi2(n)=b*b';

while not(found)
% construct Jacobian and vectors.

PROBLEMS 339

for i=1:N
F=lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n));
J(i,1)=F/lambda(1,n);
J(i,2)=2*lambda(1,n)*(x(i)-lambda(2,n))...

/((x(i)-lambda(2,n))ˆ2+lambda(3,n))ˆ2;
J(i,3)=-lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n))ˆ2;
b(i)=y(i)-F;

end
% Take into account error bar
b=b./s;
for i=1:M

J(:,i)=J(:,i)./s';
end

% Solve the equation
n=n+1;
A=J'*J;
c=J'*b';
d=A\c;

% update parameter values
lambda(:,n)=lambda(:,n-1)+alpha*d;
% evaluate chi sqaure
chi2(n)=b*b';

% if chi square goes up stop
if chi2(n)-chi2(n-1) > 0

found=true;
end

end

subplot(1,2,1)
z=[-4:0.1:6];
L=size(z,2);
for i=1:L
w(i)=lambda(1,n)/((z(i)-lambda(2,n))ˆ2+lambda(3,n));
end
p=plot(z,w);
set(p,'linewidth',2,'color','black')
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off

subplot(1,2,2)
r=semilogy([1:n],chi2);
set(r,'linewidth',2,'color','black')
xlabel('iteration','fontsize',14)
ylabel(texlabel('chiˆ2'),'fontsize',14)

NNN

Python Source Codes

Program 12.1

340 DATA FITTING

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.1 *
%* filename: ch12pr01.py *
%* program listing number: 12.1 *
%* *
%* This program interpolates 11-point data with linear spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size # Num er of data points
h=np.zeros(N-1)
for j in range(0,N-1):

h[j]=X[j+1]-X[j]

M=10 # Number of interpolation points between data points
dt=1.0/M
T=np.linspace(0.0,dt*(M-1),M) # linear interpolation

x=np.zeros(N*M)
y=np.zeros(N*M)

n=0
for i in range(0,N-1):

linear interpolation between two adjacent data points
for t in T:

x[n]=t*h[i]+X[i]
y[n]=(1.0-t)*F[i]+t*F[i+1]
n+=1

x[n]=X[N-1]
y[n]=F[N-1]
z=np.sin(x)*np.exp(-0.2*x)

n+=1
plt.figure(figsize=(6,5))
plt.plot(x[0:n],y[0:n],'-r',label='Spline')
plt.plot(X,F,'ob',label='Data')
plt.plot(x[0:n],z[0:n],'--k',label='Source')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 12.2
#!/usr/bin/env python3

PROBLEMS 341

-*- coding: utf-8 -*-
"""
%**
%* Example 12.2 *
%* filename: ch12pr02.py *
%* program listing number: 12.2 *
%* *
%* This program interpolates 11-point data with cubic spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size
h=np.zeros(N-1)
for j in range(0,N-1):

h[j]=X[j+1]-X[j]

G=np.zeros(N-2)
for j in range(0,N-2):

G[j]=3*((F[j+2]-F[j+1])/h[j+1]-(F[j+1]-F[j])/h[j])

A=np.zeros((N-2,N-2))
for j in range(0,N-2):

A[j,j]=(h[j+1]+h[j])/2.0

for j in range(0,N-3):
A[j,j+1]=h[j+1]
A[j+1,j]=h[j+1]

P=np.linalg.solve(A,G)

Q=np.zeros(N)
for j in range(0,N-2):

Q[j+1]=P[j]

Q[0]=0.0
Q[N-1]=0.0

M=10 # Number of interpolation points between data points
dt=1.0/M
T=np.linspace(0.0,dt*(M-1),M) # linear interpolation
x=np.zeros(N*M)
y=np.zeros(N*M)
n=0
for i in range(0,N-1):

linear interpolation between two adjacent data points
for t in T:

x[n]=t*h[i]+X[i]
y[n]=h[i]**2/6.0 * Q[i] * t*(t+1.0)*(t-1.0) \

-h[i]**2/6.0 * Q[i+1] * t*(t-1.0)*(t-2.0) \
+F[i+1]*t + (1.0-t)*F[i]

342 DATA FITTING

n+=1

z=np.sin(x[0:n])*np.exp(-0.2*x[0:n])

plt.figure(figsize=(6,5))
plt.plot(x[0:n],y[0:n],'-r',label='Spline')
plt.plot(X,F,'ob',label='Data')
plt.plot(x[0:n],z[0:n],'--k',label='Source')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 12.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.3 *
%* filename: ch12pr03.py *
%* program listing number: 12.3 *
%* *
%* This program interpolates 11-point data with the Vandermonde *
%* matrix. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/24/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\
-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]

X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size

construction of the Vandermonde matrix
x = np.zeros((N,N))
x[:,0]=1.0
for n in range(1,N):

x[:,n]=X[:]**n

solve the linear equation
using Gaussian elimination
a=np.linalg.solve(x,F)

evaluate the function value
between the sampling points.

M=101
z=np.linspace(0.0,X[N-1],M)
y=np.zeros(M)

for j in range(0,M):
y[j]=a[0]
for i in range(1,N):

PROBLEMS 343

y[j]=y[j]+a[i]*z[j]**i

v = np.sin(z)*np.exp(-0.2*z)

plt.figure(figsize=(6,5))
plt.plot(X,F,'ob',label="Raw data")
plt.plot(z,y,'-r',label="Vandermonde")
plt.plot(z,v,'--k',label="Source")
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 12.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.4 *
%* filename: ch12pr04.py *
%* program listing number: 12.4 *
%* *
%* This program interpolates 11-point data with the Lagrange *
%* polynomial method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size

M=101
z=np.linspace(0.0,X[N-1],M)
y=np.zeros(M)

for j in range(0,M):

for n in range(0,N):
L=1.0 # Lagrange basis polynomial
for m in range(0,N):

if n!=m:
L=L*(z[j]-X[m])/(X[n]-X[m])

y[j]=y[j]+L*F[n]

v=np.sin(z)*np.exp(-0.2*z)

plt.figure(figsize=(6,5))
plt.plot(X,F,'ob',label="Raw data")
plt.plot(z,y,'-r',label="Lagrange")

344 DATA FITTING

plt.plot(z,v,'--k',label="Source")
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 12.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.5 *
%* filename: ch12pr05.py *
%* program listing number: 12.5 *
%* *
%* This program interpolates 11-point data with the linear *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Data set (no error bar)

x=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
y=[0.1,0.90,1.7,3.4,4.5,4.7,6.2,7.6,7.85,9.03,9.6]
x=np.array(x)
y=np.array(y)
N=y.size

Linear regression
F=y.sum()
X=x.sum()
X2=(x**2).sum()
XF=(x*y).sum()
b=(F*X2-X*XF)/(N*X2-X**2)
a=(N*XF-X*F)/(N*X2-X**2)

fitted curve
f=a*x+b

plt.figure(figsize=(6,5))
plt.plot(x,f,'-r')
plt.plot(x,y,'ok');
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.show()

NNN

Program 12.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

PROBLEMS 345

%* Example 12.6 *
%* filename: ch12pr06.py *
%* program listing number: 12.6 *
%* *
%* This program interpolates 11-point data with the quadratic *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Generate a noisy data set
N=13
x=np.zeros(N)
y=np.zeros(N)
s=np.zeros(N)
sm=5.0
for i in range(0,N):

x[i]=i-6.+np.random.uniform(-0.2,0.2)
s[i]=np.random.normal(0.0,sm/2.)+sm
y[i]=-2*x[i]**2+s[i]*np.random.uniform(0.2,0.9)

M=3; # number of parameters
J=np.matrix(np.zeros((N,M)))
b=np.matrix(np.zeros(N)).transpose()

Construct Jacobian matrix and a vector
for i in range(0,N):

for j in range(0,M):
J[i,j]=x[i]**j/s[i]

b[i]=y[i]/s[i]

Solve the linear equation
A=J.transpose()*J
c=J.transpose()*b
lam=np.linalg.solve(A,c)

constructe the fitted curve
K=121
z=np.linspace(-6.0,6.0,K)
f=lam[0,0]+lam[1,0]*z+lam[2,0]*z**2

plt.figure(figsize=(6,5))
plt.errorbar(x,y,yerr=s,fmt='ok',label='Data')
plt.plot(z,f,'-r',label='Fit')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 12.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

346 DATA FITTING

%* Section 12.3.1 *
%* filename: ch12pr07.py *
%* program listing number: 12.7 *
%* *
%* This program finds the activation energy of a reaction from a data *
%* set using the linear regression. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

k=8.617e-5; # Boltzmann constant [eV/K]

T=[200., 220., 240., 260., 280., 300., 320., 340., 360., 380., 400.]
f=[0.471,0.515,0.576,0.639,0.734,0.742,0.833,0.830,0.932,0.918,0.939]
f=np.array(f)
T=np.array(T)
N=f.size
x=1./(k*T[::-1])
y=np.log(f[::-1])

Linear regression
F=y.sum()
X=x.sum()
X2=(x**2).sum()
XF=(x*y).sum()
b=(F*X2-X*XF)/(N*X2-X**2)
a=(N*XF-X*F)/(N*X2-X**2)

g=a*x+b
A=np.exp(b)
z = A*np.exp(a/(k*T))

print('\nActivation Energy = {0:8.4f} eV\n'.format(np.abs(a)))

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,g,'-r')
plt.plot(x,y,'ok')
plt.xlabel(r'β',fontsize=14)
plt.ylabel(r'$\log\, k$',fontsize=14)

plt.subplot(1,2,2)
plt.plot(T,f,'ok')
plt.plot(T,z,'-r')
plt.xlabel('T',fontsize=14)
plt.ylabel('k',fontsize=14)
plt.show()

NNN

Program 12.8
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 12.3.2 *
%* filename: ch12pr08.m *

PROBLEMS 347

%* program listing number: 12.8 *
%* *
%* This program finds the peak position and life-time broadening *
%* of atomic emmision spectrum. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Generate a sample noisy data
x=[-2.01,-1.47,-0.97,-0.52,-0.04,0.52,0.99,1.53,2.03,2.51,2.96,3.47,4.02]
y=[0.28,0.57,0.62,0.68,1.26,1.29,1.57,1.11,0.91,0.94,0.65,0.80,0.31]
s=[0.10,0.11,0.17,0.06,0.15,0.11,0.15,0.10,0.11,0.14,0.16,0.18,0.15]

x=np.array(x)
y=np.array(y)
s=np.array(s)
N=x.size

control parametrs
alpha=1.e-2

initial guess
K=2000
M=3
lam=np.zeros((K,M))
chi2=np.zeros(K)

lam[0,:]=np.array([1.,0.,1.])

Gauss-Newton iteration
n=0
evaluate initial chi sqaure
b=np.zeros(N)
J=np.zeros((N,M))

for i in range(0,N):
F=lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])
b[i]=y[i]-F

b=b/s
chi2[n]=(b**2).sum()

found=False
while not(found):

construct Jacobian and vectors.
for i in range(0,N):

F=lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])
J[i,0]=F/lam[n,0]
J[i,1]=2.*lam[n,0]*(x[i]-lam[n,1])\

/((x[i]-lam[n,1])**2+lam[n,2])**2
J[i,2]=-lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])**2
b[i]=y[i]-F

Take into account error bar
b=b/s

348 DATA FITTING

for i in range(0,M):
J[:,i]=J[:,i]/s

Solve the equation
n+=1
A=np.dot(J.transpose(),J)
c=np.dot(J.transpose(),b)
d=np.linalg.solve(A,c)

update parameter values
lam[n,:]=lam[n-1,:]+alpha*d
evaluate chi sqaure
chi2[n]=(b**2).sum()

if chi square goes up stop
if chi2[n]-chi2[n-1] > 0:

found=True

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
z=np.linspace(-4.0,6.0,101)
L=z.size
w=np.zeros(L)

for i in range(0,L):
w[i]=lam[n,0]/((z[i]-lam[n,1])**2+lam[n,2])

plt.plot(z,w)
plt.errorbar(x,y,yerr=s,fmt='o')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)

plt.subplot(1,2,2)
plt.semilogy(np.linspace(1,n,n),chi2[0:n])
plt.xlabel('iteration',fontsize=14)
plt.ylabel(r'$\chiˆ2$',fontsize=14)
plt.show()

NNN

Bibliography

[1] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of Physics. Wiley, 10th edition, 2013.
Chapter 42.

349

CHAPTER 13

PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC
EQUATIONS

In Chapters 5-7, we determined functions of a single variable, such as velocity as a function of time, with
ordinary differential equations. However, many physical quantities depend on more than one variables.
For example, the particle density in the three-dimensional space depends on three coordinates x, y, and z.
Electric field E(x, t) is another example, which depend on space-time coordinates x and t, . Equations which
determine functions of multi-dimensional variables are known as partial differential equation (PDE). Perhaps,
you already encounter such equations in other physics courses. Diffusion equation, Maxwell equations, and
Schrödinger equation are all PDE.

PDE is both mathematically and computationally more challenging than ODE. One numerical method
that works well for one type of PDE may fail for another type of PDE. From mathematical point of view,
there are three different types of PDE for a second-order PDE with two-variable function F (x, y). Its general
form can be written as

a
∂2F

∂x2 + b
∂2F

∂x∂y
+ c

∂2F

∂y2 + d
∂F

∂x
+ e

∂F

∂y
+ fF + g = 0 (13.1)

where coefficients a through g are constant. The variables x and y are not necessarily indicating spacial
coordinates. One of them can be time. When b2 − 4ac = 0, the PDE is said to be parabolic. Similarly the
PDE is hyperbolic for b2 − 4ac > 0, and elliptic for b2 − 4ac < 0. Various numerical methods have been
developed but they are suitable usually only for one type of PDE and unfortunately there is no single method
that works for all three types.

Parabolic equations popular in physics are heat equation for temperature T (x, t)

∂

∂t
T (x, t) = κ

∂2

∂x2T (x, t) (13.2)

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

351

352 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

and diffusion equation for particle density ρ(x, t)

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t). (13.3)

The thermal diffusion coefficient κ and particle diffusion constant D are both positive. Clearly these two
equations are mathematically identical. Letting y = t and b = c = d = f = g = 0 in Eq. (13.1), we obtain
these two equations. Since b2 − 4ac = 0, they are parabolic.

Schrödinger equation

i~
∂

∂t
ψ(x, t) = − ~2

2m
∂2

∂x2ψ(x, t) + V (x)ψ(x, t) (13.4)

is slightly different from the previous two equations (f 6= 0 and e is pure imaginary) but it is another example
of parabolic PDE.

When ac < 0 and all other coefficients vanish, Eq. (13.1) becomes wave equation

∂2

∂t2
φ(x, t) = v2 ∂

2

∂x2φ(x, t) (13.5)

where v is the velocity of wave. In this expression a = v2 and c = −1 and thus it is an example of hyperbolic
equation.

If a = c = 1 (thus ac > 0), and all other coefficients vanish, Eq. (13.1) leads to Laplace’s equation

∂2

∂x2φ(x, y) + ∂2

∂y2φ(x, y) = 0 (13.6)

which is an example of elliptic PDE. The Laplace’s equation is one of the most important equations in
physics and appears in many fields of physics, including, electromagnetism, fluid dynamics, thermodynamics,
... When an inhomogeneous term is added to the Laplace equation, we have Poisson’s equation

∂2

∂x2φ(x, y) + ∂2

∂y2φ(x, y) = − 1
ε0
ρ(x, y) (13.7)

where φ(x, y) and ρ(x, y) are the electrostatic potential and the charge density, respectively. This equation
is also a family of elliptic PDE.

In the present chapter we focus on parabolic equations such as diffusion/heat equations and Sch́’odinfer
equations. In the next chapter, the wave equation is discussed as an example of hyperbolic equation. The
elliptic equation is investigated in the following chapter using Laplace’s/Poisson’s equations as example.

13.1 Diffusion Equation

To begin with, we look for a numerical method for a simple diffusion equation (??). While the development of
numerical algorithms is purely mathematical procedure, actually consideration of physical processes described
by the equation helps to find a good numerical approach. Let us consider a free diffusion of a particle. How
fast does the particle diffuses from x0 to another position x1? The mean square displacement

〈
(x1 − x0)2〉 is

known to be proportional to time, or more precisely
〈
(x1 − x0)2〉 = 2Dt where D is the diffusion constant.

This means that the typical time to travel over the distance L is given by

τ ≈ L2

2D. (13.8)

The important thing is that time scale of the process τ is related to the spacial scale L. Any numerical
method must be consistent with this physical condition.

BOUNDARY CONDITIONS 353

k on

k off

(a) (b) (c)

Figure 13.1: Three different types of boundary conditions for diffusion equations. (a) The particle is reflected
by the wall [Neumann boundary]. (b) The particle is perfectly absorbed on the wall [Dirichlet boundary].
(c) Some particles are reflected and others absorbed on the wall with a transition rate kon. The particles
on the wall can desorb with a transition rate koff. This situation can be dealt with the Robin boundary
condition.

Next we derive the diffusion equation. The Fick’s law tells that the flux of the particles is given by

j(x, t) = −D ∂

∂x
ρ(x, t) (13.9)

Substituting this flux into the continuity equation

∂

∂t
ρ(x, t) + ∂

∂x
j(x, t) = 0 (13.10)

we obtain the diffusion equation (??). The Fick’s law (13.9) is essential when we construct boundary
condition.

13.2 Boundary Conditions

The parabolic PDEs common in physics has the first order derivative with respect to time. Therefore, we
need only one boundary condition for time (initial condition)

f(x, t0) = g(x) (13.11)

where t0 is the starting time. The initial function g(x) must satisfy the boundary condition for x which we
discuss next.

The derivative with respect to the spacial coordinates is second order and thus we need two boundary
conditions. What happens on the boundary is not determined by the PDE itself. Separate physical processes
on the boundary determine the boundary conditions. There are many different types of boundary conditions
depending on the physical situations. Among them, four types of boundary conditions are common in
physics. We use the diffusion equation (13.3) as example.

When particles diffusing in a container reach the wall, four different kinds of boundary conditions are
commonly used in physics . In one case, particles which hit the wall are perfectly reflected back from the
wall. The particle flux going to the wall and the flux coming from the wall must be canceled out. Hence, the
net flux at the boundary must vanish.∗ When the particles are reflected back at x = a, j(a, t) = 0. Based

∗Vanishing flux does not mean that nothing is moving. It simply means that the number of particles moving to the left and to
the right is equal on average.

354 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

on the Fick’s law (13.9), this condition implies that

j(x = a, t) = ∂

∂x
ρ(x, t)

∣∣∣∣
x=a

= 0 (13.12)

which is the reflective boundary condition (also known as no-flux condition). In mathematics, the boundary
condition given by the derivative is known as Neumann boundary condition. Note that the number of
particles conserves in this boundary condition.

In another scenario, the particles are absorbed on the wall and do not come back to the system. Since
the particles disappear at the boundary, the boundary condition is simply

ρ(a, t) = 0. (13.13)

This is the absorbing boundary condition. In mathematics, this is known as Dirichlet boundary condition.
The number of particles in the system decreases with this boundary condition.

The third possibility corresponds to the situation between the reflective and absorbing boundary condi-
tions. Th particles is partly absorbed with a certain rate kon. The particles absorbed on the wall desorbe
from the wall with a different rate koff. The particle flux at the boundary is now defined by

D
∂

∂x
ρ(x, t)

∣∣∣∣
x=a

= kon ρ(a, t)− koff σ(t) (13.14)

where σ(t) is the number density of the particle on the wall and it satisfies the following ODE

d
dtσ(t) = kon ρ(a, t)− koff σ(t). (13.15)

In mathematics, the boundary condition given by

αf(a, t) + β
∂

∂x
f(x, t)

∣∣∣∣
a

= g(t) (13.16)

is known as the Robin boundary condition.
We need the boundary condition at two different boundaries. We don’t have to use the same type of

boundary conditions. We can use one of the three types at one boundary and another type at the other
boundary. Sometime, this type of setting is called mixed boundary value problem.

Finally, we consider a system has ”no boundary”. Consider a field F (ρ, θ) on two-dimensional space
expressed with polar coordinates; i.e., radial coordinate ρ and angular coordinate θ. The radial coordinate
ρ is defined in [0,∞) and thus regular boundary conditions are usually specified at ρ = 0 and ∞. However,
the angular coordinate θ defined in [0, 2π) does not have a boundary since θ = 0 and θ = 2π correspond
to the same point on the space. Hence, we have F (ρ, 0) = F (ρ, 2π), ∀ρ. Instead of limiting θ in [0, 2π), we
often use θ ∈ R and require

F (ρ, θ + 2π) = F (ρ, θ), ∀θ ∈ R.

Then, F is a periodic function with respect to θ. This is a kind of ”boundary condition” called periodic
boundary condition.

There are other cases where the periodic boundary is used. For example, consider an infinitely extended
system filled with infinite number of particles. Since computers cannot deal with infinity, we limit the size
of the system. For example, we consider only the regions between x = −L/2 and x = L/2. However, there
is no wall at the boundary. A common trick is to use a periodic boundary condition. We assume that the
system of size L repeats infinitely many times by using the condition

F (x+ L) = F (x), ∀x (13.17)

FORWARD TIME CENTERED SPACE METHOD 355

which is equivalent to the periodic boundary condition. We can consider a ring-like space. For two-
dimensional cases, we can have peridic boundary in both dimensions,

F (x+ L, y) = F (x, y) and F (x, y +M) = F (x, y) ∀x, y

where L and M are period in each direction. The space is a torus for this case.

13.3 Forward Time Centered Space method

Now, we solve simple diffusion equation (13.3) numerically. Other parabolic PDE can be solved in the same
way. Consider free diffusion of particles in a one-dimensional box of size L. The position coordinate x covers
the space from x = 0 to X = L. WThe particle density ρ(x, t) evolves in time from t = 0. We discretize
space and time as xi = i∆x, i = 0, · · · , N and tj = j∆t. The initial time is t0 = 0 and the boundary for
the space coordinate are x0 = 0 and xN = L. The function value at time tj and position xi are stored in an
array as

ρji ≡ ρ(xi, tj). (13.18)
Using finite difference methods (see Chapter 2),

∂

∂t
ρ(x, t) ≈ ρj+1

i − ρji
∆t (13.19a)

∂2

∂x2 ρ(x, t) ≈
ρji+1 + ρji−1 − 2ρji

∆x2 (13.19b)

Eq (13.3) becomes

ρj+1
i ≈ ρji + D∆t

∆x2

(
ρji+1 + ρji−1 − 2ρji

)
, i = 1, · · · , N − 1 (13.20)

If we knows the density at time tj , the density at the next time tj+1 is obtained by this recursive equation.
Note that i = 0 and i = N are not included in the evolution since they are fixed by boundary conditions.
This is one of the simplest method, known as forward time centered space (FTCS) method.

Next we set up the boundary conditions. The initial condition is given by

ρ0
i = g(xi). (13.21)

Using the Euler method, the reflective boundary condition (13.12) is given by

ρj1 − ρ
j
0

∆x = 0 → ρj0 = ρj1 (13.22)

and similarly at the other boundary

ρjN − ρ
j
N−1

∆x = 0 → ρjN = ρjN−1 (13.23)

Substituting the boundary conditions to Eq. (13.20), the function values at adjacent to the boundary evolves
by

ρj+1
1 = ρj1 + D∆t

∆x2

(
ρj2 − ρ

j
1

)
(13.24a)

ρj+1
N−1 = ρjN−1 + D∆t

∆x2

(
ρjN−2 − ρ

j
N−1

)
(13.24b)

356 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

x
-10 -5 0 5 10

;
(x

)

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) Time evolution of the probability density.

x
-10 -5 0 5 10

;
(x

)

0

0.05

0.1

0.15

0.2

0.25
FTCS method
Exact

(b) Comparison with the exact distribution.

Figure 13.2: A solution to the diffusion equation with the Neumann boundary at x = ±10. The left panel
shows the time-evolution of the density at from t = 10 to t = 100, starting with an initial condition,
ρ(x, 0) = δ(x). The right panel shows the density at t = 20, which is in good agreement with the exact
solution.

The Dirichlet boundary is simply
ρj0 = 0 ρjN = 0 (13.25)

The evolution of the function values at adjacent to the boundary is explicitly given by

ρj+1
1 = ρj1 + D∆t

∆x2

(
ρj2 − 2ρj1

)
(13.26a)

ρj+1
N−1 = ρjN−1 + D∆t

∆x2

(
ρjN−2 − 2ρjN−1

)
(13.26b)

The finite difference method is accurate when δt and δx are sufficiently small. We tend to believe that
any smaller values generates more accurate results. However, we cannot chose ∆x and ∆t independently.
Numerically, it is clear that the factor D∆t

∆x2 in Eq. (13.20) must be smaller than 1. Actually, this limitation
is also clear from physics. Recall that the mean square displacement of the Brownian particles is proportional
to time, or more precisely 〈x2〉 = 2Dt, which suggest that the time a particle travels from xi won’t reach

xi+1 is about ∆x2

2D on average. The time step must be much smaller than that. Therefore, we require

∆t� ∆x2

2D . (13.27)

EXAMPLE 13.1 Free Diffusion

Initially a particle is located at x = 0 and it freely diffuses at a diffusion rate D. We want to know how the
probability distribution p(x, t) changes in time. If N non-interacting particles diffuse, the particle density
is given by ρ(x, t) = Np(x, t). Dividing Eq. (13.3), it is easy to find that the probability density satisfies
the same diffusion equation (13.3). The difference is only their normalization,

∫ ∞
−∞

= ρ(x, t) dx = N for

RUNGE-KUTTA TIME EVOLUTION 357

particle density and
∫ ∞
−∞

p(x, t) dx = 1 for the probability density. We assume that the space is infinitely

large and the particle diffuses freely for ever. Then, the boundary condition is lim|x|→∞ p(x, t) = 0.
An analytic solution is well-known:

ρ(x, t) = 1
2π

1√
2Dt

e−x
2/4Dt. (13.28)

prog:diffusion First we define the computational boundary since the infinitely large space cannot be
used in the numerical method. We replace ±∞ with x = ±L as usual and use the Neumann boundary
condition ∂

∂x
ρ(x, t)

∣∣∣∣
±L

= 0, which implies that the particle will be reflected back if it ever reaches the

boundary. The initial condition is mathematically ρ(x, 0) = δ(x) which will be replaced with

p0
i =

{
1

∆x xi = 0
0 otherwise

,

which satisfies the normalization
∫ ∞
−∞

p(x, t) dx =
∑
i

pi∆x = 1.

Program 13.1 solves this problem and the results are plotted in Fig. 13.2. The agreement between the
numerical result and the exact solution is quite good at t = 0 (right panel). However, as time increases,
the particle hits the artificial boundary at L = 10 where the probability does not vanish. L must be
increased to see the correct tail.

13.4 Runge-Kutta time evolution

The forward time finite difference method used in the FTCS scheme is equivalent to the Euler method (see
Section 4.2.1), which is not accurate. We can improve the accuracy with respect to time evolution using the
2nd order Runge-Kutta method. For simple diffusion equation, we first use the Euler scheme with a half
time step

ρ
j+ 1

2
i = ρji + D∆t

2∆x2

(
ρji+1 + ρji−1 − 2ρji

)
. (13.29)

Then, the Runge-Kutta step is given by

ρj+1
i = ρji + D∆t

∆x2

(
ρ
j+ 1

2
i + ρ

j+ 1
2

i−1 − 2ρj+
1
2

i

)
. (13.30)

This method is more accurate than the FTCS method.

13.5 Higher spatial dimensions

In the above, the particles diffuse along a line and thus the diffusion equation (13.3) has only two variables,
t and x. For a higher dimension, the diffusion equation becomes

∂

∂t
ρ(t, r) =∇ · ρ(t, r) (13.31)

358 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

The extension of Eq. (13.20) to a higher dimensional space is straight forward. For a two-dimensional
space, we discretize the space by xi = i∆x and yj = j∆y. The density is denoted as ρki,j ≡ ρ(tk, xi, yj).
Using the3-point finite difference approximation to the second order derivative for each direction, the discrete
version of Eq. (13.31) is given by

ρk+1
i,j ≈ ρ

k
i,j + D∆t

∆x2
(
ρki+1,j + ρki−1,j − 2ρki,j

)
+ D∆t

∆y2
(
ρki,j+1 + ρki,j−1 − 2ρki,j

)
(13.32)

13.6 Schrödinger Equations

The Schrödinger equation for a particle of mass m in a one-dimensional space is given by

i~
∂ψ(x, t)
∂t

= Hψ(x, t) (13.33)

where a typical form of the Hamiltonian is the sum of kinetic and potential energy operators:

H = − ~2

2m
∂2

∂x2 + V (x) (13.34)

A major difference from the diffusion equation is that the solution to this equation is inherently complex. It
is possible to write a set of partial differential equations separately for real and complex parts.

~
∂

∂t
u(x, y) = Hw(x, t) (13.35a)

~
∂

∂t
w(x, t) = −Hu(x, t) (13.35b)

where u(x, t) and w(x, t) are real and imaginary part of ψ(x, t), respectively. These partial differential
equations are coupled and must be solved simultaneously. By deferentiating both side with respect to time,
we can make two independent PDEs:

∂2

∂t2
u(x, t) = −

(
H

~

)2
u(x, t) (13.36a)

∂2

∂t2
w(x, t) = −

(
H

~

)2
w(x, t) (13.36b)

These are more complicated than the original equation since H2 involves fourth order derivative. We will
look for other methods.

The Schrödinger equation is linear and its solution can be formally written with a time evolution operator
as

ψ(x, t) = e−iH(t−t0)/~ψ(x, t0). (13.37)
However, since an operator H is in the exponential function, the numerical evaluation of this solution is still
difficult. Introducing discrete time tn = t0 + n∆t, n = 0, · · · , N where ∆t is a small time step, the time
evolution can be expressed as a product of step operator

ψ(x, tN) = e−iHN∆t/~ ψ(x, t0) =
(

e−iH∆t/~
)N

ψ(x, t0) (13.38)

and a single time step as
ψ(x, tn + ∆t) = e−iH∆t/~ ψ(x, tn). (13.39)

SCHRÖDINGER EQUATIONS 359

To evaluate the right hand side of this equation, we may expand the exponential function up to the order of
∆t. Then, the single step is

ψ(x, tn + ∆t) =
(

1− i

~
H∆

)
ψ(x, tn) (13.40)

which is equivalent to the Euler method for ODEs. This approach is not only inaccurate (order of ∆t) but
also does not conserve the norm of the wavefunction.

There are several numerical algorithms specifically suitable for the Schrödinger equation, which conserves
the norm and correct up to the order of ∆t2 (higher than the Euler method).

13.6.1 Crank-Nicolson method

Consider a half forward step from tn and a half backward step from tn+1,

ψ(x, tn + ∆t/2) = e−iH∆t/2~ ψ(x, tn) (13.41)
ψ(x, tn + ∆t/2) = eiH∆t/2~ ψ(x, tn + ∆t) (13.42)

and thus
eiH∆t/2~ ψ(x, tn+1) = e−iH∆t/2~ ψ(x, tn) (13.43)

which is still exact. Now, we expand the exponential function up to the order of ∆t and obtain(
1 + i

2~H∆t
)
ψ(x, tn + ∆t) =

(
1− i

2~H∆t
)
ψ(x, tn). (13.44)

Unlike the previous expansion in Eq. (13.40), this expression is correct upto the order of ∆t2. Noting that
‖1 + i

2~H∆t‖ = ‖1− i
2~H∆t‖, the norm conserves. Rearranging the equation

1
2

(
1 + i

2~H∆t
)

[ψ(x, tn + ∆t) + ψ(x, tn)] = ψ(x, tn). (13.45)

which is a linear equation
Aχ = ψ(x, tn) (13.46)

where A = 1
2
(
1 + i

2~H∆t
)

and χ = ψ(x, tn+1) + ψ(x, tn). We solve this equation for χ and the solution is
χ = A−1ψ(x, tn). Once χ is obtained, the wavefunction at next time is given by

ψ(x, tn + ∆t) = χ− ψ(x, tn) (13.47)

To solve Eq. (13.46), as usual we discretize the space by xj = x0 + jh, j = 0, · · · ,M . We discussed a
discrete version of the Hamiltonian in CHap 6 which is given as a matrix

H
.=

~2

mh2 + Ũ1 − ~2

2mh2 0 0 0 0 · · ·

− ~2

2mh2
~2

mh2 + U2 − ~2

2mh2 0 0 0 · · ·

0 − ~2

2mh2
~2

mh2 + U3 − ~2

2mh2 0 0 · · ·
...

...
...

...
...

... · · ·

0 0 0 · · · − ~2

2mh2
~2

mh2 + UM−1 − ~2

2mh2

0 0 0 0 · · · − ~2

2mh2
~2

mh2 + UM

(13.48)

360 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

Figure 13.3: Quantum tunneling through the square potential barrier. The left panel shows the probability
density of the initial wave packet moving toward the potential barrier. The right panel shows the probability
density after the collision with the potential barrier. A broad peak in the right side of the potential barrier
indicates that the fraction of the packet tunnels through the barrier.

and the matrix A is a tridiagonal matrix with the matrix elements

Ai i = 1
2

[
1 + i∆t

2~

(
~2

2m ·
2
h2 + Ui

)]
(13.49a)

Ai i+1 = − i∆t4~ ·
~2

2m ·
1
h2 (13.49b)

Ai i−1 = Ai i+1 (13.49c)

where Ui = U(xi). Now, ψ(x, tn) is a column vector with the component ψi(tn) = ψ(xi, tn). Then, we can
solve Eq. (13.46) by the Gaussian elimination/backsubstitution method or other methods discussed in Chap
7.

13.7 Applications in Physics

13.7.1 Quantum Tunneling

A quantum particle can tunnel through a potential barrier. Consider a quantum particle of mass m colliding
with a square potential barrier

U(x) =

0 x < 0

U0 0 < x < L

0 L < x

(13.50)

Th corresponding Schrödinger equation is

i~
∂

∂t
ψ(x, t) = − ~2

2m
∂2

∂x2ψ(x, t) + U(x)ψ(x, t). (13.51)

APPLICATIONS IN PHYSICS 361

Before writing a program, we will simplify the mathematical expression by introducing normalizing energy,
time and wave number as Ẽ = E/U0, t̃ = t/(~/U0) and k̃ = k/

√
2mU0/~2. Accordingly, distance is measured

in x̃ = x/
√

~2/2mU0. For simplicity, we omit the tilde in the normalized expression

i
∂

∂t
ψ(x, t) = − ∂2

∂x2ψ(x, t) + U(x)ψ(x, t) (13.52)

where the normalized potential has the height 1 and width L measured in the unit of
√

~2/2mU0.
The initial wavefunction is a Gaussian packet

ψ(x, 0) =
√

a√
π

e−(x−x0)2/2a2
eikx (13.53)

where x0 and a are the initial position and width of the packet. The wave number k is determined by the
speed v of the packet as k = mv/~. The transmission probability is determined by

T = lim
t→∞

∫ ∞
L

|ψ(x, t)|2dx (13.54)

and the reflection probability by

R = lim
t→∞

∫ 0

−∞
|ψ(x, t)|2dx (13.55)

Program 13.2 computes the time evolution of wavefunction using the Crank-Nicolson method and computes
the transmission/reflection probabilities. Figure 13.3 shows the initial and final probability densities. A
smaller peak is seen in the right side of the potential barrier, indicating that a fraction o the packet tunnels
through the potential barrier. The transmission probability is 0.15.

13.7.2 Pattern Formation

The first chemical model to show oscillations and traveling waves was proposed by Prigogine and Lefever[1]
in 1968. The model is called the ”Brusselator” because it was discovered in the city of Brussels. The
Brusselator system is the following sequence of reaction:

A −→ X (13.56a)
B +X −→ Y +D (13.56b)

2X + Y −→ 3X (13.56c)
X −→ E (13.56d)

where the species A and B are sources whose concentration are kept constant, and D and E are products
which are extracted from the system at a constant rate. The species X and Y are intermediate products.
It is important to note that both X and Y are produced and consumed during the sequence of reactions in
such a way that X produces Y and Y produces X.

When the reaction takes place in a well stirred container, the concentration of chemicals are uniform and
does not depend on the position. We have studied such a case in Section 4.4.1. If the system is no stirred,
the chemicals are not well mixed and the concentration becomes position-dependent. The diffusion becomes
the main mechanism of the mixing of the chemicals. Then, the dynamics of the reaction is described by a
pair of reaction-diffusion equations:

∂

∂t
u(r, t) = Du∇2u(r, t) + a− (b+ 1)u(r, t) + u2(r, t)w(r, t) (13.57a)

∂

∂t
w(r, t) = Dw∇2w(r, t) + b u(r, t)− u2(r, t)w(r, t) (13.57b)

362 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

(a) Initial distribution (b) t = 20 (c) t = 100

(d) Steady state concentration of X (e) Steady state concentration of Y

Figure 13.4: Time evolution of pattern formation. Initially, the chemicals are randomly distributed. As time
goes, a pattern begins to appear. By t = 100, a two dimensional crystal like structure is formed. However,
the pattern does not have a precise periodicity or symmetry yet. At t = 2000, the system reaches a steady
state. The spot size is now identical and they form a hexagonal close-packing structure. Parameter values
are a = 2.5, b = 5.0, Du = 0.2, and Dw = 1.6. Periodic boundary condition with L = 20 is used. The
discretization parameters are h = 1, and ∆t = 0.125× 10−2.

APPLICATIONS IN PHYSICS 363

where u(r, t) and w(r, t) are the concentration of chemicals X and Y , and Du and Dw are their diffusion
constants, respectively. The parameters a and b remain constant both in space and time as before (see
Section 4.4.1).

The reaction-diffusion equations (13.57) has many different types of solution depending parameter values,
initial conditions and boundary conditions, for examples, pattern formation, traveling wave, and spiral waves.

Equations (13.57) are essentially the diffusion equation with additional terms. Discretizing he time
and space, we denote the two function as uki,j = u(tk, xi, yj) and wki,j = w(tk, xi, yj). Similarly to the
2-dimensional diffusion equation (??), the discrete version of the diffusion-reaction equations are

uk+1
i,j ≈ ρki,j + Du∆t

∆x2
(
uki+1,j + uki−1,j − 2uki,j

)
+ Du∆t

∆y2
(
uki,j+1 + uki,j−1 − 2uki,j

)
+a− (b+ 1)uki,j + (uki,j)2wki,j (13.58a)

wk+1
i,j ≈ wki,j + Dw∆t

∆x2
(
wki+1,j + wki−1,j − 2wki,j

)
+ Du∆t

∆y2
(
wki,j+1 + wki,j−1 − 2wki,j

)
+buki,j − (uki,j)2wki,j (13.58b)

Program 13.3 implements Eq. (13.7.2), with periodic boundary conditions in both directions.
We assume that the space is isotropic (h = ∆x = ∆y). Initially, both u and w take independent random

values between 0 and 1 at each point. Figure 13.4 shows the time evolution of the concentration of X.
Initially (Fig. 13.4a) no simple pattern is seen but by time t = 20 (Fig. 13.4b) the high concentration
regions is formed. At t = 100 (Fig. 13.4c), many circular spots with nearly the same radius are distributed
with nearly equal distance between them. The spots size is not exactly the same and they are not exactly
aligned, it is clear that the spots are not randomly placed. The reaction-diffusion system is organizing itself
and forming a distinct order. Figures 13.4d and 13.4e show the final steady state. Each spot has the same
size and they form hexagonal close packed structure like a two-dimensional crystal.

The patterns depend on the boundary conditions. In the present example, the close-packing is formed due
to the periodical boundary condition. Other types of boundary conditions generates different patters. It is
also known that the same reaction-diffusion equation can generate spiral waves with appropriate boundary
conditions and initial conditions.

364 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

Program Lists

Program 13.1
%**
%* Example 13.1 *
%* filename: ch13pr01.m *
%* program listing number: 13.1 *
%* *
%* This program solves a diffusion equation using the forward time *
%* centered space method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
close all;
clear all;
% parameters
D=0.1; % diffusion constant
N=201; % number of grids
N1=(N-1)/2;
dx=0.1; % spacial step
R = 0.1; % D*dt/dxˆ2
dt=dxˆ2/D *R; % time step

x=(-N1:N1)*dx; % spatial coordinates

M=10; % number of sample point.
tmax=10000; % total time steps
MS=tmax/M;

rho0=zeros(N,1); % initial density profile
rho0(N1+1)=1.0/dx;

% allocate arrays
rho1=zeros(N,1);
rho=zeros(N,M);
t=zeros(M,1);

k=0;
for j=1:tmax

rho1(1)=(1-R)*rho0(1)+R*rho0(2); % left boundary
rho1(N)=(1-R)*rho0(N)+R*rho0(N-1); % right boundary
for i=2:N-1

rho1(i)=rho0(i)*(1-2*R)+R*(rho0(i+1)+rho0(i-1));
end
rho0=rho1;
if mod(j,MS)==0 % record the results

k=k+1;
t(k)=j*dt;
rho(:,k)=rho0(:);

end
end

figure(1)
surf(t,(-N1:N1),rho)

figure(2)
for i=1:M

plot(x,rho(:,i))
hold on

end

APPLICATIONS IN PHYSICS 365

hold off

figure(3)
f=1/sqrt(2*pi)*1/sqrt(2*D*t(2))*exp(-x.ˆ2/(4*D*t(2))); % exact
plot(x,rho(:,2),'o',x,f)
legend('FTCS method','Exact')

Program 13.2

%**
%* Example 13.2 *
%* filename: ch13pr02.m *
%* program listing number: 13.2 *
%* *
%* This program calculates quantum tunneling by solving a Shrodinger *
%* equation. The Crank-Nicolson method is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**

clear all
close all

% system parameters
E=0.9;
k=sqrt(2*E);
a=5.0;
dt=0.1;

% control parameters
L=100;
h=0.05*min(a,2*pi/k);
N=2*round(L/h)+1;

% initial condition
x0=-L+5*a;
for j=1:N;

x(j)=(j-(N+1)/2)*h;
psi(j,1)=exp(-(x(j)-x0)ˆ2/(2*aˆ2))*exp(i*k*x(j));

end
c=sum(abs(psi).ˆ2)*h;
psi=psi/sqrt(c);

% construct matrix
A=zeros(N,N);
A(1,1)=complex(1,dt/hˆ2/2)/2;
A(1,2)=-i*dt/hˆ2/8;
for n=2:N-1

A(n,n)=A(1,1);
A(n,n-1)=A(1,2);
A(n,n+1)=A(1,2);

end
A(N,N)=A(1,1);
A(N,N-1)=A(1,2);

% add potential barrier
V=complex(0,dt/4);
for n=(N+1)/2:(N+1)/2+5/h;

A(n,n)=A(n,n)+V;
end

366 PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC EQUATIONS

% solve Schrodinger equation.
for I=1:1000

chi = A\psi;
psi = chi - psi;
rho = abs(psi).ˆ2;
p=plot(x,rho);
set(p,'linewidth',2);
hold on
r=plot([0,0],[0,0.12],[5,5],[0,0.12],[0,5],[0.12,0.12]);
set(r,'color','black');
axis([-L L 0 0.12]);
xlabel('x','interpreter','latex','fontsize',16)

ylabel('$|\psi(x)|ˆ2$','interpreter','latex','fontsize',16)
hold off; drawnow;
end

% check the normalization
c=sum(abs(psi).ˆ2)*h;
fprintf('Final Norm=%.6f\n',c)

% compute transmission/reflection probability
T=sum(abs(psi((N+1)/2+int32(5/h):N-1).ˆ2))*h;
R=sum(abs(psi(1:(N-1)/2).ˆ2))*h;
fprintf('Transmission Probability=%.6f\n',T)
fprintf('Reflection Probability=%.6f\n',R)

Program 13.3

%**
%* Example 13.5.2 *
%* filename: ch13pr03.m *
%* program listing number: 13.3 *
%* *
%* This program solves a coupled reaction-diffusion systems based on *
%* the Brusselator model. The parameters are chosen to form spots. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
clear all
close all

% system parameters
a=2.5; b=5; % parameters for spots
Du=0.2; % diffusion constant for u
Dw=1.6; % duiffusion constant for w
L=20.0; % the size of the system (periodic boundary condition.

% control parameters
NL=100; % number of grid points
dx=L/NL; % step length
Du=Du/dxˆ2;
Dw=Dw/dxˆ2;
T=100; % total time (takes a long time to reach the final patttern)
dt=0.1/max(Du,Dw); % time step
NT=int32(T/dt);

% initial condition
u0=rand(NL,NL);
w0=rand(NL,NL);
pcolor(u0); axis equal tight; shading interp; drawnow;

APPLICATIONS IN PHYSICS 367

laplace_u=zeros(NL,NL);
laplace_w=zeros(NL,NL);

for k=1:NT
t=(k-1)*dt;
% Laplacian with periodic boundary
laplace_u = circshift(u0,1,1)+circshift(u0,-1,1) ...

+ circshift(u0,1,2)+circshift(u0,-1,2) - 4*u0;
laplace_w = circshift(w0,1,1)+circshift(w0,-1,1) ...

+ circshift(w0,1,2)+circshift(w0,-1,2) - 4*w0;
% Euler step
fu=a-(b+1)*u0+u0.ˆ2.*w0+Du*laplace_u;
fw=b*u0-u0.ˆ2.*w0+Dw*laplace_w;
u1=u0+fu*dt/2;
w1=w0+fw*dt/2;

% Laplacian at the mid time.
laplace_u = circshift(u1,1,1)+circshift(u1,-1,1) ...

+ circshift(u1,1,2)+circshift(u1,-1,2) - 4*u1;
laplace_w = circshift(w1,1,1)+circshift(w1,-1,1) ...

+ circshift(w1,1,2)+circshift(w1,-1,2) - 4*w1;

% Runge-Kutta step
fu=a-(b+1)*u1+u1.ˆ2.*w1+Du*laplace_u;
fw=b*u1-u1.ˆ2.*w1+Dw*laplace_w;
u0=u0+fu*dt;
w0=w0+fw*dt;

pcolor(u0); axis equal tight; shading interp; drawnow;
end
colorbar

figure(2)
pcolor(w0); axis equal tight; shading interp; drawnow;
colorbar

Bibliography

[1] I. Prigogine and R. Lefever. Symmetry breaking instabilities in dissipative systems. ii. J. Chem. Phys.,
48:1695, 1968.

368

CHAPTER 14

PARTIAL DIFFERENTIAL EQUATIONS II:
SCHRÖDINGER EQUATION

To be written.

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

369

PART II

COMPUTER SIMULATION

CHAPTER 15

RANDOM NUMBERS

Suppose that many identical systems are in the identical conditions and a physical quantity is measured in
each system, we tend to think that the outcomes are also identical since the conditions uniquely determine the
outcomes. Newton’s equations, Maxwell’s equations, many other laws of physics are deterministic. There is
no room for uncertainty. Of course, that view is unrealistic in the real world. All experimental data contain
error bars due to noise. Not only the experimental data, quantum mechanics and statistical mechanics
assume that the physical quantities are stochastic at the fundamental level. The quantities do not have a
unique value and fluctuate from measurement to measurement even when the condition is exactly the same.
In this chapter, we consider how to realize such a stochastic quantity in digital computers. Since computers
are completely deterministic, it looks impossible to deal with stochastic quantities. However, there are ways
to calculate stochastic quantities using random numbers. In physics, many stochastic processes are simulated
on computers using random numbers. Such methods are called Monte Carlo simulation after the famous
casino city Monte Carlo in Monaco. Understanding the random numbers is very important for computational
physics.

Actually, random numbers are already used by the computers even at the system level and generating
good random numbers is a serious issue for data security (encryption) in modern information technology.
Therefore, stochastic variables are not new to the deterministic digital computers.

15.1 Stochastic Variables

A regular variable x holds a certain value assigned to it and the value remains the same until a different value
is assigned. For example, the position of a particle at a certain time is uniquely determined by an initial

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

373

374 RANDOM NUMBERS

condition and there is no uncertainty with it. It is said that the trajectory is fully deterministic. However,
the trajectory is not always deterministic. In real world, the environment may apply noisy forces on the
particle. In such cases the trajectories of the particles starting with the same initial conditions may take
different trajectories. Then, the position of the particle cannot be expressed as a regular variable. Instead it
is a stochastic variable X̂. The stochastic variable does not holds a certain value. When we try to retrieve the
value from the stochastic variable, it picks a number from a so-called sample space with a certain probability
assigned to that number.

For example, the number X̂ obtained by rolling a die is a stochastic variable. When the die is rolled
one number is obtained out of the sample space {1, 2, 3, 4, 5, 6} and the probability to get the number is
1/6. In general, a discrete stochastic variable X̂ is defined with an sample space {xi, i = 1, · · · , N} and the
corresponding probability Pi. Note that the probability must satisfy Pi ≥ 0 and

∑
i Pi = 1.

A stochastic variable is fully characterized by the sample space and the probability distribution. We often
characterize it with a few statistical quantities, namely the mean value 〈x〉 and variance ∆x defined by

〈x〉 =
∑
i

xiPi (15.1a)

∆x =
√

(〈x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 . (15.1b)

Although these two quantities alone cannot fully describe the stochastic variable, they usually give us a
reasonable picture of the variable.

Similarly, a continuous stochastic variable is defined with a sample space {a < x < b}. The probability
to find a value between c and d is expressed with a probability density ρ(x) as

P (c < x < d) =
∫ d

c

ρ(x) dx (15.2)

The density must satisfy ρ(x) ≥ 0 and
∫ b
a
ρ(x) dx = 1 (normalization). The mean is defined by

〈x〉 =
∫ b

a

xρ(x)dx (15.3)

For example, a normally-distributed stochastic variable X̂ is defined with the sample space {−∞ < x <∞}
and ρ(x) = σ√

2π
e−x

2/2σ2
. Its mean and variance is 〈x〉 = 0 and ∆x = σ.

A question is how to realize the stochastic variable in computers. That is the main topics in this chapter.

15.2 Uniform Random Numbers

We begin with a standard stochastic variable R̂ with the sample space {0 ≤ r ≤ 1} with uniform distribution
ρ(r) = 1. In computer, R̂ is a random number generator. Upon request, it generates a number r between 0
and 1 at random. At each call, we get a different value which has no relation to the previous values. Once we
have R̂, we can construct random numbers with other kind of distributions by mathematical transformation
as discussed below. Therefore, we first investigate the basic uniform random number generators. The uniform
random number between 0 and 1 has the mean value 〈r〉 = 1/2 and the variance σ = 〈(r − 〈r〉)2〉 = 1/12.

All variables used in computer programs are deterministic and no room for uncertainty. Then, how can
we generate a random number? The answer is No. We can’t generate true random numbers by computer
program. However, there are procedures which generate deterministic sequences of numbers that look like
random numbers. They are called pseudo random numbers. In most applications in physics, the pseudo
random numbers are good enough when they are used with a certain care. There are many algorithms to

UNIFORM RANDOM NUMBERS 375

0 1

0 1 2 3 4 5 6

(a) Mapping from random numbers uniformly dis-
tributed between 0 and 1 to discrete random num-
bers.

1 2 3 4 5 6
0

200

400

600

800

1000

1200

face of die

nu
m

be
r

of
 r

ea
liz

at
io

n

(b) Statistics of the virtual die. Due to the finite
number of realizations, the probability is close but
not exactly uniform.

Figure 15.1: Virtual Die

generate the pseudo random numbers. A most popular method, known as linear congruential generator,
generates a sequence of random numbers Ii by a recursive equation

Ii+1 = a Ii + b mod c (15.4)

where a, b, and c are integer constants. Then, the random number ri = Ii/c is a pseudo random number in
the range of 0 < ri < 1. The most of the random generators supplied by computer systems are based on
this algorithm. In MATLAB, rand() generates random numbers between 0 and 1.

The quality of the random number depends on the choice of a, b, c. Note that total number of possible
random numbers are limited to c at the best. This type of pseudo random numbers are periodic and after a
certain iterations the same sequence comes back. The longest possible period is c. It has been shown that a
set of parameters a = 75 = 16807, b = 0, and c = 231 − 1 = 2147483647 provides excellent uniform random
numbers with the maximum periodicity 231 − 1.

The recursive equation (15.4) must start with a certain initial number I0 called ”seed”. If you do not
specify a seed, a fixed default seed is used and the same sequence of random numbers is obtained every
time. In order to avoid the use of the same random numbers, we must pick a different seed every time. For
example, you can use the current date and time to reset the seed. In MATLAB, rng(’shuffle’) does it.

EXAMPLE 15.1 A Virtual Die

We make a virtual die based on the congruential generator. The uniform random numbers between
0 and 1 is mapped to integer random numbers between 1 and 6. First, we generate a basic uniform
random number r and multiply 6 to it. If N − 1 < 6r ≤ N (N = 1, · · · , 6), then the die gives the value
N . For example, if the random number is r = 0.19, then, 6r = 1.14. This corresponds to 2 on the die.
Figure 15.1a illustrates the mapping from the uniform random number to the die. Program 15.1, we
roll the virtual die 6000 times. If the die is far, each face is realized 1000 times. The result is shown
in Fig. 15.1b. It appears to be fair except for the small fluctuation. This fluctuation is not due to the
low quality of the random number generator. Even if an ideal random numbers are used, there is still
fluctuation. The fluctuation disappears only when the number of samples is infinitely large.

376 RANDOM NUMBERS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 15.2: Monte Carlo method to evaluate the area inside a circle. The area inside the circle equals
4Nred/(Nblue +Nred) where the factor 4 is the area of the square.

EXAMPLE 15.2 Monte Carlo integration

Multidimensional integrals can be computationally demanding. There is a way to estimate them by
random sampling. The result may not be very accurate but gives a rough estimate and particularly
efficient for high dimensional integral. Here we evaluate the volume of a n-dimensional hypersphere of
radius 1. The sphere is inscribed in a hypercube of edge length 2. The volume of the hypercube is 2n.
Now, we generates many random points uniformly distributed in the hypercube. Then, we count the
number of points inside the hypersphere. The ratio of the population inside the sphere and the total
population of the points is roughly speaking in proportion to the volume of the sphere to the volume
of the cube. Since we know the volume of the cube, we can estimate the volume of the sphere from
the ratio. As the number of the points increases to infinity, the result approaches to the exact volume
Vn = πn/2/Γ(n/2 + 1) where Γ(·) is the gamma function.[1] Figure 15.2 illustrates the case for n = 2.
Generate a pair of standard uniform random numbers r1 and r2. Convert them to x and y coordinates
by

x = 2r1 − 1, y = 2r2 − 1 (15.5)
which are uniform random numbers between −1 and 1. If x2 +y2 < 1, then increment Nin by one. After
N random points, the volume of the sphere is estimated by Vsphere = Nin

N Vcube.
Program 15.2 evaluates the volume of the N -dimensional hypersphere using the Monte Carlo inte-

gration. Figure 15.3 shows that with 100000 sampling, we can evaluate the volume of two-dimensional
circle rather accurately and the volume of the six-dimensional sphere within ±5% of error. If we use a
standard integral method, the number of grid points increases as the power of N . On the other hand, the
number of sampling points necessary to get a reasonable estimate by the Monte Carlo method increases
slower than that. Therefore, the Monte Carlo method is advantageous for high dimensional integrals.

15.3 Non-uniform distributions

In the previous examples, we generated desired random numbers by stretching space or using two random
numbers to cover two-dimensional space. In either cases, the resulting new random numbers are distributed
uniformly. However, non-uniform distributions are common in physics. For example, the velocity of the
gas particles in thermal equilibrium is Gaussian distributed (Maxwell’s distribution). The chance you find

NON-UNIFORM DISTRIBUTIONS 377

0 1 2 3 4 5 6 7 8 9 10

x 104

2.9

3

3.1

3.2

3.3

3.4

of sampling

V
ol

um
e

MC
Exact
−5%
+5%

(a) 2D

0 1 2 3 4 5 6 7 8 9 10

x 104

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

of sampling

V
ol

um
e

MC
Exact
−5%
+5%

(b) 6D

Figure 15.3: Monte Carlo evaluation of the volume of hypersphere. As the number of sampling points
increases, the result approaches to the exact value.

a slow particle is higher than a fast particle. Since computer systems usually supply only uniform random
numbers, we need to transform it to a desired distribution.

Let X̂ a stochastic variable and its realization is a random number x with a distribution χ(x). We
introduce a new stochastic variable Ŷ = f(X̂). The realization of Ŷ is related to the realization of X̂
through the same function y = f(x). Then, the mathematical theorem tells that

ρ(y)|dy| = χ(x)|dx| (15.6)

and thus we have the distribution of y as

ρ(y) = χ(x)
∣∣∣∣dxdy

∣∣∣∣ = χ(x)
∣∣∣∣df−1(y)

dy

∣∣∣∣ . (15.7)

If x is uniformly distributed as

χ(x) =
{

1 0 < x < 1

0 otherwise
(15.8)

then we have
ρ(y) =

∣∣∣∣dxdy

∣∣∣∣ =
∣∣∣∣df−1(y)

dy

∣∣∣∣ (15.9)

By choosing an appropriate function y = f(x), we can construct a random number generate with a desired
distribution ρ(y). For example, when y = − ln(x), ρ(y) = e−y. Figure 15.4 shows the mapping from uniform
x between 0 and 1 to y exponentially distributed from 0 to ∞.

For multi-dimensional cases like Example 15.2, we consider a transformation yi = fi(x1, x2, · · ·). The
distribution for {yi} is given by

ρ(y1, y2, · · ·)dy1dy2 · · · = χ(x1, x2, · · ·)
∣∣∣∣∂(x1, x2, · · ·)
∂(y1, y2, · · ·)

∣∣∣∣ (15.10)

where |∂()/∂()| is the Jacobian determinant. For two-dimensional case,

ρ(y1, y2) = χ(x1, x2)

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ (15.11)

378 RANDOM NUMBERS

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

y

Figure 15.4: Mapping from random number x uniformly distributed between 0 and 1 to y exponentially
distributed from 0 to ∞. The transformation function is y = − ln(x).

15.4 Gaussian random number

Stochastic variables with a Gaussian distribution is defined by

ρ(x) = σ√
2π

e−x
2/2σ2

(15.12)

and it has mean 〈x〉 = 0 and variance 〈x2〉 − 〈x〉2 = σ2. When σ2 = 1, it is called normal distribution.
The Gaussian distributed stochastic variables are ubiquitous particularly in statistical physics. For example,
many fluid particles collide with a Brownian particle during a short period of time. The force exerted on the
Brownian particle by the fluid particle is stochastic and Gaussian distributed.

There is a mathematical reason why the normal distribution is ubiquitous. Consider N independent
stochastic variables Xi, i = 1, · · · , N with an identical distribution. The mean and variance are given by
〈Xi〉 = µ and 〈(Xi − µ)2〉 = σ2. Then, the distribution of a stochastic variable defined by

SN = X1 +X2 + · · ·+XN −Nµ√
Nσ2

= 1√
Nσ2

N∑
i=1

(Xi − µ) (15.13)

approaches a normal distribution as N → ∞. This is known as central limit theorem.[2] Note that the
distribution of Xi does not have to be Gaussian. As long as the mean and variance are well defined, the sum
of such non-Gaussian stochastic variables is Gaussian distributed.

Now, we want to generate random numbers drawn from the normal distribution. The normally distributed
random generator returns values close to 0 more often than larger values. One way is to utilize the central
limit theorem. Consider 12 random numbers Xi, i = 1, · · · , 12 uniformly distributed between 0 and 1. As
discussed in the previous section, Xi has mean µ = 1/2 and variance σ2 = 1/12. While N is not close to ∞,
the sum of the 12 random numbers,

S12 = X1 +X2 + · · ·+X12 − 12µ√
12σ2

=
12∑
i=1

Xi − 6 (15.14)

GAUSSIAN RANDOM NUMBER 379

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

ρ(
x)

S

12

Exact

(a) The sum of 12 uniform random numbers

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

ρ(
x)

Box−Muller
Exact

(b) Box-Muller mnethod

Figure 15.5: Two generators of normally distributed random generator. The distribution is constructed from
100,000 realizations. The distribution of S12 is strictly zero for |x| > 6 and thus rare events are not included.
In principle, the Box-Muller method can generate rare random numbers. However, it is so rare that |x| > 6
is not realized with this 100,000 sampling.

is, roughly speaking, normally distributed. A main problem of this method is that the largest value it
can generate is only 6. The true normal distribution allows very large number up to infinity although the
probability to obtain such a large value is very small. The probability density at x = 6 is about 10−8. Only
one out of 100 million realizations hits that high value. Hence, it is not a significant deficiency for most
applications. If such rare events are not important, the sum of 12 uniform random numbers is a simple way
to generate the normal distribution. Figure 15.5a shows the distribution of S12 which matches well to the
true normal distribution.

If rare events need to be taken into account, use a mathematically rigorous transformation known as the
Box-Muller method. It turns out that the transformation of two uniformly distributed random numbers
x1 and x2 to the two Gaussian distributed random numbers y1 and y2 is more convenient. Consider the
transformations

y1 =
√
−2 ln x1 cos(2πx2) (15.15a)

y2 =
√
−2 ln x1 sin(2πx2) (15.15b)

and their inverse

x1 = exp−(y2
1+y2

2)/2 (15.16a)

x2 = 1
2π arctan y2

y1
(15.16b)

The corresponding distribution function for y1 and y2 is

ρ(y1, y2) =

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ = −
(

1√
2π

e−y
2
1/2
)(

1√
2π

e−y
2
2/2
)

(15.17)

This distribution indicates that y1 and y2 are independent and normally distributed random numbers.
Using two uniformly distributed random numbers x1 and x2, we generate two normally distributed random
numbers. Unlike, the sum of 12 random numbers, y1 and y2 are truly Gaussian distributed from −∞ to ∞.

380 RANDOM NUMBERS

B1 B2 B3 B4 B5 B6 B7 B8

x0 x1 x2 x3 x 4 x5 x6 x7 x8h

Figure 15.6: Generating histogram from continuous random numbers. Circles indicate the random numbers.
The number of the circles in a bin corresponds to the height of the bar above it.

EXAMPLE 15.3

Generate random numbers that are normally distributed. Program 15.3 implements the Box-Mullar
method. We check the distribution of random numbers by plotting a histogram. To construct a his-
togram, first we create bins by dividing the entire range into many small intervals. For eaxmple, one
bin corresponds to a segment between x and x+ h where h is the width of the bin. See Fig. 15.6. Now,
we generate a random number and check which bin the random number belongs to. After generating
sufficient number of random numbers, count the number of random numbers in each bin. That is the
height of the bar in the histogram. Figure 15.5b shows the distribution of random numbers generated
by the Box-Muller method. The width of the bins is very small in this plot and the plot looks like
continuous line, However. it is a histogram.

15.4.1 Exponential distributions

An exponential distribution with a rate parameter λ > 0 defined by

ρ(x) =
{
λe−λx x > 0

0 x < 0
(15.18)

and its mean and variance are µ = 1/λ and σ2 = 1/λ2.
The exponential distribution is also common in physics. For example, the energy of a system in a thermal

equilibrium is a stochastic variable and distributed exponentially as

ρ(E) = 1
Z

e−E/kBT (15.19)

where Z is a normalization constant. This distribution is known as the Boltzmann distribution.
The exponentially distributed random numbers can be obtained by a transformation y = − ln(x)/λ where

x is a uniformly distributed between 0 and 1.

15.4.2 Evaluation of Mean

To analyze stochastic systems, we often evaluate a mean of a physical quantity f(X̂) which is a function of
stochastic variable X̂. The analytic expression is defined by

〈f〉 =
∑
i

f(xi)Pi (15.20)

for a discrete system and
〈f〉 =

∫
f(x)ρ(x)dx (15.21)

APPLICATIONS IN PHYSICS 381

for a continuous system. We evaluate this summation or integral using the Monte Carlo method. The
procedure is very simple. Generate N random numbers ri, i = 1, · · · , N out of a desired distribution Pi or
ρ(x). The mean is simply

〈f〉 = lim
N→∞

1
N

N∑
i=1

f(ri) (15.22)

Of course, in practice, we use a finite number of sampling N . We need to make it sure that N is large enough
to get an accurate value.

EXAMPLE 15.4

Consider a stochastic variable X̂ of normal distribution. We evaluate the 2nd and 4th moments, 〈x2〉 and
〈x4〉, using the Monte Carlo method. It is known that 〈x4〉 = 3〈x2〉2. We will check if the Monte Carlo
simulation can get the same answer. Program 15.4 evaluates the moments using the Box-Muller method.
With N = 1000, the agreement is not bad but much better agreement is obtained with N = 1000000.

N= 1000000, V4/(V2)ˆ2 = 3.0009e+00
N= 1000, V4/(V2)ˆ2 = 2.9033e+00

15.5 Applications in Physics

15.5.1 Thermal Speed

Particles in a three-dimensional gas at temperature T has random velocity v and its probability distribution
of the velocity is given by the Maxwell’s distribution

ρ(v) =
√

m

2πkBT
e−mv

2/2kBT (15.23)

where m is the mass of the particle and T and kB are temperature of the gas and the Boltzmann constant,
respectively. The mean velocity is clearly 〈v〉 = 0 since v and −v have the equal probability. On the other
hand, the mean speed does not vanish. The exact answer can obtained as

〈|v|〉 =
y
|v|ρ(v) dvx dvy dvz =

√
m

2πkBT

∫ ∞
0

∫ π

0

∫ 2π

0
v3e−mv

2/2kBT dφ sin θ dθ dv =
√

8kBT

πm
(15.24)

Now, we try to evaluate the mean speed of hydrogen molecules in the air using the random numbers.
Since the Maxwell’s distribution is Gaussian, we can use the normally distributed random numbers with
mean value µ = 0 and variance σ =

√
kBT
m . Here, as an exercise, we try to confirm Eq. (15.24) by the direct

Monte Carlo simulation.
The statistical analysis tells that the relative error of the finite sampling is about 1/

√
N . Therefore,

with N = 100000 sampling, we expect ∆v
〈|v|〉 ∼ 10−4. Program 15.5 generates normally distributed random

numbers vi and calculates the mean speed 〈|v|〉 = 1
N

∑N
i |vi|. The result shows the error less than 10−4 as

expected.

mean speed = 1.77558e+03 (exact=1.77566e+03)
relative error = 4.6397e-05

382 RANDOM NUMBERS

(a) Experiment

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

x

z

(b) Exponential Distribution

Figure 15.7: Snapshot of the sedimentation diffusion equilibrium

15.5.2 Sedimentation-diffusion equilibrium

A colloidal particle of mass m under the uniform gravity g does not fall down completely to the bottom
of the container. Random collisions with the fluid particles push the colloidal particle upward against the
gravity. The height of the particle from the bottom is stochastic and distributed as

ρ(z) = mg

kBT
e−mgz/kBT (15.25)

which is known as barometric formula.[3] The barometric formula is one of the example of the Boltzmann
distribution. Two hundred colloidal particles are placed in a fluid. Generate an image showing the location
of the colloidal particles.

Measure the height using the gravitational length `g = kBT/mg as unit, the distribution is simply

ρ(z) = e−z (15.26)

The horizontal positions of the particles are uniformly distributed whereas the vertical positions are expo-
nential. Program 15.6 generates a snapshot image of the sedimentation-diffusion equilibrium. The result is
shown in Fig. 15.7. The distribution of particles obtained by the Monte Carlo simulation resembles to the
experimental observation.

15.5.3 Surface Growth: Random Deposition Models

The current technology demands high quality of materials. Crystals grows by themselves but we want to
control the growth of the materials. The vapor deposition method and molecular beam epitaxy (MBE) allow
us to deposit atoms on top of the substrate in a controlled manner. We want to simulate such a surface
growth process in computer. A simplest model is the random deposition model.[4] (See Fig. 15.8a.) The
lateral position of the particles are randomly chosen. Particles either falls down to the substrate (particle 1
in Fig 15.8a) or stick to on top of the other particle (particle 2). It is interesting that even we choose the
lateral position of the particles by uniform random numbers, the resulting surface is not smooth at all. This
model generates a densely packed crystal but with large surface roughness.

In order to quantify the surface roughness, we first define the height of the surface as a stochastic variable.
We consider a one-dimensional substrate of the size L and deposit N particles on it. As particles are

APPLICATIONS IN PHYSICS 383

3
2

1

(a) Ballistic deposition model with or without over-
hang.

4 5

(b) Ballistic deposition model with surface relax-
ation.

Figure 15.8: A random deposition model with surface relaxation. The lateral position is randomly selected
and a particle is placed on the surface particle from the above. Then, it steps down to the local minimum.

deposited, the surface grows. However, the growth is not uniform. The height hi at the lateral position
xn, n = 1, · · · , L is random number drawn out of a certain probability distribution P (h;N), which we want
to find by computer simulation. We calculate the mean height and the second moment by

〈h〉 = 1
L

L∑
i=1

hi, 〈h2〉 = 1
L

L∑
i=1

h2
i , (15.27)

Rigorously speaking L should be infinitely large but in computer we use a large finite number. In order to
get a good statistics, we need a large surface area. Alternatively, we can simulate many copies of a smaller
surface and add them up for statistical calculation.

Now, we define the surface roughness as variance of the height

w =
√
〈h2〉 − 〈h〉2. (15.28)

For the simple random deposition model, we can calculate it analytically. The probability that the particle
hits a lateral position is p = 1/L. The probability distribution of the height h after N particles are deposited
is given by a binomial distribution

P (h;N) = N !
h!(N − h)!p

h(1− p)N−h −−−−→
N→∞

1√
2πw2

e−(h−〈h〉)2/2w2
. (15.29)

The mean height is

〈h〉 =
N∑
h=1

hP (h;N) = Np = N

L
(15.30)

which grows linearly with N as expected. The surface roughness is

w =
√
Np(1− p) =

√
N

L
(1− 1/L) ≈

√
N

L
=
√
〈h〉. (15.31)

As the height of the surface grows, the roughness also grows but as the sqrt of the height.
Now we turn to the simulation. Here is the algorithm.

Algorithm 15.1 Ballistic deposition model without surface relaxation

384 RANDOM NUMBERS

x
0 50 100 150 200

he
ig

ht

0

50

100

150

200

Mean height

height
60 80 100 120 140

P
(h

)

0

0.02

0.04

0.06

0.08

(a) Surface roughening. (Inset: Height distribution)

height
0 20 40 60 80 100

su
rf

ac
e

ro
ug

hn
es

s

0

2

4

6

8

10
simulation
theory

(b) Growth of surface roughness.

Figure 15.9: Surface growth with the ballistic deposition model without surface relaxation.

1. Set the height of the surface y(x) to zero at all position x =, · · · , L.

2. Generate a random position x between 1 and L.

3. Deposit the particle at x. (Increment y(x) by one.

4. Repeat the deposition for N times.

5. Evaluate the mean height and the roughness.

Program 15.7 impliments this algorithm. Figures 15.9 show the results. The suraface size L = 200 and
the number of particles N = 100, 000 are used. The profile of the surface (Fig. 15.9a) shows that the surface
is not smooth at all. Some part is much higher and other part much lower than the average height. The
inset plots the distribution of height. The different between the higest and the lowest height is as big as 50,
a half of the mean height! Figure 15.9b plots the growth of the surface roughness as a function of the mean
height. The result of the simulation agrees with the theory (15.31). The simulation data is noisy because
the surface area L = 200 is not big enough to get a good statistics.

The above result is a bit unrealistic since the surface roughness is not so big in the real matrials. A
problem of the simple random deposition model is the surface roughness increases indefinitely, which never
happens in the real world. A reasonable modification to the simple random deposition is to include the effect
of the surface diffusion.[5] Once a particle is absorbed on to the surface, it can diffuse on the surface until it
find a more stable position. It is called surface relaxation. It can be model by a biased random walk. The
particle moves to a neighbor site lower than the present site. (See particle 4 in Fig. 15.8b.) If there are
multiple sites lower than the present site, one of them are picked at random. (See particle 5 in Fig. 15.8b.)
When the surface relaxation is taken into account, the roughness grows as w = 〈h〉β up to a certain value
where β is called the growth exponent. When the mean height reaches a crossover height hc, the roughness
does not grow any loner and stay the same.[5]

The following algorithm adds the surface relaxation to the ballistic deposition model.

APPLICATIONS IN PHYSICS 385

x
0 50 100 150 200

he
ig

ht

0

20

40

60

80

100

120

140

160

180

200

Mean height height
95 100 105

P
(h

)

0

0.2

(a) Surface roughening.

height
0 20 40 60 80 100

su
rf

ac
e

ro
ug

hn
es

s

0

2

4

6

8

10
simulation
ballistic

(b) Growth of surface roughness.

Figure 15.10: Surface growth with the ballistic deposition model with surface relaxation.

Algorithm 15.2 Ballistic deposition model with surface relaxation

1. Set the height of the surface y(x) to zero at all position x =, · · · , L.

2. Generate a random position x between 1 and L.

3. If y(x− 1) ≥ y(x) and y(x+ 1) ≥ y(x), then deposit it at x. Go to Step 7.

4. If y(x− 1) < y(x) and y(x+ 1) > y(x), then

If r < 0.5, then x = x− 1 (jump to the left).
Otherwise, x = x+ 1 (jump to the right).
Go back to Step 3.

5. ify(x− 1) > y(x), then x = x+ 1 (jump to the right). Go back to Step 3.

6. The last possibility is y(x+ 1) > y(x). Thus, x = x− 1 (jump to the left). Go
back to Step 3.

7. Repeat the deposition for N times.

8. Evaluate the mean height and the roughness.

Program 15.8 impliments the algorithm and simulate the surface growth with relaxation. The results are
plotted in Figures 15.10. The surface profile plotted in 15.10a indicates the the surface is much smoother
now. The height distribution in the inset shows that the difference between the highest and lowest is less
than 10. The growth of the surface roughness shown in Fig. ?? suggests that the roughness deos not grow
after initial growth. Threfor,e this model is more realistic than the simple ballistic deposition model.

Finally, we includes a possibility to form the overhang (particle 3 in Fig. 15.8a) in Program 15.9. No
surface relaxation is considered. Theresulting materials is highly porous. The profile of the surface plotted in
Fig. 15.11 shows many hollow regions. After N = 200, 000 particles is deposited, the surface height reached
nearly 200 which is twice as high as the previous growth models, indicating that almost a half of the space

386 RANDOM NUMBERS

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220

x

y

Figure 15.11: Growth of a surface based on a ballistic deposition model with possibility of overhang struc-
tures.

is not filled. Note also that the size of the empty space varies widely. See Ref. [4] for the detailed discussion
of this growth pattern,

15.6 Problems

15.1 Using the random numbers, calculate the mean µ and variance σ2 of random numbers uniformly
distributed between 0 and 1. Compare results with the theoretical values.

15.2 Find 〈|x|〉normal by stochastic calculation and compare the result with the analytic solution.

PROBLEMS 387

MATLAB Source Codes

Program 15.1
%**
%* Example 15.1 *
%* filename: ch15pr01.m *
%* program listing number: 15.1 *
%* *
%* This program simulate a dice using a psueo random number *
%* generator. (random() in MATLAB is not used.) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2015. *
%**
clear all

% parapmeters for random number generators
a = int64(16807);
b = int64(0);
c = int64(2147483647);

% get a seed
x=int64(input('Seed='));

% generate uniform random numbers
N=6000;
for i=1:N

x = mod(a*x,c);
r(i)=double(x)/double(c);

end

% statistics of virtual die
P(1:6)=0;
for i=1:N

n=ceil(6*r(i));
P(n)=P(n)+1;

end

p=bar(P);
set(p,'facecolor',[0,0.75,0.75])
hold on
q=plot([0,7],[1000,1000],'--');
set(q,'color','red')
xlabel('face of die','fontsize',14)
ylabel('number of realization','fontsize',14)
hold off

NNN

Program 15.2
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: rand() in MATLAB *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *

388 RANDOM NUMBERS

%* Last modification: 02/25/2017. *
%**
clear all
clc

% random points on a square
N=100000;
x=random('unif',-1.0,1.0,[1,N]);
y=random('unif',-1.0,1.0,[1,N]);

% points inside the circle
hit=0;
i=0;
for n=1:N

if x(n)ˆ2+y(n)ˆ2 < 1
hit=hit+1;

end
if mod(n,100)==0 % evaluate at every 100

i=i+1;
PI(i)=hit/n*4; % estimate of pi

end
end

p=plot([1:i]*100,PI);
hold on
q=plot([0, N], [pi,pi]);
set(q,'color','black')
xlabel('# of sampling','fontsize',14)
ylabel('V_2','fontsize',14)
axis([0 N pi*0.9 pi*1.1])
hold off

NNN

Program 15.3
%**
%* Example 15.3 *
%* filename: ch15pr03.m *
%* program listing number: 15.3 *
%* *
%* This program generates Gaussian distributed random numbers *
%* using the Box-Muller method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

N=10000000;
x = rand(N,2);
y(:,1) = sqrt(-2*log(x(:,1))).*cos(2*pi*x(:,2));
y(:,2) = sqrt(-2*log(x(:,1))).*sin(2*pi*x(:,2));
ymin=min(y(:));
ymax=max(y(:));
fprintf('the largest deviation=%f, %f\n',ymin,ymax)

h=histogram(y,201,'Normalization','pdf');
hold on
% true normal distribution
K=201;
xmin=floor(ymin);

PROBLEMS 389

xmax=ceil(ymax);
X=linspace(xmin,xmax,K);
F=exp(-X.ˆ2/2)/sqrt(2*pi);
p=plot(X,F);
set(p,'color','red','linewidth',2)
xlabel('x','fontsize',14)
ylabel('\rho(x)','fontsize',14)
legend('Box-Muller','Exact')
axis([xmin xmax 0.0 0.5])
hold off

NNN

Program 15.4
%**
%* Example 15.4 *
%* filename: ch15pr04.m *
%* program listing number: 15.4 *
%* *
%* This program evaluates 1st through 4th moments of normal *
%* distribution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

N=100000;

v=normrnd(0.0,1.0,[N,1]);

fprintf('order moment\n')
for i=1:4

m(i)=sum(v.ˆi)/N;
fprintf('%3d % 10.4e\n',i,m(i));

end
r=m(4)/m(2)ˆ2;
fprintf('\nm4/(m2)ˆ2 = %8.4d (exact=3)\n',r)

NNN

Program 15.5
%**
%* Section 15.5.1 *
%* filename: ch15pr05.m *
%* program listing number: 15.5 *
%* *
%* This program evaluate the mean speed of the gas particles *
%* in a thermal equilibrium. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% parameters
T=300.; % Temperature in K
k=1.380658e-23; % Boltzman constant in J/K
m=2*1.672623e-27; % H2 mass in kg

390 RANDOM NUMBERS

% Maxwell distribution
N=1000000;
s=sqrt(k*T/m);
v=normrnd(0.0,s,[N,3]); % 3 components (vx, vy, vz)

% speed
speed=sqrt(v(:,1).ˆ2+v(:,2).ˆ2+v(:,3).ˆ2);
% mean
mean=sum(speed)/N;
% theory
exact=2*s*sqrt(2/pi);
%error
error=abs(mean-exact)/exact;

fprintf('mean speed = %10.5e (exact=%10.5e)\n',mean,exact)
fprintf('relative error = %10.5e\n',error)

NNN

Program 15.6
%**
%* Section 15.5.2 *
%* filename: ch15pr06.m *
%* program listing number: 15.6 *
%* *
%* This program generates distribution of particles under gravity *
%* thermal diffusion. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all

N=1000; % number of particles

x=rand(N,1); %horizontal position = uniform
y=rand(N,1); % vertical position = exponential
z=-log(y);
zmax=max(z(:))+1;

subplot(1,2,1)
p=plot([-0.005 1.005],[-0.05,-0.05], [-0.005,-0.005],...

[-0.05,zmax],[1.005,1.005],[-0.05,zmax]);
set(p,'color','black','linewidth',2)
hold on
p=plot(x,z,'.');
set(p,'linewidth',2)
axis([-0.1 +1.1 -0.5 zmax])
xlabel('x','fontsize',14)
ylabel('z','fontsize',14)
hold off

subplot(1,2,2)
h=histogram(z,int32(2*zmax),'Normalization','pdf');
hold on
Z=linspace(0.0,zmax,201);
P=exp(-Z);
q=plot(Z,P,'--');
set(q,'linewidth',2,'color','red')
xlabel('z','fontsize',14)
ylabel('probability density','fontsize',14)

PROBLEMS 391

hold off

NNN

Program 15.7
%**
%* Section 15.5.3 *
%* filename: ch15pr07.m *
%* program listing number: 15.7 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all % clear all variables
close all % close alll figures

N=20000; % number of particles to be deposited
L=200; % surface area

y=zeros(L,1); % reset the height of the surface
x=ceil(rand(N,1)*L); % horizontal position of the particles

k=0;
for i=1:N

y(x(i))=y(x(i))+1; % ballistic growth

% record the evolution of the growth after every 10 particles is
% deposited
if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L; % mean height
w(k)=sqrt(sum((y-z(k)).ˆ2)/L); % roughness

end
end

% calculate the height distribution
n1=min(y); % lowest
n2=max(y); % heighest
h=zeros(n2-n1+1,1);
for i=1:L

n=y(i)-n1+1;
h(n)=h(n)+1;

end
h=h/sum(h);

% theoretical height distribution (Gaussian formula)
mu=real(N)/L;
sg=real(N)*(L-1)/Lˆ2;
g=zeros(n2-n1+1,1);
for n=n1:n2

g(n-n1+1) = exp(-(n-mu)ˆ2/(2*sg))/sqrt(2*pi*sg);
end

% Figure 1: profile of the surface
b=bar([1:L],y);
hold on
plot([0,L],[0,0]); % draw the base line
axis equal % fix the aspect ratio (needed for movie)

392 RANDOM NUMBERS

axis([0 L+1 0 N/L*2]) % fix the axis range
hold on
p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',1)
legend(p,'Mean height')
xlabel('x','fontsize',14)
ylabel('height','fontsize',14)
hold off

% Figure 2: Evolution of the surface roughness
figure
p=plot(z,w);
hold on
set(p,'linewidth',2)
q=plot(z,sqrt(z));
set(q,'color','red','linewidth',2)
xlabel('height','fontsize',14)
ylabel('surface roughness','fontsize',14)
legend('simulation','theory')
legend('location','northwest')
hold off

% Figure 3: Heifht distribution
figure
bar([n1:n2],h);
hold on
p=plot([n1:n2],g);
set(p,'color','red','linewidth',2);
xlabel('height','fontsize',14)
ylabel('P(h)','fontsize',14)
legend('simulation','theory')
legend('location','northeast')

NNN

Program 15.8
%**
%* Section 15.5.3 *
%* filename: ch15pr08.m *
%* program listing number: 15.8 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with surface relaxation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all
close all;

% To show the real time growth, set true in th following line
movie = true;

N=20000;
L=200;

y=zeros(L,1);
x=floor(rand(N,1)*L); % random position

k=0;
for i=1:N

PROBLEMS 393

j0=mod(x(i),L)+1; % random deposition

% lateral diffusion
found = false;
while not(found)

j1=mod(j0-2,L)+1; % left neighbor
j2=mod(j0,L)+1; % right neighbor

if y(j0)<=y(j1) && y(j0)<=y(j2) % both sides are higher
y(j0)=y(j0)+1; % no diffusion
found = true;

elseif y(j0)> y(j1) && y(j0)>y(j2) % both sides are lower
if rand() > 0.5

j0=j1; % diffuse to the left
else

j0=j2; % diffuse to the right
end

elseif y(j0)<=y(j1) % left side is higher
j0=j2; % diffuse to the right

else % right side is higher
j0=j1; % diffuse to the eft

end
end

% record the evolution of the growth after every 10 particles is
% deposited if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L;
w(k)=sqrt(sum((y-z(k)).ˆ2)/L);

end

% calculate the height distribution
n1=min(y); % lowest
n2=max(y); % heighest
h=zeros(n2-n1+1,1);
for i=1:L

n=y(i)-n1+1;
h(n)=h(n)+1;

end
h=h/sum(h);

% Figure 1: profile of the surface
b=bar([1:L],y);
hold on
plot([0,L],[0,0]); % draw the base line
axis equal % fix the aspect ratio (needed for movie)
axis([0 L+1 0 N/L*2]) % fix the axis range
hold on
p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',1)
legend(p,'Mean height')
xlabel('x','fontsize',14)
ylabel('height','fontsize',14)
hold off

% Figure 2: Evolution of the surface roughness
figure
p=plot(z,w);
hold on

394 RANDOM NUMBERS

set(p,'linewidth',2)
q=plot(z,sqrt(z));
set(q,'color','red','linewidth',2)
xlabel('height','fontsize',14)
ylabel('surface roughness','fontsize',14)
legend('simulation','ballistic')
legend('location','northwest')
hold off

% Figure 3: Heifht distribution
figure
bar([n1:n2],h);
hold on
xlabel('height','fontsize',14)
ylabel('P(h)','fontsize',14)

NNN

Program 15.9
%**
%* Section 15.5.3 *
%* filename: ch15pr09.m *
%* program listing number: 15.9 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with overhangs. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2015. *
%**
clear all
close all

N=20000;
L=200;

% preparation for plotting
plot([0,L],[0,0]);
axis equal
axis([0 L+1 0 N/L*1.5])
hold on

y=zeros(L,1);
x=floor(rand(N,1)*L); % random position

k=0;
for i=1:N

j0=mod(x(i),L)+1;
j1=mod(x(i)-1,L)+1;
j2=mod(x(i)+1,L)+1;
if y(j0)<y(j1) || y(j0)<y(j2)

y(j0)=max(y(j1),y(j2)); % stick to the next site
else

y(j0)=y(j0)+1; % regular deposition
end

% draw the particle
pos = [j0-0.5 y(j0)-0.5 1. 1.];
rectangle('Position',pos,'Curvature',[1 1],'FaceColor','Blue')
drawnow

PROBLEMS 395

% record the evolution of the growth after every 10 particles is
% deposited.
if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L;
w(k)=sqrt(sum((y-z(k)).ˆ2)/L);

end
end

p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',2)
legend(p,'Mean height')
hold off

NNN

Python Source Codes

Program 15.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.1 *
%* filename: ch15pr01.py *
%* program listing number: 16.1 *
%* *
%* This program simulate a dice using a psueo random number *
%* generator. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

parapmeters for random number generators
a=np.int64(16807)
b=np.int64(0)
c=np.int64(2147483647)

get a seed
x=np.int64(input('Seed='))

generate uniform random numbers
N=6000
r=np.zeros(N)
for i in range(0,N):

x=np.mod(a*x,c)
r[i]=np.float(x)/np.float(c)

statistics of virtual die
P=np.array([0,0,0,0,0,0])
D=np.array([1,2,3,4,5,6])
for i in range(0,N):

396 RANDOM NUMBERS

n=np.int(np.ceil(6.0*r[i]))-1
P[n]=P[n]+1;

plt.figure(figsize=(6,5))
plt.bar(D,P,0.9)
plt.plot([0.5,6.5],[N/6,N/6],'--r')
plt.xlabel('face of die',fontsize=14)
plt.ylabel('number of realization',fontsize=14)
plt.show()

NNN

Program 15.2

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: numpy random package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

random points on a square
N=100000
x=np.random.uniform(-1.0,1.0,N)
y=np.random.uniform(-1.0,1.0,N)

points inside the circle
hit=0.0
M=np.int(N/100)
PI=np.zeros(M)
i=0
for n in range(0,N):

if x[n]**2+y[n]**2 < 1.0:
hit+=1.0

if n>0 and np.mod(n,100)==0: # evaluate at every 100
PI[i]=hit/n*4.0 # estimate of pi
i+=1

plt.figure(figsize=(6,5))
T=np.linspace(100,N,M)
plt.plot(T,PI)
plt.plot([0, N], [np.pi,np.pi],'--r')
plt.xlabel('# of sampling',fontsize=14)
plt.ylabel(r'π by Monte Carlo integration',fontsize=14)
plt.axis([0, N, np.pi*0.9, np.pi*1.1])
plt.show()

NNN

PROBLEMS 397

Program 15.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: numpy random package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

random points on a square
N=100000
x=np.random.uniform(-1.0,1.0,N)
y=np.random.uniform(-1.0,1.0,N)

points inside the circle
hit=0.0
M=np.int(N/100)
PI=np.zeros(M)
i=0
for n in range(0,N):

if x[n]**2+y[n]**2 < 1.0:
hit+=1.0

if n>0 and np.mod(n,100)==0: # evaluate at every 100
PI[i]=hit/n*4.0 # estimate of pi
i+=1

plt.figure(figsize=(6,5))
T=np.linspace(100,N,M)
plt.plot(T,PI)
plt.plot([0, N], [np.pi,np.pi],'--r')
plt.xlabel('# of sampling',fontsize=14)
plt.ylabel(r'π by Monte Carlo integration',fontsize=14)
plt.axis([0, N, np.pi*0.9, np.pi*1.1])
plt.show()

NNN

Program 15.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.4 *
%* filename: ch15pr04.m *
%* program listing number: 15.4 *
%* *
%* This program evaluates 1st through 4th moments of normal *
%* distribution. *

398 RANDOM NUMBERS

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np

N=100000

v=np.random.normal(0.0,1.0,N)
m=np.zeros(4)
print('order ',' moment ')
for i in [1,2,3,4]:

m[i-1]=sum(v**i)/N
print('{0:3d} {1: 10.4e}'.format(i,m[i-1]))

r=m[3]/m[1]**2
print('\n m4/m2**2={0:8.4f} (exact=3)'.format(r))

NNN

Program 15.5

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.1 *
%* filename: ch15pr05.m *
%* program listing number: 15.5 *
%* *
%* This program evaluate the mean speed of the gas particles *
%* in a thermal equilibrium. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np

parameters
T=300. # Temperature in K
k=1.380658e-23 # Boltzman constant in J/K
m=2*1.672623e-27 # H2 mass in kg

velocity at Maxwell distribution
N=100000000
s=np.sqrt(k*T/m)
v=np.random.normal(0.0,s,[N,3]) # 3 components (vx, vy, vz)

speed
speed=np.sqrt(v[:,0]**2+v[:,1]**2+v[:,2]**2)
mean
mean=sum(speed)/N
#theory
exact=2*s*np.sqrt(2/np.pi)
error
error=np.abs(mean-exact)/exact

print('mean speed = {0:10.5e} (exact={1:10.5e})'.format(mean,exact))
print('relative error = {0:10.5}\n'.format(error))

PROBLEMS 399

NNN

Program 15.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.2 *
%* filename: ch15pr06.py *
%* program listing number: 16.6 *
%* *
%* This program generates distribution of particles under gravity *
%* thermal diffusion.
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=1000 # number of particles

horizontal position = uniform
x=np.random.rand(N)
vertical position = exponential
y=np.random.rand(N) # vertical position = exponential
z=-np.log(y)
zmax=np.max(z)+1.

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot([-0.05,-0.05],[-0.05, zmax],'-k',linewidth=2)
plt.plot([-0.05, 1.05],[-0.05,-0.05],'-k',linewidth=2)
plt.plot([1.05, 1.05],[-0.05, zmax],'-k',linewidth=2)
plt.plot(x,z,'.');
plt.axis([-0.1, +1.1, -0.5, zmax])
plt.xlabel('x',fontsize=14)
plt.ylabel('z',fontsize=14)
plt.subplot(1,2,2)
plt.hist(z,2*np.int(zmax),normed=1)
Z=np.linspace(0.0,zmax,201)
P=np.exp(-Z)
plt.plot(Z,P,'--r',linewidth=2)
plt.xlabel('z',fontsize=14)
plt.ylabel('probability density',fontsize=14)
plt.show()

NNN

Program 15.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *
%* filename: ch15pr07.m *
%* program listing number: 15.7 *
%* *

400 RANDOM NUMBERS

%* This program simulatesa the surface growth using ballistic *
%* deposit model. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=20000 # number of particles to be deposited
L=200 #surface area

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)
w=np.zeros(N)
k=0
for i in range(0,N):

y[x[i]]+=1 # ballistic growth

record the evolution of the growth after every 10 particles is deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

calculate the height distribution
n1=min(y) # lowest
n2=max(y) # heighest
Ny=n2-n1+1
n=np.linspace(n1,n2,Ny)
h=np.zeros(Ny,dtype=np.int)

for i in range(0,L):
j=y[i]-n1
h[j]+=1

normalization
h=h.astype(float)/sum(h)

theoretical height distribution (Gaussian formula)
m=np.float(N)/L
s=np.float(N*(L-1))/L**2
g=np.exp(-(n-m)**2/(2.*s))/np.sqrt(2*np.pi*s)

Figure 1: profile of the surface
plt.figure(figsize=(12,5))
X=np.linspace(1.0,L,L)
plt.bar(X,y,1.05,color='k')
plt.plot([0,L],[0,0],'-k',linewidth=4) # draw the base line
plt.plot([0,L],[z[k-1],z[k-1]],'--r',label='Mean height')
plt.xlabel('x',fontsize=14)
plt.ylabel('height',fontsize=14)
plt.show()

Figure 2: Evolution of the surface roughness
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(z[0:k],w[0:k],'-k',label='simulation')
plt.plot(z[0:k],np.sqrt(z[0:k]),'--r',label='theory')

PROBLEMS 401

plt.xlabel('height',fontsize=14)
plt.ylabel('surface roughness',fontsize=14)
plt.legend(loc=3)

Figure 3: Heifht distribution
plt.subplot(1,2,2)
plt.bar(n,h,1.05,color='k')
plt.plot(n,g,'--r')

plt.xlabel('height',fontsize=14)
plt.ylabel('P(h)',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 15.8
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *
%* filename: ch15pr08.m *
%* program listing number: 15.8 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with surface relaxation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=20000
L=200

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)
w=np.zeros(N)
k=0
for i in range(0,N):

lateral diffusion
j0=x[i]
found = False
while not(found):

j1=np.mod(j0-1,L) # left neighbor
j2=np.mod(j0+1,L) # right neighbor

if y[j0]<=y[j1] and y[j0]<=y[j2]: # both sides are higher
y[j0]+=1 # no diffusion
found = True

elif y[j0]>y[j1] and y[j0]>y[j2]: # both sides are lower
if np.random.rand() > 0.5:

j0=j1 # diffuse to the left
else:

j0=j2 # diffuse to the right

402 RANDOM NUMBERS

elif y[j0]<=y[j1]: # left side is higher
j0=j2 # diffuse to the right

else: # right side is higher
j0=j1 # diffuse to the eft

record the evolution of the growth after every 10 particles is
deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

calculate the height distribution
n1=min(y) # lowest
n2=max(y) # heighest
Ny=n2-n1+1
n=np.linspace(n1,n2,Ny)
h=np.zeros(Ny,dtype=np.int)

for i in range(0,L):
j=y[i]-n1
h[j]+=1

normalization
h=h.astype(float)/sum(h)

Figure 1: profile of the surface
plt.figure(figsize=(12,5))
X=np.linspace(1.0,L,L)
plt.bar(X,y,1.05,color='k')
plt.plot([0,L],[0,0],'-k',linewidth=4) # draw the base line
plt.plot([0,L],[z[k-1],z[k-1]],'--r',label='Mean height')
plt.xlabel('x',fontsize=14)
plt.ylabel('height',fontsize=14)
plt.show()

Figure 2: Evolution of the surface roughness
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(z[0:k],w[0:k],'-k',label='simulation')
plt.plot(z[0:k],np.sqrt(z[0:k]),'--r',label='theory')
plt.xlabel('height',fontsize=14)
plt.ylabel('surface roughness',fontsize=14)
plt.legend(loc=3)

Figure 3: Heifht distribution
plt.subplot(1,2,2)
plt.bar(n,h,1.05,color='k')
plt.xlabel('height',fontsize=14)
plt.ylabel('P(h)',fontsize=14)
plt.show()

NNN

Program 15.9
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *

PROBLEMS 403

%* filename: ch15pr09.m *
%* program listing number: 15.9 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with overhangs. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

movie=False # Set this to True to show real time growth (very slow)

N=20000
L=200
fig, ax=plt.subplots()

ax.set_xlim([0,L])
ax.set_ylim([0,N/L*3])

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)
w=np.zeros(N)
k=0
for i in range(0,N):

lateral diffusion
j0=x[i]
j1=np.mod(j0-1,L) # left neighbor
j2=np.mod(j0+1,L) # right neighbor
if y[j0]<y[j1] or y[j0]<y[j2]:

y[j0]=np.max((y[j1],y[j2])) # stick to the next site
else:

y[j0]+=1 # regular deposition

draw the particle
c=plt.Circle((j0,y[j0]), 0.5, color='b')
ax.add_artist(c)
if movie:

plt.pause(0.0001)

record the evolution of the growth after every 10 particles is
deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

ax.plot([0,L],[z[k-1],z[k-1]],'--r')
plt.show()

NNN

Bibliography

[1] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.
Section 6.14.

[2] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. North Holland, 3rd edition, 2007.
Section I.7.

[3] Mário N. Berberan-Santos, EvenyN. Bodunov, and Lionello Pogliani. On the barometric formula. Amer-
ican Journal of Physics, 65:404–412, 1997.

[4] Albert-Laszlo Barabasi and Harry Eugene Stanley. Fractal Concepts in Surface Growth. Cambridge
University Press, 1995. Chapter 2.

[5] Albert-Laszlo Barabasi and Harry Eugene Stanley. Fractal Concepts in Surface Growth. Cambridge
University Press, 1995. Chapter 5.

404

CHAPTER 16

RANDOM WALKS

A drunkard leaves his favorite bar and walks to his home. After N steps, how far is he from the bar? This
is a basic question of random walk problems. An interesting mathematics such as Wiener process evolved
from this simple question and many important theories have been developed in many fields of science based
on the random walk model. In this chapter, we focus on discrete random walks where step size is finite and
fixed. Continuous random walk is discussed in Chapter 18.

16.1 One-dimensional Random Walk

A particle in a one-dimensional space jumps from one site to an adjacent site at random with a probability
pL = p to the right and pR = 1 − p to the left. See Fig. 16.1. The position of the particle is specified by
integer index assigned to the grid point. We assume p = 1

2 for now. Then, we have unbiased random walk
(pL = pR). Initially a particle is placed at x0. Where is the particle after N steps? There is no definite
answer to this question. The trajectory of the particle is not uniquely determined by the initial condition
since the direction of jump is probabilistic. Therefore, the position of the particle at time t is stochastic
variable X̂t defined with sample space x ∈ Z and probability distribution Pt(x). Here time, t = 0, 1, · · · , N
is just the number of jumps the particle made and thus discrete. The stochastic variable X̂t as a function
time t is a sequence of random variables {X̂0, X̂1, X̂2, · · · }, which is called stochastic process. For example,
if the particle was initially at x = 0, the possible outcome is {0}the probability is P0(x) = δx 0 where δmn is
a Kronecker’s delta. At t = 1, the particle is either at x = 1 or x = −1. Thus, the possible outcome is {±1}

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

405

406 RANDOM WALKS

x=0 1 2 3 4−1−2−3−4

PRPL

Figure 16.1: One-dimensional discrete random walk. The blue arrows indicate a realization of 6-steps
trajectory, RRLRRL

and the associate probability is

P1(x) =

1
2 for x = ±1

0 otherwise
. (16.1)

After the second jumps, the possible outcomes of X̂2 are now {−2, 0, 2} with the probability

P2(x) =

1
2 for x = 0
1
4 for x = ±2

0 otherwise

. (16.2)

This problem can be solved analytically for t = N . Suppose that the particle jumps to the right NR
times and to the left NL = N −NR. (Note that N = NR +NL.) For example, the blue arrows in Fig. 16.1
represents an trajectory of N = 6 steps of which NR = 4 steps to the right and NL = 2 to the left. The
final position x(NR, N) = (NR − NL) = 2. The probability to have this particular trajectory RRLRRL is(

1
2

)6
. However, several other trajectories have the same NR and NL, e.g., RRRRLL. Simple combinatorial

calculation tells that there are
W (NR, N) = N !

NR! (N −NR)! (16.3)

different ways to reach the same point. Noting that the final point is x = (NR − NL) = (2NR − N),
NR = 1

2 (N + x) and NL = 1
2 (N − x). Hence, the probability to find the particle at x after N steps is

Pn(x) = N !(
N + x

2

)
!
(
N − x

2

)
!

(
1
2

)N
. (16.4)

When N ± x is not an even integer, this result fails. This is because when N is even, the particle cannot
stop at any odd site and similarly when N is odd, no even site is reachable by the particle.

When N � 1, the probability (16.4) becomes Gaussian∗

Pn(x) ≈ 1√
2πN

e−x
2/2N . (16.5)

The mean position is 〈Xn〉 = 0 for any N . The variance increases as
〈
X2

n
〉

= N . This means that on average
the drunkard is still at the bar after a long walk!

∗A special care is needed to make x continuous since x/a is exclusively even or odd.

PERSISTENT RANDOM WALK 407

steps
0 500 1000

x

-40

-20

0

20

40

7
+<
-<

x
-200 0 200

;
(x

)
Figure 16.2: Monte Carlo simulation of discrete random walk. 100000 trajectories are used to get the
statistics. Left: The solid and dashed red lines show the mean trajectory and the deviation from the mean.
Thin solid lines are individual trajectories. Right: The distribution at step N = 1000. It fits exactly to the
Gaussian distribution (red line) with variance σ2 = N .

EXAMPLE 16.1

While analytic results of statistical quantities are available for this simple random walk, we often want
to see what the individual trajectories look like. Program 18.1 simulates simple one-dimensional random
walk. The particle is initially at x = 0. The direction of jump is determined by a standard uniform
random number between 0 and 1. If the random number is less than 0.5, the particle jumps to the left
and otherwise to the right. Repeating it many times, we obtain a trajectory of the particle. If another
particle starts from the same place, its trajectory is different from the first one since the direction of
jump is random. In order to evaluate statistical quantities, we need to calculate many trajectories. The
program calculates 100000 trajectories. The mean and variance of the position are computed at each
time. Figure 16.2 shows a few individual trajectories, the mean and the square root of variance. While
the mean value remains zero for all time, the individual trajectories do not stay close to the origin and
they cover wide area around the origin. However, roughly speaking, most trajectories stay inside the
square root of the variance. The distribution of the particles at t = N matches well to the Gaussian
distribution.

16.2 Persistent Random Walk

In some random walks, the particles carry inertia such that the jump probability depends on the previous
jump. The particles tend to jump in the same direction as the previous jump but not always. Such random
walk is called persistent random walk. To simulate it, we introduce a state dependent jump probability.
The particle jumps in the same direction as previous jump with the probability p > 1/2 and the change
the jump direction with the probability q = 1 − p. This probability does not create a preferred direction.
Therefore, the mean position remains zero. However, the variance deviates from that of the normal random
walk. Analytical calculation shows that the variance is σ2 = p

qN . The particle distribution of the persistent

408 RANDOM WALKS

steps
0 500 1000

<
2

0

500

1000

1500

2000

2500

3000

x
-200 0 200

;
(x

)

persistent RW
regular RW

<2 (persistent)

<2 (regular)

7

Figure 16.3: Simulation of persistent random walk. 100000 trajectories are sampled with a persistent jump
probability p = 0.75. The left panel shows that the mean position remains zero but the variance grows faster
than that of the normal random walk. The right panel shows the distribution of the particles. The red line
indicates the distribution of the normal random walk (Gaussian).

random walk is expected to be wider. We can also use p < 1/2. In this cases, the particles tends to jump in
the opposite direction to the previous jump (” Fickle Random Walk”).

EXAMPLE 16.2

Program 16.2 simulates persistent random walk with p = 0.75. According to the theory, σ2 = 3N for
this case. Figure 16.3 illustrates that. The σ2 = 3N in comparison to σ2 = N for the normal random
walk. Try other values of p, you will find that σ2 = Np/q. Even you can go the other side p/q < 1 so
that the particles tends to change the direction more often than the normal random walk.

16.3 Multi-dimensional Random Walk

For d-dimensional space, we consider d-dimensional cubic lattice. The random walker jumps to one of the 2d
nearest sites at random. If there is no bias, the probability to jump to a particular site is p = 1/2d. For the
two-dimensional space, there are four possible jumps, east (E), west (W), north (N), and south (S) . Hence,
p = 1/4. The final position is

x = (Ne −Nw), y = (Nn −Ns) (16.6)
and the probability to reach that position after N step is

Pn(x, y) = N !
NE!NW!NN!NS!

(
1
4

)N
, NR +NL +NU +ND = N (16.7)

. The mean position remains at the origin (〈x〉 = 〈y〉 = 0). The mean square displacement at N steps is〈
r2〉 =

〈
x2 + y2〉 =

〈
x2〉+

〈
y2〉 = Nx +Ny = N (16.8)

APPLICATIONS IN PHYSICS 409

x
-40 -20 0 20 40

y

-40

-30

-20

-10

0

10

20

30

40 trajectory 1
trajectory 2
<

(a) Two independent trajectories (blue and green
lines) of two-dimensional discrete random walk (N =
1000 steps). The red line indicates the circle of ra-
dius σ(N). On average, the random walkers spend
most of time inside the circle.

x
-100 -50 0 50 100

y

-100

-50

0

50

100

(b) The distribution of the particles after 1000 steps.
2000 particles are shown. The particle density is high
inside the red circle. Many of them are still very close
to the starting point.

Figure 16.4: Simulation of two-dimensional discrete random walk. Statistics is taken over 100000 trajectories.

where Nx and Ny are the number of steps in x and y direction. Although Nx and Ny vary but at the mean
square displacement only depends on N .

EXAMPLE 16.3

Program 18.2 simulates the two-dimensional random walk with 100,000 particles. All particles are
initially at the origin of the coordinates. Each particle takes a different trajectories from others. Tw
independent trajectories are plotted in Fig. 16.4a. The radius of the red circle indicates r, the square
root of the mean square displacement (16.8). The final position of the particles are shown in Fig. 16.4b.
It is clear that the particle density is higher in the circle.

16.4 Applications in Physics

16.4.1 Diffusion Limited Aggregates

Consider mineral ions in solution. They diffuse randomly and when they hit a surface they stick to it. (See
Fig. 16.5.) Then, the surface grows as more ions arrive. However, the ions do not fill the space densely as
it grows. The ballistic deposition model discussed in the previous chapter is an exmple. Here we discuss
another example, the electrodeposition of ions onto a seed particle. A cluster grown from a copper sulfate
solution in an electrodeposition cell is shown in Fig 16.6a. This type of growth, known as diffusion limited
aggregates (DLA), forms a distinct shape with a fractional dimension.[1] It turns out that this kind of growth
patterns have been observed in other cases such as dendrites grown on a rock. (See next section.)

410 RANDOM WALKS

Diffusion LimitedBallistic

Figure 16.5: Two deposition models: In the ballistic deposition model, the particles do not diffuse. The
lateral position is randomly selected and stick to the first particle in a cluster. In the diffusion limited
model, on the other hand, the particles diffuse laterally as well as vertically. They stick to the first particle
they hit. Due to the random walk, they can attached to the cluster at any location.

A mathematical model was developed by Witten and Sander in 1981[2] based on random walk. A seed
particle is placed at the origin of the coordinates. Then, a particle is released from a point far from the
seed. The particle moves randomly and eventually hits the seed. Then, it sticks to the seed and forms
a cluster. A second particle is released from a different point again far from the seed. It also travels at
random. Eventually it hits one of the particles in the cluster and sticks to it. By repeating this procedure
the cluster grows. As the cluster grows, it becomes harder to reach the empty space near the center of the
cluster by random walk and thus the empty space remains as the cluster gets bigger. The resulting object
in the two-dimensional space is a fractal with a fractional dimension 1 < D < 2 where the fractal dimension
is determined by the total mass of the object M within a radius R

M ∝ RD (16.9)

If the whole space inside the circle of radius R is filled with particles or the empty regions are uniformly
distributed, then D = 2. Figure 16.6 indicates that the structure is tree-like. There are many different sizes
of branches and empty spaces. Zooming in, we see a similar structure. It is hard to tell if we zoomed in or
not. Such a kind of structures is said to be self-similar and an important property of a fractal.

Here we simulate the DLA using discrete random walk. The two-dimensional space is represented by a
square grid. The particles jump from one site to one of nearest sites at random with equal probability. The
following algorithm is used in Program 16.6. The resulting aggregate is shown in Fig. 16.6b, which resembles
to the cluster generated by the electrodeposition in Fig. 16.6.

Algorithm 16.1 Two-dimensional Diffusion Limited Aggregates

APPLICATIONS IN PHYSICS 411

1. Place a seed particle at the origin (0,0).
2. Set an initial radius R of the circle where the particles are released. (R = 5 was

used.)
3. Set an exterior radius Rmax. (Rmax = 3R is used. The exterior wall moves out as

the cluster gets bigger.)
4. Select a point on a circle at random and release a particle from it.
5. Let the particle undergoes random walk.
6. If the particle reaches Rmax, it is lost to the outer wall. Start over again from step 3.
7. If one of the four nearest neighbor sites is occupied by another particle, it is now a

part of the cluster and does not move any longer.
8. Evaluate the radius from the center. If it is bigger than R, replace R with it.
9. Repeat the process from step 2. with a new particle .

16.4.2 Dendrites

Another example of the diffusion limited growth is dendrites. Only the difference is the boundary condition.
The particles are released from a certain height and diffuse through a medium. Due to gravity, it falls down
on average but very slowly. So, the vertical motion can be simulated by a biased random walk. On the
other hand, their lateral motion is an unbiased random walk. The particles stick to either the base line or
the clusters growing from the base line. Manganese dendrites grown on a lime stone is shown in Fig. 16.7a.
The dendrite is also a fractal object. The detailed analysis of experimental data is given in Ref. [3].

The algorithm implemented in Program 16.5 is given here. The result is plotted in Fig 16.7b. It looks
very similar to the actual dendrites formed on a rock.

Algorithm 16.2 Diffusion Limited Growth of Dendrites
1. Set an initial height H where the particles are released. The value of H will change

as the height of the dendrites increases. (H = 5 was used.)
2. Select a lateral position x0 at random and release a particle from (x0,H).
3. Let the particle undergoes random walk, slightly biased in the vertical direction.
4. If the particle reaches the base line at y = 0, it stick to the base.
5. If one of the four nearest neighbor sites is occupied by another particle, it is now a

part of the cluster and does not move any longer.
6. Evaluate the height of the tallest dendrite ymax and let H = ymax + 5.
7. Repeat the process from step 2. with a new particle .

412 RANDOM WALKS

(a) Electrodeposition of copper ions (Experiment)

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

x

y

(b) Simulation of DLA. The cluster is formed with
20000 particles.

Figure 16.6: Diffusion limited aggregates (DLA)

(a) Manganese dendrites on a limestone.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

x

h

(b) Simulation of dendrite growth. The dendrites are
formed with 10000 particles.

Figure 16.7: Dendrite Crystals

APPLICATIONS IN PHYSICS 413

number of plays
0 20 40 60 80 100

G
ai

n

-1.5

-1

-0.5

0

0.5

1

1.5

2
Game A alone
Game B alone
Games A & B

Figure 16.8: Simulation of Parrondo Game. 50000 people played Games in a Casino. When they play only
Game A, on average people lose their money. Similarly, only Game B is played, again on average people lose
their money. Now they play Game A for several times and switch to Game B. After playing Game B for
several times switch back to Game A. Then, repeat this many times. You always win!

16.4.3 Parrondo Paradox

Suppose that you play games at a Casino. Except for a few very lucky people, most of us lose and the Casino
wins. In 1996, Juan Parrondo discovered an interesting paradox which states

There exist pairs of games, each with a higher probability of losing than winning, for which it is
possible to construct a winning strategy by playing the games alternately.
Algorithm ?? is based on the original games invented by Parrondo.[4]

Algorithm 16.3 Parrondo Game

1. Winning a game earns us $1 and losing requires us to surrender $1. Let C(t)
be your capital at time t. It follows that C(t+ 1) = C(t)± 1 after each play.

2. In Game A, we toss a biased coin, Coin 1, with probability of winning P1 =
(1/2)− ε. If ε > 0, this is clearly a losing game in the long run.

3. In Game B, we first determine if our capital is a multiple of 3. If it is, we toss
a biased coin, Coin 2, with probability of winning P2 = (1/10)− ε. If it is not,
we toss another biased coin, Coin 3, with probability of winning P3 = (3/4)−ε.

When ε = 0, both Game A and B are fair and on average you neither lose or gain. Game A is a simple
biased random walk. The Game B is similar to the persistent random walk since the jump probability
depends on the additional degree of freedom. Th idea behind this game came from a flashing ratchet model
of biological molecular motors.[5, 6] However, if ε > 0, there is bias in each Game in favor of the Casino. In
Program 16.6, the Parrondo game is implemented. Figure 16.8 shows capital gain for three different cases.
If you play Game A or Game B alone, you lose your money on average. However, you gain if both games
are played in the order of AABBAABBAABB · · · .

414 RANDOM WALKS

16.5 Problems

16.1 The skewness and the kurtosis are defined by

γ1 =
〈
(x− µ)3〉
σ3 , β2 =

〈
(x− µ)4〉
σ4 , (16.10)

respectively, where µ = 〈x〉 and σ2 =
〈
(x− µ)2〉. The Gaussian distribution is uniquely determined by

the mean and variance. Higher order cumulants are all expressed with the mean and the variance. For
example,γ1 = 0 and β2 = 3. Now, consider simple one-dimensional discrete random walk. All particles
are initially at x = 0. Find the distribution of particles after N = 1000 steps. Then, evaluate skewness
and kurtosis. Compare them with the exact values. In order to get a reasonable agreement, you need
to have a large number of particles.

16.2 Consider two-dimensional random walks discussed in Example 16.3. Find the time (number of steps)
when the random walkers reach the circle of radius r = 30 for the first time. The time is also a stochastic
variable which has a certain probability distribution. Find the distribution and find the expectation
value of the time, which is known as first passage time.

16.3 Is the Parrondo paradox still valid when Games A or B is randomly chosen at every play with equal
probability? Modify Program 16.6 and check if you still win.

16.4 Find the fractal dimension D in Eq. (16.9) for the two-dimensional diffusion limited aggregates.

PROBLEMS 415

MATLAB Source Codes

Program 16.1

%**
%* Exercise 16.1 *
%* filename: ch16pr01.m *
%* program listing number: 16.1 *
%* *
%* This program simulates the one-dimensional descrete random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/03/2017. *
%**
clear all

N=1000; % max time (number of steps)
M=100000; % number of particles

x=zeros(M,N); % reset the trajectories

% trajectory calculation
for i=1:N-1

x(:,i+1)=x(:,i)+randi(2,[M,1])*2-3;
end

% stattistics
mu=sum(x,1)/M; % mean
sigma=sqrt(sum(x.ˆ2,1)/M); %variance
t=[1:N];

subplot(1,2,1)
p=plot(t,mu,t,sigma,'--',t,-sigma,'--');
set(p(1),'color','red','linewidth',2)
set(p(2:3),'color','black','linewidth',2)
legend('\mu','+\sigma','-\sigma')
legend('location','northwest')
hold on
p=plot(t,x(1,:),t,x(2,:),t,x(3,:));
set(p(1),'color','blue');
set(p(2),'color','green');
set(p(3),'color',[0,0.75,0.75]);
axis([0 N -40 40])
xlabel('steps','fontsize',14)
ylabel('x','fontsize',14)
hold off

subplot(1,2,2)
rho=x(:,N);
h=histogram(rho,51,'Normalization','pdf');
hold on
X=h.BinEdges;
Y=1./sqrt(2*pi*N)*exp(-X.ˆ2/(2.*N));
p=plot(X,Y);
set(p,'color','red','linewidth',2);
xlabel('x')
ylabel(texlabel('rho(x)'))
hold off

NNN
Program 16.2

416 RANDOM WALKS

%**
%* Exercise 16.2 *
%* filename: ch16pr02.m *
%* program listing number: 16.2 *
%* *
%* This program simulates the one-dimensional persistent random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all;

% parameters
p=0.75; % persistent jump probability
M=100000; % number of particles
N=1000; % number of steps

% initial states
x=zeros(M,1);
mu=zeros(N,1);
sigma2=zeros(N,1);
mu(1)=0.;
sigma2(1)=0.;

d=randi(2,[M,1])*2-3; %unbiased initial jump
x=x+d;
mu(2)=sum(x)/M; % mean
sigma2(2)=sum(x.ˆ2)/M-mu(2)ˆ2; %variance

for i=3:N
r=rand(M,1);
k=r>p; % direction is reversed.
d(k)=-d(k);
x=x+sign(d); % jump
mu(i)=sum(x)/M; % mean
sigma2(i)=sum(x.ˆ2)/M-mu(i)ˆ2; %variance

end

subplot(1,2,1)
p=plot([1:N],mu,[1:N],sigma2);
set(p(1),'linewidth',2,'color','blue')
set(p(2),'linewidth',2,'color','red')
hold on
p=plot([1:N],[1:N],'--');
set(p,'color','black')
legend('\mu','\sigmaˆ2','\sigmaˆ2 (Normal RW)')
legend('location','northwest')
xlabel('steps')
ylabel('moments')
hold off

subplot(1,2,2)
h=histogram(x,51,'Normalization','pdf');
y=h.BinEdges;
g=1.0/sqrt(2*pi*N)*exp(-y.ˆ2/(2.0*N));
hold on
r=plot(y,g);
set(r,'color','red')
xlabel('x')
ylabel('probability density')
legend('persistent RW','normal RW')

PROBLEMS 417

hold off

Program 16.3

%**
%* Exercise 16.3 *
%* filename: ch16pr03.m *
%* program listing number: 16.3 *
%* *
%* This program simulates the two-dimensional random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

M=100000; % number of Brownian particles

N=1000; % number of steps

x=zeros(M,1); % initial position
y=zeros(M,1);
u=zeros(N,2);
w=zeros(N,2);
s=zeros(N);

for i=2:N
g=randi([1,4],[M,1]); % pick one of four directions to jump

x(g==1)=x(g==1)+1;
x(g==2)=x(g==2)-1;
y(g==3)=y(g==3)+1;
y(g==4)=y(g==4)-1;

% record two sample trajectories
u(i,1)=x(1);
w(i,1)=y(1);
u(i,2)=x(2);
w(i,2)=y(2);

% mean square displacenent
s(i)=sum(x.ˆ2+y.ˆ2)/M;

end

plot(u(:,1),w(:,1),u(:,2),w(:,2));
hold on
R=sqrt(s(N));
viscircles([0,0],R,'Color','r');
axis equal

L=R*1.5;
axis([-L L -L L])
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off

figure
plot(x(1:2000),y(1:2000),'.');
axis equal; % fix the aspect ratio (needed for movie)
axis([-100 100 -100 100]); % fiz the axis range
hold on

418 RANDOM WALKS

viscircles([0,0],R,'Color','r');
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off

Program 16.4

%**
%* Section 16.4.1 *
%* filename: ch16pr04.m *
%* program listing number: 16.4 *
%* *
%* This program simulates the two-dimensional diffusion limited *
%* aggregates. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

% number of particles
N=20000;

L=601; % size of the square space
L0=301; % center of the square

% set array size
x=zeros(N,1);
y=zeros(N,1);
A=zeros(L,L);

R=5; % inner circle
R_max=3*R; % outer circle

% seed particle
A(L0,L0)=1;
x(1)=L0;
y(1)=L0;
viscircles([x(1),y(1)],0.5,'Color','r');
axis equal
hold on

for n=2:N
% random point on the inner circle
theta=rand(1)*2*pi;
x(n)=round(R*cos(theta))+L0;
y(n)=round(R*sin(theta))+L0;

% diffusion
found=false;
while not(found)

p=rand(1);
if p<1/4

x(n)=x(n)+1;
elseif p<1/2

x(n)=x(n)-1;
elseif p<3/4

y(n)=y(n)+1;
else

y(n)=y(n)-1;
end

PROBLEMS 419

r=sqrt((x(n)-L0)ˆ2+(y(n)-L0)ˆ2);
if r>R_max % out of bound - restart

theta=rand(1)*2*pi;
x(n)=round(R*cos(theta))+L0;
y(n)=round(R*sin(theta))+L0;

elseif r<R
% hit the cluster?
if A(x(n)+1,y(n))+A(x(n)-1,y(n))...

+A(x(n),y(n)+1)+A(x(n),y(n)-1)>0
found=true;
A(x(n),y(n))=1;
viscircles([x(n),y(n)],0.5,'Color','r');
drawnow
R = max(R, r+5); % adjust inner circle radius
R_max = 3*R; % adjust outer circle radius
if R>L0

xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off
error('Out of Range')

end
end

end
end

end

Program 16.5

%**
%* Section 16.4.2 *
%* filename: ch16pr05.m *
%* program listing number: 16.5 *
%* *
%* This program simulates the growth of dendrite. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

% size of the systrem
N=5000;
Lx=100;
Ly=100;

% initial setting
x=zeros(N,1);
y=zeros(N,1);
A=zeros(Lx,2*Ly);
A(:,1)=1;
H=5;
ymax=5;

% bias in y direction
e=0.01;

% initial plots
p=plot([0,Lx-1],[0.5,0.5]);
set(p,'linewidth',2,'color','black')
axis equal
axis([0 Lx 0 100])

420 RANDOM WALKS

hold on

% random position
x=floor(rand(N,1)*Lx);

% deposition process
for n=1:N

y(n)=H; % diffusion starts from here

found=false;

% diffues in 2D space until it sticks to another.
while not(found)

p=rand(1);
if p<1/4

x(n)=mod(x(n)+1,Lx);
elseif p<1/2

x(n)=mod(x(n)-1,Lx);
elseif p<3/4-e

y(n)=y(n)+1;
if y(n)>3*H % if it went to high, start over.

y(n)=H;
end

else
y(n)=y(n)-1;

end

if y(n)<H
i1=mod(x(n)-1,Lx)+1;
i2=mod(x(n)+1,Lx)+1;
if A(i1,y(n)+1)+A(i2,y(n)+1)...

+A(x(n)+1,y(n)+2)+A(x(n)+1,y(n))>0
found=true;
A(x(n)+1,y(n)+1)=1;
viscircles([x(n)+1,y(n)+1],0.5,'Color','b');
drawnow
ymax=max(y(n),ymax); % adjust the stating height
H=5+ymax;
if ymax>Ly-1

axis([0 Lx 0 ymax*1.1])
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off
error('Out of Range')

end
end

end
end

end

Program 16.6

%**
%* Section 16.4.3 *
%* filename: ch16pr06.m *
%* program listing number: 16.6 *
%* *
%* This program simulates the Parrondo game. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**

PROBLEMS 421

clear all
close all

% control parameters
e=0.005;
pA=1/2-e;
qA=1-pA;
pB=3/4-e;
qB=1-pB;
pC=1/10-e;
qC=1-pC;
N=50000;
M=100;

% Game A
x=zeros(N,1);
y=zeros(M+1,1);
for i=1:M

r=rand(N,1);
x(r<pA)=x(r<pA)+1;
x(r>=pA)=x(r>=pA)-1;
y(i+1)=sum(x)/N;

end

p=plot([0:M],y);
set(p,'linewidth',2)
hold on

% Game B
x=zeros(N,1);
p=zeros(N,1);
for i=1:M

r=rand(N,1);
p(:)=pB;
k=find(mod(x,3)==0);
p(k)=pC;
x(r<p)=x(r<p)+1;
x(r>=p)=x(r>=p)-1;
y(i+1)=sum(x,1)/N;

end
p=plot([0:M],y);
set(p,'linewidth',2,'color',[0, 0.75,0.75])
hold on

% Game A and B
x=zeros(N,1);
p=zeros(N,1);
for i=1:M

r=rand(N,1);
if mod(i,4)<2

p(:)=pA;
else

p(:)=pB;
k=find(mod(x,3)==0);
p(k)=pC;

end
x(r<p)=x(r<p)+1;
x(r>=p)=x(r>=p)-1;
y(i+1)=sum(x,1)/N;

end
p=plot([0:M],y);

422 RANDOM WALKS

set(p,'linewidth',2,'color','red')
legend('Game A alone','Game B alone', 'Games A & B')
legend('location','northwest')
xlabel('# of plays','fontsize',14)
ylabel('Gain','fontsize',14)
hold off

NNN

Python Source Codes

Program 16.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 16.1 *
%* filename: ch16pr01.py *
%* program listing number: 16.1 *
%* *
%* This program simulates the one-dimensional descrete random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=1000 # max time (number of steps)
M=100000 # number of particles

x=np.zeros((M,N+1)) # reset the trajectories

trajectory calculation
for i in range(0,N):

x[:,i+1]=x[:,i]+np.random.choice([-1,1],M) # random step

stattistics
mu=np.sum(x,axis=0)/M # mean
sigma=np.sqrt(np.sum(x**2,axis=0)/M)-mu**2 #variance
t=np.linspace(0,N,N+1)

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,mu,'-r',label=r'μ')
plt.plot(t, sigma,'--k',label=r'$+\sigma$')
plt.plot(t,-sigma,'--k',label=r'$-\sigma$')
plt.plot(t,x[0,:],'-b')
plt.plot(t,x[1,:],'-g')
plt.plot(t,x[2,:],'-c')
plt.axis([0, N, -40, 40])
plt.xlabel('steps',fontsize=14)
plt.ylabel('x',fontsize=14)
plt.legend(loc=3)

PROBLEMS 423

plt.subplot(1,2,2)
rho=x[:,N]
n, X, Y = plt.hist(rho,51,normed=True,label='simulation')
Y=1.0/np.sqrt(2*np.pi*N)*np.exp(-X**2/(2.*N))
dX=X[2]-X[1]
plt.plot(X,Y,'-r',label='theory')
plt.xlabel('x')
plt.ylabel(r'$\rho(x)$')
plt.legend(loc=1)
plt.show()

NNN

Program 16.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 16.2 *
%* filename: ch16pr02.m *
%* program listing number: 16.2 *
%* *
%* This program simulates the one-dimensional persistent random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

parameters
p=0.75 # persistent jump probability
M=100000 # number of particles
N=1000 # number of steps

mu=np.zeros(N+1)
sigma2=np.zeros(N+1)
t=np.linspace(0,N,N+1)

initial states
x=np.zeros(M) # reset the trajectories
mu[0]=0.
sigma2[0]=0.

d=np.random.choice([-1,1],M)
x=x+d # unbiased initial jump
mu[1]=np.sum(x)/M # mean
sigma2[1]=np.sum(x**2)/M-mu[1]**2 #variance

for i in range(1,N+1):
r=np.random.rand(M)
k=r>p # direction is reversed.
d[k]=-d[k]
x=x+np.sign(d) # jump
mu[i]=np.sum(x)/M; # mean
sigma2[i]=np.sum(x**2)/M # ariance

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,mu,'-b',label=r'μ',linewidth=2)

424 RANDOM WALKS

plt.plot(t,sigma2,'-r',label=r'$\sigmaˆ2$',linewidth=2)
plt.plot(t,t,'--k',label='$\sigmaˆ2$ (Normal RW)')
plt.legend(loc=2)
plt.xlabel('steps')
plt.ylabel('moments')

plt.subplot(1,2,2)
n, X, Y = plt.hist(x,51,normed=True,label='persistent RW')
dX=X[2]-X[1]
Z=1.0/np.sqrt(2.0*np.pi*N)*np.exp(-X**2/(2.0*N))
plt.plot(X,Z,'-r',label='normal RW')
plt.xlabel('x')
plt.ylabel('probability distribution')
plt.legend(loc=1)
plt.show()

NNN

Program 16.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates the two-dimensional random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

M=100000 # number of particles
N=1000 # number of steps

x=np.zeros(M) # initial position
y=np.zeros(M)

u=np.zeros((N+1,2))
w=np.zeros((N+1,2))
s=np.zeros(N+1)

for i in range(1,N+1):

g=np.random.random_integers(1,4,M) # pick one of four directions to jump

jump
The following expression is easy to write but slow in execution
x[g==1]+=1
x[g==2]+=-1
y[g==3]+=1
y[g==4]+=-1

record two sample trajectories
u[i,0]=x[0]
w[i,0]=y[0]
u[i,1]=x[1]

PROBLEMS 425

w[i,1]=y[1]

mean square displacenent
s[i]=sum(x**2+y**2)/M

fig1, ax=plt.subplots(figsize=(6,6))
plt.plot(u[:,0],w[:,0],'-b')
plt.plot(u[:,1],w[:,1],'-g')
R=np.sqrt(s[N])
c=plt.Circle((0, 0), R, color='r',fill=False)
ax.add_artist(c)
ax.axis('equal')
L=R*1.5
ax.axis([-L, L, -L, L])
plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.legend(loc=1)

fig2, bx=plt.subplots(figsize=(6,6))

plt.plot(x[0:2000],y[0:2000],'.')
c=plt.Circle((0, 0), R, color='r',fill=False,linewidth=2)
bx.add_artist(c)
bx.axis('equal')
bx.axis([-100, 100, -100, 100])

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)

plt.show()

NNN

Program 16.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
#**
#* Section 16.4.1 *
#* filename: ch16pr04.py *
#* program listing number: 16.4 *
#* *
#* This program simulates the two-dimensional diffusion limited *
#* aggregates. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 03/04/2017. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

anim=True

number of particles
N=10000

L=601 # size of the square space
L0=np.int(L/2) # center of the square

set array size

426 RANDOM WALKS

x=np.zeros(N,dtype=np.int)
y=np.zeros(N,dtype=np.int)
A=np.zeros((L,L),dtype=np.int)

R=5. # inner circle
R_max=3.*R # outer circle

seed particle
A[L0,L0]=1
x[0]=L0
y[0]=L0

plt.ion()
fig, ax = plt.subplots(figsize=(8,8))
ax.set_xlim([L0-100,L0+100])
ax.set_ylim([L0-100,L0+100])

c=plt.Circle((x[0],y[0]), 0.5, color='b')
ax.add_artist(c)

for n in range(1,N):
random point on the inner circle
theta=np.random.rand(1)*2.0*np.pi
x[n]=np.int(R*np.cos(theta))+L0
y[n]=np.int(R*np.sin(theta))+L0

diffusion
found=False
while not(found):

p=np.random.rand(1)
if p<1./4.:

x[n]+=1
elif p<1./2.:

x[n]+=-1
elif p<3./4.:

y[n]+=1
else:

y[n]+=-1

r=np.sqrt(np.float((x[n]-L0)**2+(y[n]-L0)**2))
if r>R_max: # out of bound - restart

theta=np.random.rand(1)*2.0*np.pi
x[n]=np.int(R*np.cos(theta))+L0
y[n]=np.int(R*np.sin(theta))+L0

elif r<R:
hit the cluster?
if A[x[n]+1,y[n]]+A[x[n]-1,y[n]]+A[x[n],y[n]+1]+A[x[n],y[n]-1]>0:

found=True
A[x[n],y[n]]=1
c=plt.Circle((x[n],y[n]), 0.5, color='b',fill=False)
ax.add_artist(c)
if anim:

plt.pause(0.0001)
if R<r+5:

R=r+5. # adjust inner circle radius
R_max = 3*R # adjust outer circle radius
if R>L0:

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()

PROBLEMS 427

exit('Out of Range')

NNN

Program 16.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
#**
#* Section 17.4.2 *
#* filename: ch17pr05.m *
#* program listing number: 17.5 *
#* *
#* This program simulates the growth of dendrite. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 02/15/2014. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

anim=True

size of the systrem
N=5000
Lx=100
Ly=100

plt.ion()
fig, ax = plt.subplots(figsize=(6,6))
plt.axis('equal')
ax.set_xlim([0,Lx])
ax.set_ylim([0,Ly])

initial setting
x=np.random.random_integers(0,Lx-1,N) # horizontal position (uniform random)
y=np.zeros(N,dtype=np.int)
A=np.zeros((Lx,2*Ly),dtype=np.int)
A[:,0]=1
H=5
ymax=5

bias in y direction
e=0.01

initial plots
plt.plot([0,Lx-1],[0.5,0.5],'-k',linewidth=2)

deposition process
for n in range(0,N):

y[n]=H # diffusion starts from here

found=False

diffues in 2D space until it sticks to another.
while not(found):

p=np.random.rand(1)
if p<1./4.:

x[n]=np.mod(x[n]+1,Lx) # periodic boundary
elif p<1./2.:

428 RANDOM WALKS

x[n]=np.mod(x[n]-1,Lx) # periodic boundary
elif p<3./4.-e:

y[n]=y[n]+1
if y[n]>3*H: # if it went to high, start over.

y[n]=H
else:

y[n]=y[n]-1

if y[n]<H:
i1=np.mod(x[n]-1,Lx)
i2=np.mod(x[n]+1,Lx)
if A[i1,y[n]]+A[i2,y[n]]+A[x[n],y[n]+1]+A[x[n],y[n]-1]>0:

found=True
A[x[n],y[n]]=1
c=plt.Circle((x[n],y[n]), 0.5, color='b',fill=False)
ax.add_artist(c)
if anim:

plt.pause(0.0001)

ymax=np.max([y[n],ymax]) # adjust the stating height
H=5+ymax
if ymax>Ly-1:

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()
exit('Out of Range')

NNN

Program 16.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
#**
#* Section 16.4.3 *
#* filename: ch16pr06.py *
#* program listing number: 16.6 *
#* *
#* This program simulates the Parrondo game. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 03/04/2017. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

control parameters
e=0.005
pA=1./2.-e
qA=1.-pA
pB=3./4.-e
qB=1.-pB
pC=1./10.-e
qC=1.-pC
N=50000
M=100

Game A
x=np.zeros(N)
y=np.zeros(M+1)

PROBLEMS 429

t=np.linspace(0,M,M+1)
for i in range(1,M+1):

r=np.random.rand(N)
x[r<pA]=x[r<pA]+1
x[r>=pA]=x[r>=pA]-1
y[i]=x.sum()/N

plt.figure(figsize=(6,5))
plt.plot(t,y,'-b',label='Game A alone',linewidth=2)

Game B
x=np.zeros(N)
p=np.zeros(N)

for i in range(1,M+1):
r=np.random.rand(N)
p[:]=pB
k=np.mod(x,3)==0
p[k]=pC
x[r<p]=x[r<p]+1
x[r>=p]=x[r>=p]-1
y[i]=x.sum()/N

plt.plot(t,y,'-g',label='Game B alone',linewidth=2)

Alternating Game A and B
x=np.zeros(N)
p=np.zeros(N)

for i in range(1,M+1):
r=np.random.rand(N)
if np.mod(i,4)<2:

p[:]=pA
else:

p[:]=pB
k=np.mod(x,3)==0
p[k]=pC

x[r<p]=x[r<p]+1
x[r>=p]=x[r>=p]-1
y[i]=x.sum()/N

plt.plot(t,y,'-r',label='Game A & B',linewidth=2)

plt.legend(loc=2)
plt.xlabel('# of plays',fontsize=14)
plt.ylabel('Gain',fontsize=14)
plt.show()

NNN

Bibliography

[1] Jens Feder. Fractals. Plenum, 1988. Chapter 3.

[2] Jr. Witten, T. A. and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical
Review Letters, 1981.

[3] M. Matsushita, Y. Hayakawa, and Y. Sawada. Fractal structure and cluster statistics of zinc-metal trees
de- posited on a line electrode. Physical Review A, 32:3814(R), 1985.

[4] G. P. Harmer and D. Abbott. Game theory: Losing strategies can win by parrondo’s paradox. Nature,
402:864, 1999.

[5] R. Dean Astumian. Making molecules into motors. Scientific American, 285(1):57, July 2001.

[6] R. Dean Astumian and Peter Hänggi. Brownian motors. Physics Today, pages 33–39, November 2002.

430

CHAPTER 17

METROPOLIS METHOD

The fundamental laws of classical physics suggest that the future is uniquely determined by the present state
and there is no room for stochastic variables. If the degree of freedom is small enough, we can predict the
future of the system at least it is not a distance future. The necessity of stochastic variables in classical
physics is due to our ignorance. When the system consists of many particles, as many as 1023, interacting
among themselves, it is practically impossible to predict future of the system precisely. Fortunately, many
physical quantities we are interested in do not depend on the detailed state of individual particles. Think of
the air around us. We are mostly interested in its temperature and pressure. Nobody asks what is the position
and velocity of individual oxygen molecules. Nevertheless the temperature and pressure (macroscopic states)
are determined by the state of the molecules in the air (microscopic states). The rigorous relations between
microscopic states and macroscopic states are very complicated. Statistical mechanics was devised to make
some intuitive connection between microscopic states and macroscopic states.[1, 2] The state of a microscopic
system is described by stochastic variables. For example, the velocity of the molecules in the air is a stochastic
variable for which a probability distribution is constructed based on the fundamental laws of physics at the
microscopic scale. Once we find the probability distribution, we calculate the mean value which is regarded
as a macroscopic quantity. In other words, we don’t solve the Newton’s equations of motion to find the
position and velocity of all particles. Instead we treat the position and velocity as stochastic variables and
we somehow find the corresponding probability distribution consistent to the Newtons’ laws of motion.

Mathematical approach to stochastic system requires a bit of additional tasks since we need to find
probability distributions and various statistical quantities such as mean and variance using the probability
distribution. On the other hand, computational approach is rather straight forward. We just generate a
large set of random numbers corresponding to microscopic states and construct the probability distribution.
The calculation of mean and variance is essentially addition of many random numbers. Computers are

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

431

432 METROPOLIS METHOD

very good at repeating simple operations many times and do it very quickly. We call such approach Monte
Carlo simulation[3] after the famous casino city in Monaco.[3] In this chapter, a few simple examples are
introduced.

The present interpretation of quantum mechanics inherently involves stochastic variables. We can inves-
tigate quantum systems using random numbers (quantum Monte Carlo simulation). We will discuss it in a
later chapter.

17.1 Metropolis Algorithm for Thermal Equilibrium

When a system is in a thermal equilibrium at temperature T , all macroscopic quantities remain constant
in time and all macroscopic flow such as heat flow and particle current vanish. It looks no activity in the
system. However, if we look at the system at a microscopic level, the atoms are moving and the microscopic
state of the system is evolving in time rather rapidly. Macroscopic measurement devices simply do not have
a sufficient resolution to see such rapidly changing quantities. Instead the devices measure the time-averaged
quantities. For classical systems, a physical quantity is in general a function of a set of coordinates {qi(t)}
and momenta {pi(t)} and the time-average of a physical quantity A is defined by

〈A〉 = 1
t

∫ t

0
A[q1(τ), q2(τ), · · · , p1(τ), p2(τ), · · ·]dτ (17.1)

The time average is done rather quickly in our scale, say a micro second. However, it is almost infinitely
long in the microscopic world. Atoms in solid oscillate 1013 times in 1 second. It is difficult to simulate the
motion of atoms long enough to get macroscopic time average even with modern supercomputers.

Statistical mechanics offers us an alternative method to calculate the macroscopic average. The probability
that the system is found to be in a microscopic state ψi whose energy is Ei is given by the Boltzmann
distribution

Pi = 1
Z

e−βEi (17.2)

where β = 1/kBT . The normalization constant Z =
∑

e−βEi is called the partition function. Then, the
mean can be computed by

〈A〉 =
∑
i

AiPi = 1
Z

∑
i

Aie−βEi . (17.3)

This summation is done over all microscopic states. Unfortunately, the number of microscopic states is huge
and the exact enumeration is impossible. However, a reasonably large but finite random sampling is good
enough to get accurate mean value. If we want evaluate the mean of stochastic variable Â, we pick N random
numbers Ai

〈A〉 ≈ 1
N

∑
j∈S

Aj (17.4)

where S is a subset of the all possible microscopic states chosen at random according to the probability
(17.2) and N is the number of samples in S. A question is how to find the subset S. Metropolis et al.[4]
found a good way.

We want to take a finite number of samples from the all possible microscopic states in a way that the
samples are consistent with thermodynamic equilibrium. The chance that a particular state ψi is sampled
must be proportional to the Boltzmann factor e−βEi . Making a question more concrete, suppose that we
pick a state ψi at random. Then, which state should we pick next. If you just pick at random, you don’t
satisfy the equilibrium distribution. In Chapter 14, we learned how to pick a random number from a desired
distribution. Unfortunately, we cannot use it here since the distribution is given as a function of energy

METROPOLIS ALGORITHM FOR THERMAL EQUILIBRIUM 433

instead of Ai. We can pick an energy in accordance with the Boltzmann distribution. However, we can not
construct the corresponding microscopic state from the energy since many states have the same energy.

When the system is at an thermal equilibrium, any transition must satisfy the detailed balance[5]

pi→je−βEi = pj→ie−βEj ⇒ pi→j
pj→i

= e−β(Ej−Ei) (17.5)

where pi→j is the transition probability from state i to j. The absolute value of the transition probability is
not necessary to satisfy the detailed balance. We need to know only the relative transition probability. So,
we use a simple one

pj→i = 1, pi→j = e−β(Ej−Ei) (17.6)
for Ej > Ei. For the other case Ei < Ej . We simply swap i and j. Based on this idea, the following algorithm
sample the microscopic states satisfying the detailed balance and thus the Boltzmann distribution.

Algorithm 17.1 Metropolis Algorithm
1. Pick an initial state ψ1 at random. Starting i = 1, repeat the following procedure.
2. Pick a candidate state ψc at random. We consider the jump from ψi to ψc.
3. Evaluate energy difference ∆E = Ec − Ei.
4. If ∆E ≤ 0, then the transition is accepted. Let ψi+1 = ψc. Increment i and go to step 2.
5. If ∆E > 0, generate a uniform random number r between 0 and 1.
6. If e−β∆E > r, then the transition is accepted. Let ψi+1 = ψc. Increment i and go to step 2.
7. Otherwise, the transition is rejected. Discard the candidate state and start over from Step 2.

After N iterations, we have a set of sample {ψ1, · · · , ψN} which is consistent with the Boltzmann
distribution. This algorithm is known as the Metropolis method.

EXAMPLE 17.1

Maxwell Velocity Distribution

Consider a one-dimensional ideal gas in a thermal equilibrium at temperature kBT . The velocity of the
gas particles (mass=m) is distributed in the Maxwell distribution

ρ(v) = m√
2πkBT

e−mv
2/2kBT . (17.7)

It can be obtained from the Boltzmann distribution with E = 1
2mv

2. We can can sample the velocity
directly using the normally distributed random number discussed in Chapter 14. Here, we try to get
the Maxwell velocity distribution using the Metropolis method. In Program 17.1 the velocity is sampled
using the Metropolis algorithm. The jump of the velocity ∆v is chosen at random between −0.5 and 0.5.
100000 velocities are sampled and compared with the exact Maxwell distribution. Since the velocity is a
continuous variable, the probability distribution is expressed in a histogram. The result is shown in Fig.
17.1. The Metropolis method successfully obtained the Maxwell distribution. The small discrepancy is
due to the finite sampling. A better result can be obtained if a larger number of samples are generated.

434 METROPOLIS METHOD

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Metropolis
Exact

Figure 17.1: Velocity distribution generated by the Metoropolis method. The red line plots the Maxwell
distribution.

17.2 Applications in Physics

17.2.1 Ferromagnetic Phase Transition: 2D Ising Model

We are familiar with a permanent magnet and we know that it is made of iron or some other transition
metals. The permanent magnet has non-zero magnetization, known as spontaneous magnetization, even in
the absence of external magnetic field. However, the spontaneous magnetization vanishes above a critical
temperature (named as he Curie temperature). This phase transition was explained by a simple model. It
turns out that the model can explain many other phase transitions such as binary alloys and even neural
networks. The model is called the Ising model named after Ernest Ising.

Here we consider the Ising model in two-dimensional square lattices. The magnetization is caused by
the electron spins. In the Ising model, a spin degree of freedom simply takes one of two states denoted by
σ = ±1 corresponding to spin “up” and “down”. The spins interact among themselves but only those at the
nearest neighbor sites. The energy of the system is defined as

H = −J
∑
〈λ,λ′〉

σλσλ′ (17.8)

where λ denotes a lattice point and 〈λ, λ′〉 represents a possible nearest neighbor pair. J is a coupling
constant and positive for ferromagnetic materials. For example, the four pairs in the left panel of Fig 17.2
has energy −4J and another four pairs in the right panel has 0 energy. When all spins are in the same
direction, that is σλ = 1,∀λ or σλ = −1,∀λ, the energy per spin is −2J , which is the lowest. Hence, when
T = 0, the spins are all aligned.

A microscopic state is uniquely specified by a spin configuration Si = {σ1, σ2, · · · , σL}, i = 1, · · · , 2L
where L is the number of spins in the system. For example, S1 = {1, 1, 1, 1, · · · , 1}, S2 = {−1, 1, 1, · · · , 1}
and so on. For each configuration, the corresponding energy of the state is denoted as Ei. The magnetic
moment for the configuration Si is given by

Mi =
∑
λ

σλ. (17.9)

APPLICATIONS IN PHYSICS 435

The macroscopic quantities are the thermal average of the corresponding microscopic values. The energy
of the system is

〈E〉 =
∑
i

Ei e−βEi/Z (17.10)

and the magnetization
〈M〉 =

∑
i

Mi e−βEi/Z. (17.11)

Another interesting quantity is heat capacity

〈C〉 = kBβ
2(〈E2〉 − 〈E〉2). (17.12)

We are interested in how these quantities vary as temperature changes.
Analytic theory was difficult except for one-dimensional Ising system. Onsagar was able to solve the

two-dimensional system. The system shows spontaneous magnetization below a critical temperature kbTc
J

=
2.269 and the magnetization vanishes above the critical temperature. As temperature increases to the critical
temperature, the magnetization per spin vanishes as

〈M〉
N
∝ (Tc − T)1/8 (17.13)

and the heat capacity diverges at the critical temperature as

〈C〉
N
∝ ln

(
|T − Tc|−1) (17.14)

No analytical solution is known for three dimension or above.
Now we investigate this tough and yet very important problems using the power of computers. Since each

spin has two different states, there are 2L different microscopic states, which is a very large number. Even
for a small lattice such as 10 by 10, the number of states are 2100 ≈ 1030. It is difficult to calculate the
summations in Eqs. (17.10) – (17.12) even numerically. Therefore, we evaluate the mean values by random
sampling. Instead of taking into account all possible microscopic states exhaustively, we just consider a
fraction of it, say 106 configurations. It turns out that the results is surprisingly reasonable and capture
most of important aspects of the spontaneous magnetization.

Now, we replace Eqs. (17.10) – (17.12) with

〈E〉 =
∑
i∈S

Ei/N (17.15)

〈M〉 =
∑
i∈S

Mi/N (17.16)

〈C〉 =
∑
i∈S

Ci/N (17.17)

where S is a set of samples as defined earlier and N is the number of configurations in S. We use the
Metropolis algorithm to obtain S.

Algorithm 17.2 Monte Calro Simulation of Ising Model

436 METROPOLIS METHOD

Figure 17.2: Examples of coupling energy. Left: Each f the four pairs has energy −J and thus the total
energy is −4J . Right: Two pairs have energy −J each and the other two pairs have +J each. Therefore,
the total energy is zero.

1. Define a 2-dimensional lattice of L by L. Then, K = L2. Denote the spin at the lattice point
(i, j) as σi,j .

2. Set an initial configuration. Any configuration is OK. For example, set +1 or −1 for each σi,j
at random.

3. Pick a candidate spin σi,j at random. We consider flipping the spin (change the sign.)
4. Evaluate energy difference ∆E due to the flipping.

∆E = 2si,j [si−1,j + si+1,j + si,j−1 + si,j+1] (17.18)

5. If ∆E ≤ 0, then the transition is accepted. Let σi,j = −σi,j . step 9.
6. If ∆E > 0, generate a uniform random number r between 0 and 1.
7. If e−β∆E > r, then the transition is accepted. Let σi,j = −σi,j . step 9.
8. Otherwise, the transition is rejected. Discard the candidate state and start over from Step 3.
9. Evaluate energy and magnetization. Record them so that statistical average can be taken at

a later time.
10. Go to Step 3 and repeat the procedure until sufficient sampling is done.

Program 17.2 simulates the magnetization of two-dimensional Ising system isng this algorithm. The
results for 40× 40 are shown in Figs. 17.5 –17.4. The system size is still too small to get a good agreements
with theory but the important features of the critical phenomena are realized well.

17.2.2 Percolation

The microscopic states of the two-dimensional Ising model shown in Fig. 17.3 show interesting geometric
structures, i.e., the distribution of cluster sizes. One interesting question is if the two opposite ends of the
system is connected by a single cluster. In other words, can we travel from one edge to the opposite edge
by stepping only on one color? For the Ising system, when temperature is sufficiently low, one color is
dominated and two opposing edges are connected by a single cluster. On the other hand, when temperature
is high enough, both colors are distributed evenly and the cluster size becomes smaller. Above a certain
temperature, no single cluster touches the both ends. This phenomena is known as site percolation.[6] The
percolation problem was originally investigated for percolation of fluids through rock. However, it has been
used for the investigation of many different systems including porous media, granular materials, the Internet,
epidemics, biological evolution, to name a few.

APPLICATIONS IN PHYSICS 437

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(a) T=2.0

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(b) T=2.32

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(c) T=3.0

Figure 17.3: Snapshot of the microscopic states. Blue sites indicate spin-up and yellow spin-down. When
temperature is well below the critical temperature (a), one color dominates. This sample happens to be
dominated by yeallow but states dominated by blue also happens with the equal probability. Well above
the critical temperature (c), blue and yellow are scatted evenly. Although a large clusters are sill seen, they
should disappear as temperature goes up further. Near the critical temperature (b), blue and yellow are
equally likely but each color forms a large cluster. along with many smaller clusters.

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=−0.91095

(a) T=2.0

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=−0.91095

(b) T=2.32

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=0.025275

(c) T=3.0

Figure 17.4: Sampling of magnetization. The horizontal axis indicates the individual sample. When temper-
ature is well below the critical temperature (a), all sampled state have similar large negative magnetization.
The flusctuation is rather small. Well above the critical temperature (c), all sampled state have small mag-
netization close to zero. The fluctuation is bigger than that of (a) due to higher temperature. Near the
critical temperature (b), each sample has quite different value of the magnetization. The fluctuation of (b)
is even larger than that of the higher temperature state (c).

438 METROPOLIS METHOD

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

M
ag

ne
tiz

at
io

n

0 0.5 1 1.5 2 2.5 3
0

1

2

3

H
ea

t C
ap

ac
ity

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

k
B
 T/J

E
ne

rg
y

Figure 17.5: Monte Carlo Simulation of Ising model. The dashed line indicates the theoretical prediction of
the critical temperature. The top panel shows the spontaneous magnetization below a critical temperature
around T = 2.4. The heat capacity has a sharp peak at the critical temperature as shown in the middle
panel. On the other hand, the energy plotted in the bottom panel does not show any dramatic change across
the transition points.

APPLICATIONS IN PHYSICS 439

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(a) No percolation (p = 0.50)
0 10 20 30

0

5

10

15

20

25

30

(b) Vertically Percolated (p = 0.58)

Figure 17.6: Realization of clusters on the 32×32 lattice. No percolation is observed for p = 0.50. Increasing
the probability to p = 0.58, a large cluster (red) shows percolation in the horizontal direction.

Now, we investigate the two-dimensional percolation by computer simulation. First, we set a rule to
construct a state. Consider a N by N square lattice. We will place particles on the lattice at random. The
probability that a particle is found at each lattice site is p. When p = 1, then every site is occupied by a
particle.If p = 0, then there is no particle on any site. Form 1 > p > 0, some sites are occupied and other are
not. Many different configurations are possible for a given p. Therefore, this system is stochastic. To create
a single configuration, generate a standard uniform random number 1 > r > 0 for each lattice site. If p > r,
then the site is occupied. Figure 17.6 shows a realization for a 32x32 lattice with p = 0.5 and p = 0.58.

If two adjacent sites are both occupied, then the two particles make a bond. A cluster consists of all
particles connected together. For example, red particles in Fig. 17.6b forms a single large cluster. There are
many clusters of different sizes. The large cluster in Fig. 17.6b connects the left and right edges. Therefore,
this particular configuration is percolated horizontally. On theohter hand, the top and bottom edges are not
connected by any cluster. Hence, there is no vertical percolation. In Fig. 17.6a, there seems no cluster large
enough to establish percolation. But it is not see that. Actually, identifying clusters is not a trivial task for
computers. An efficient method was developed by Hoshen and Kopelman[7]. Even fast algorithm has been
developed more recently by Newman and Ziff[8]. The following algorithm is based on Hoshen and Kopelman
method.

We inspect each site from the bottom left corner along the column. In Fig. 17.7a, the blue particles are
already inspected and a cluster label is assigned to each cluster. In this particular example, four clusters
have been identified up to the red particle. Now we if it is a part of a previously known cluster or a new
cluster. We don’t have to worry about the grey particles at this point. We just inspect if the red particle is
in contact with any known cluster. To do so, we need to check if two neighbor sites, one in the immediate
left and the other down below. There are five different possibilities. If neither site is occupied (Fig. 17.7b),
the red particle is not in contact with any previous cluster. It is a new cluster and we assign a new label to
it. It must be mentioned here that the assigned label is just temporary label since as the new cluster grows,
it may coalesce to another cluster. If the red particle in in contact with one known cluster (Figs. 17.7c,
17.7d and 17.7e), then assign the label of the cluster to the red particle.

The last possibility is that the red particle is simultaneously in contact with two particles with different
labels. (Fig. 17.7f) This is the most difficult case. Now the clusters labeled by n and m coalesce to one

440 METROPOLIS METHOD

(a) Cluster Labeling Order

(b) (c) (d) (e) (f)

Figure 17.7: Hoshen-Kopelman cluster labeling scheme. (a) Inspect each site from the bottom left corner
along each column. Supposed that all sites upto the red one is already inspected and a label is assigned to
each cluster. In this example, there are four clusters labeled 1 through 4. Now we inspect if the red site is a
part of the previously known cluster. There are four five possibilities shown in (b) – (f).

cluster. We could simply assign a smaller label, say m, to the red particle. A problem is that we need to
replace all n with m. That is a time consuming task since we have to find all particles with label n. There
is a cleaver way to avoid the reassignment. We just record the relation that the label n is equivalent to the
label m. Such a mapping can be recorded in a one-dimensional array. For example, if the array name is
remap, then remap(3)=2 indicates that the label 3 is the same as 2. If more than two labels are assigned to
a single clusters, the map is chained like

6 → remap(6)=4 → remap(4)=2 → remap(2)=2

where apparent labels 6, 4, and 2 are all belong to the same cluster. The chain of mapping ends when
remap(n)=n is reached. We use the smallest label, 2 in this example, as the true label of the cluster. Whenever
we need the label of the particle at (i,j), we first find the apparent label stored in a two-dimensional array
label(i,j). Then, we look for the true label by following the chain of mpping In the case Fig. 17.7f, n and
m are the apparent label. Suppose that m′ and n′ are the true labels obtained by found through the chain
of mapping. If n′ > m′, then assign m′ to the red particle. Since the red particle and the cluster n′ must be
mapped to the same label, we set remap(n′) = m′. Now the label n′ is mapped to the same label as the red
particle and thus they are in the same cluster. After this, the chain is one step longer.

Algorithm 17.3 Cluster Labeling

APPLICATIONS IN PHYSICS 441

1. Prepare N by N array label for apparent labels and fill it with 0.
2. Prepare a on-dimensional array remap of size N2. This is used to store mapping from an

apparent label to a true label.
3. Set a counter new=0.
4. Start with i=1 and j=1, repeat the following procedure along column until i=j=N.
5. Check if the sites (i-1,j) and (i,j-1) is occupied.
6. If label(i-1,j)=0 and label(i,j-1)=0, create a new cluster by new=new+1; label(i,j)=new;

remap(new)=new. Go to next site.
7. If label(i-1,j)>0 and label(i,j-1)=0, join to the existing cluster by

label(i,j)=label(i-1,j). Go to next site.
8. If label(i-1,j)=0 and label(i,j-1)>0, join to the existing cluster by

label(i,j)=label(i,j-1). Go to next site.
9. label(i-1,j)=label(i,j-1)>0, joint to the existing cluster by label(i,j)=label(i-1,j).

Go to next site.
10. Otherwise, find the true labels m’ and n’ by following the chain of map. Find the smaller/larger

of the two true labels. nmin=min(m’,n’) and nmax=(m’,n’). Coalesce the two clusters into
one by label(i,j)=nmin and remap(nmax)=nmin. Go to next site.

442 METROPOLIS METHOD

MATLAB Source Codes

Program 17.1

%**
%* Exercise 17.1 *
%* filename: ch17pr01.m *
%* program listing number: 17.1 *
%* *
%* This program finds the velocity distribution of one-dimensional *
%* ideal gas using Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/11/2017. *
%**
clear all
close all

N0=10000; % number of thermalization steps
N=200000; % number of samples
kT=1.0; % Temperature times Boltzmann constant
m=1.0; % mass
dv=0.1; % maximum jump in velocity

v0=sqrt(kT/m); % thermal speed
v(1)=2.0*v0*(rand(1)-0.5); % initial velocity (radom between -0.5 and _0.5)

for i=1:N+N0-1
found = false;
while not(found)

u = v(i) + dv*(2*rand(1)-1); % candidate
dE = m/2*(uˆ2-v(i)ˆ2); % energy change
if exp(-dE/kT)>rand(1) % accept or reject

v(i+1)=u;
found = true;

end
end

end

K=41;
h=histogram(v(N0+1:N+N0),K,'Normalization','pdf');
hold on
w=linspace(h.BinLimits(1),h.BinLimits(2),101);
y=1/sqrt(2*pi*kT/m) * exp(-m*w.ˆ2/(2*kT));
% theoretical distribution (Maxwell)
p=plot(w,y);
set(p,'color','red','linewidth',2);
legend(p,'Maxwell');
hold on
legend('show')
axis([-4 4 0 0.5])
hold off

Program 17.2

%**
%* Exercise 17.2 *
%* filename: ch17pr02.m *
%* program listing number: 17.2 *
%* *
%* This program simulates two-dimensional Ising model using *
%* the Metropolis algorithm. *

APPLICATIONS IN PHYSICS 443

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
clear all
close all

rng('shuffle')

% control parameters
L=32; % number of spins in one direction
LL=L*L; % total number of spins
N0=20000; % thermalization steps
N=1000000; % number of Metropolis steps.
NS=N/1000; % number of samples.

% temperature
T=2.0;
beta = 1/T;

% Define arrays
kmax=int32(N/NS);
m=zeros([kmax,1]);
sigma2=zeros([kmax,1]);
E=zeros([kmax,1]);

% animation switch
movie=false;

if T>2.0
s = int32(1-2*randi([0,1],[L,L])); % Random (for high temperature)

else
s = int32(ones([L,L])); % Uniform (for low temperature)

end

% animation initial configuration
if movie

figure
axis([0 L+1 0 L+1])
axis equal;
hold on
for i=1:L

for j=1:L
if s(i,j)>0

color='blue';
else

color='yellow';
end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color);

end
end
drawnow;

end

% Begin Metropolis simulation
k=0;
for n=1:N+N0

% pick a site at random
i=randi([1,L]);
j=randi([1,L]);

444 METROPOLIS METHOD

% Evaluation of energy change
i1=i+1; if i1>L; i1=1; end;
i2=i-1; if i2<1; i2=L; end;
j1=j+1; if j1>L; j1=1; end;
j2=j-1; if j2<1; j2=L; end;
s4 = s(i1,j)+s(i2,j)+s(i,j1)+s(i,j2);
dE = 2.0*double(s4*s(i,j));

% Metropolis algorithm
if exp(-beta*dE)> rand(1)

s(i,j)=-s(i,j);
if movie

if s(i,j)>0
color='blue';

else
color='yellow';

end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color);
drawnow;

end
end

% measurement
if n>N0 && mod(n,NS)==0

k=k+1;
m(k) = sum(s(:))/LL; % mean magnetization
sigma2(k) = sum(s(:).ˆ2)/LL-m(k)ˆ2; % variance
% total energy
h=0;
for j=1:L-1

for i=1:L-1
h=h+s(i,j)*(s(i+1,j)+s(i,j+1));

end
end
for i=1:L

h=h+s(i,L)*s(i,1)+s(L,i)*s(1,i);
end
E(k)=-h;

end

end

% draw the final configuration
if not(movie)

figure
axis([0 L+1 0 L+1])
axis equal;
hold on
for i=1:L

for j=1:L
if s(i,j)>0

color='blue';
else

color='yellow';
end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color)

end
end

hold off
drawnow;

APPLICATIONS IN PHYSICS 445

end

% magnetization
subplot(1,2,1)
plot([1:k]*NS,m(1:k))
hold on
mu=sum(m(1:k))/k;
p=plot([NS, k*NS],[mu, mu]);
set(p,'color','red')
axis([0 N -1.1 1.1])
mx=num2str(mu,5);
legend('m(t)',['mean=' mx])
legend('location','southeast')
xlabel('steps')
ylabel('magnetization')
hold off

% energy
subplot(1,2,2)
Eavg=sum(E)/k;
C=(sum(E.ˆ2)/k-Eavgˆ2)/Tˆ2/LL;
p=plot([1:k]*NS,E(1:k)/LL);
hold on
p=plot([NS, k*NS],[Eavg/LL, Eavg/LL]);
set(p,'color','red')
axis([0 N -4 0])
mx=num2str(Eavg/LL,5);
legend('E(t)',['mean=' mx])
xlabel('steps')
ylabel('Energy/spin')
hold off

% statistics
fprintf('<m>=%.5f\n',mu)
fprintf('<E>=%.5f\n',Eavg/LL)
fprintf('<C>=%.5f\n',C)

Program 17.3

%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates two-dimensional percolation. *
%* Hoshen and Kopelman algorithm is used for cluster labeling. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
close all

N=32;
% p=0.59 is close to the transition point
p=0.4;

% Graphics setting
plot([0,N+1,N+1,0,0],[0,0,N+1,N+1,0]);
axis equal
axis([0 N+1 0 N+1])
hold on

446 METROPOLIS METHOD

% place atoms at random
r=rand(N,N);
lattice = r < p;

% draw clusters
for i=1:N

for j=1:N
if lattice(i,j)

rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor','b');
drawnow

end
end

end
hold on

% Labeling: 1st pass (Making initial labels and map)

label=zeros(N,N); % allocate array
remap=zeros(N*N);

new=0;
for j=1:N

for i=1:N

i1 = i-1;
j1 = j-1;

if lattice(i,j)>0
if i1 > 0

left=label(i1,j); % neighbor (left).
else

left=0; % outside the box.
end
if j1 > 0

down=label(i,j1); % neighbor (down).
else

down=0; % outside the box.
end

if down==0 && left==0 % if both are unocupied
new=new+1; % create a new cluster.
label(i,j) = new;
remap(new)=new;

elseif down*left>0 % both are occupied.

if down==left % if they are the same cluster.
label(i,j)=left; % join to the cluster.

else % connecting two different clusters.
found = false;
while not(found)

if remap(left)==left
found = true;

else
left=remap(left);

end
end
found = false;
while not(found)

APPLICATIONS IN PHYSICS 447

if remap(down)==down
found = true;

else
down=remap(down);

end
end

if left==down % they are again the same
label(i,j)=left;

else
nmax=max(left,down);
nmin=min(left,down);
label(i,j)=nmin; % coalesce two clusters
remap(nmax)=nmin; % add to the chain

end
end

elseif down>0 % only down neighbor is occupied
label(i,j) = down; % join to the neighbor

else % only the left neighbor is occupied
label(i,j) = left; % join to the neighbor

end
end

end
end
% Labeling: 2nd pass (Collapse the label in the same cluster)

nmax = max(label(:));
for i=nmax:-1:1

label(label==i)=remap(i);
end

% Labeling: 3rd pass (Make the label continuous)
% This procedure is not essential.

j=0;
for i=1:nmax

if remap(i)==i
j=j+1;
label(label==i) = j;

end
end

% Identify the percolation
nmax = max(label(:));
size = zeros(nmax,1);
maxsize=0;
largest=1;
fprintf('Cluster Size Percolation\n')
for i=1:nmax

percx = any(label(1,:)==i)*any(label(N,:)==i) >0;
percy = any(label(:,1)==i)*any(label(:,N)==i) >0;
size(i)= sum(label(:)==i);
if size(i) > maxsize

largest = i;
maxsize = size(i);

end
if percx || percy

perc='YES';

448 METROPOLIS METHOD

else
perc=' NO';

end
fprintf('%5d: %6d, %s\n', i, size(i), perc)

end

fprintf('%d %d\n', largest, size(largest))

for i=1:N
for j=1:N

if label(i,j) == largest
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor','r');
drawnow

end
end

end
figure

h=histogram(size,20);

NNN

Python Source Codes

Program 17.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.1 *
%* filename: ch17pr01.m *
%* program listing number: 17.1 *
%* *
%* This program finds the velocity ditribution of one-dimensional *
%* ideal gas using Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/11/2017. *
%**
"""

import numpy as np
import matplotlib.pyplot as plt

N0=10000 # number of thermalization steps
N=200000; # number of samples
kT=3.0 # Temperature times Boltzmann constant
m=5.0 # mass of particle

v=np.zeros(N+N0)
dv=0.1 # maximum jump in velocity
v0=np.sqrt(kT/m) # thermal speed
initial velocity (uniform random beteen -v0 and +v0)
v[0]=2.*v0*(np.random.rand(1)-0.5)

for i in range(0,N+N0-1):

APPLICATIONS IN PHYSICS 449

found = False
while not(found):

u = v[i] + dv*(2.0*np.random.rand(1)-1.0) # candidate
dE = m/2.0*(u**2-v[i]**2) # energy change
if np.exp(-dE/kT)>np.random.rand(1): # Metropolis condition

v[i+1]=u # accept change ()
found = True

theoretical distribution (Maxwell)
K=41
plt.close()
plt.figure(figsize=(6,5))
n, bins, patches = plt.hist(v[N0:N0+N],K,normed=1,label='Monte Carlo')
w=np.linspace(bins[0],bins[-1],101)
y=1.0/np.sqrt(2.*np.pi*kT/m) * np.exp(-m*w**2/(2.*kT))
plt.plot(w,y,'-r',label='Maxwell')
plt.legend(loc=1)
plt.xlabel('v')
plt.ylabel('p(v)')
plt.show()

NNN

Program 17.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.2 *
%* filename: ch17pr02.py *
%* program listing number: 17.2 *
%* *
%* This program simulates two-dimensional Ising model using *
%* the Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

ease all previous figures
plt.close('all')

control parameters
L=32 # number of spins in one direction
LL=L*L # total number of spins
N0=20000 # thermalization steps
N=100000 # number of Metropolis steps.
NS=N/1000 # number of samples.

Define arrays
kmax=np.int(N/NS)
m=np.zeros(kmax)
sigma2=np.zeros(kmax)
E=np.zeros(kmax)

Show animation if True
movie=False

450 METROPOLIS METHOD

temperature
T=2.0
beta = 1.0/T

Initial configuration
if T>2.0:

Random (for high temperature)
s=np.random.choice([1,-1],[L,L])

else:
Uniform (for low temperature)
s=np.ones((L,L),dtype=np.int)

Show initial configuration
if movie:

plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, L), ylim=(-1, L))
for j in range(0,L):

for i in range(0,L):
if s[i,j]==1:

color='b'
else:

color='y'
circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)

plt.pause(0.0001)

Begin Metropolis simulation
k=0
for n in range(0,N+N0):

pick a site at random
i=np.random.randint(0,L)
j=np.random.randint(0,L)

Evaluation of energy change
i1=np.mod(i+1,L)
i2=np.mod(i-1,L)
j1=np.mod(j+1,L)
j2=np.mod(j-1,L)
ss = s[i1,j]+s[i2,j]+s[i,j1]+s[i,j2]
dE = 2*ss*s[i,j]

Flip spin based on Metropolis algorithm
if np.exp(-beta*dE)> np.random.rand(1):

s[i,j]=-s[i,j]

Show new configuration
if movie:

if s[i,j]==1:
color='b'

else:
color='y'

circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)
plt.pause(0.0001)

Evaluate statistical quantities
if n>N0 and np.mod(n,NS)==0:

mean and variance
m[k] = np.real(s.sum())/LL

APPLICATIONS IN PHYSICS 451

sigma2[k] = (s**2).sum()/LL-m[k]**2

total nergy
h=0
for j in range(0,L-1):

for i in range(0,L-1):
h=h+s[i,j]*(s[i+1,j]+s[i,j+1])

for i in range(0,L):
h=h+s[i,L-1]*s[i,0]+s[L-1,i]*s[0,i]

E[k]=-h

k+=1

plot magnetization
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
t=np.linspace(0,k-1,k)*NS
plt.plot(t,m[0:k],'-b',label='m(t)')

mu=sum(m[1:k])/k
plt.plot([0, N],[mu, mu],'--r',label='mean')
plt.xlim([0,N])
plt.ylim([-1.1,1.1])
plt.legend(loc=4)
plt.xlabel('steps')
plt.ylabel('magnetization')

plot energy
plt.subplot(1,2,2)
Eavg=sum(E[0:k])/k
C=(sum(E[0:k]**2)/k-Eavg**2)/T**2/LL
plt.plot(t,E[0:k]/LL,label='energy');
plt.plot([0,N],[Eavg/LL, Eavg/LL],'--r',label='mean')
plt.xlim([0,N])
plt.ylim([-4,0])
plt.xlabel('steps')
plt.ylabel('Energy/spin')
plt.show()

Show the final configulation
if not(movie):

plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, L), ylim=(-1, L))
for j in range(0,L):

for i in range(0,L):
if s[i,j]==1:

color='b'
else:

color='y'
circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)

plt.show()

statistics
print('<m>={0:8.5f}'.format(mu))
print('<E>={0:8.5f}'.format(Eavg/LL))
print('<C>={0:8.5f}'.format(C))

NNN

Program 17.3

452 METROPOLIS METHOD

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates two-dimensional percolation. *
%* Hoshen and Kopelman algorithm is used for cluster labeling. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

ease all previous figures
plt.close('all')

N=32
p=0.59 is close to the transition point
p=0.59

Graphics setting
plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, N), ylim=(-1, N))

place atoms at random
r=np.random.rand(N,N)
lattice = r < p

draw clusters
for i in range(0,N):

for j in range(0,N):
if lattice[i,j]:

circle=plt.Circle((i,j),0.5,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Labeling: 1st pass (Making initial labels and map)
label=np.zeros([N,N],dtype=np.int) # allocate array
remap=np.zeros(N*N,dtype=np.int)

new=0
for j in range(0,N):

for i in range(0,N):

i1 = i-1
j1 = j-1

if lattice[i,j]>0:
if i1 < 0:

left=0 # outside the box
else:

left=label[i1,j] # left neighbor

if j1 < 0:
down=0 # outside the box.

APPLICATIONS IN PHYSICS 453

else:
down=label[i,j1] # down neighbor

if down==0 and left==0: # if both are unocupied
new=new+1 # create a new cluster.
label[i,j]=new
remap[new]=new

elif down*left>0: # both are occupied.

if down==left: # if they belong to the same cluster.
label[i,j]=left # join to the cluster.

else: # connecting two different clusters.
found = False
while not(found):

if remap[left]==left:
found = True

else:
left=remap[left]

found = False
while not(found):

if remap[down]==down:
found = True

else:
down=remap[down]

if left==down: # they again belong to the same
label[i,j]=left

else:
nmax=np.max([left,down])
nmin=np.min([left,down])
label[i,j]=nmin # coalesce two clusters
remap[nmax]=nmin # add to the chain

elif down>0: # only down neighbor is occupied
label[i,j] = down # join to the neighbor

else: # only the left neighbor is occupied
label[i,j] = left # join to the neighbor

Labeling: 2nd pass (Collapse the label in the same cluster)

nmax = np.max(label)
for i in range(nmax,0,-1):

label[label==i]=remap[i]

Labeling: 3rd pass (Make the label continuous)
This procedure is not essential.
j=0
for i in range(1,nmax+1):

if remap[i]==i:
j=j+1
label[label==i] = j

Find cluster size and find percolation
nmax = np.max(label)
size = np.zeros(nmax+1,dtype=np.int)
maxsize=0
largest=1

454 METROPOLIS METHOD

print('Cluster Size Percolation')
for i in range(1,nmax+1):

percx = any(label[0,:]==i)*any(label[N-1,:]==i) >0
percy = any(label[:,0]==i)*any(label[:,N-1]==i) >0
size[i]= (label==i).sum()
if size[i] > maxsize:

largest = i
maxsize = size[i]

if percx or percy:
perc='YES'

else:
perc=' NO'

print('{0:5d}: {1:5d}, {2:s}'.format(i, size[i], perc))

Show the largest cluster
for i in range(0,N):

for j in range(0,N):
if label[i,j] == largest:

circle=plt.Circle((i,j),0.5,fc='r')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Plot size distribution
plt.figure(figsize=(6,5))
plt.hist(size,maxsize)
plt.show()

NNN

Bibliography

[1] David Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, 1987.

[2] Frederick Reif. Fundamentals of Statistical and Thermal Physics. Waveland Pr Inc, 2008.

[3] David P. Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge
University Press, 4th edition, 2014.

[4] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[5] Frederick Reif. Fundamentals of Statistical and Thermal Physics. Waveland Pr Inc, 2008. Section 9.5.

[6] Dietrich Stauffer and Ammon Aharony. Introduction To Percolation Theory. Taylor & Francis, 2nd
edition, 1994.

[7] J. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique
and critical concentration algorithm. Physical Review B: Condensed Matter and Materials Physics,
14:3438–3445, Oct 1976.

[8] M. E. J. Newman and R. M. Ziff. Fast monte carlo algorithm for site or bond percolation. Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, 64:016706, Jun 2001.

455

CHAPTER 18

LANGEVIN EQUATIONS

In Chapter 16, we have discussed how a drunkard walks around using a random walk model, which assumes
that the random walker hops from one site to another at random. That model uses a discrete time, discrete
steps, and discrete directions. However, the real drunkard does not walk in such a way. It walks in continuous
time and space. The continuous random walk has been a very useful mathematical model in many parts of
physics and other fields of science.

A most popular example is a Brownian motion. Consider a bead which is much bigger (heavier) than
water molecules but small enough to experience individual water molecules. From the view point of the bead,
a liquid water is not a continuous media. However, individual water molecules are so small that the impulse
by a single collision is not big enough to change the motion of the bead. Many collisions over a certain
period of time are necessary. (See Fig. 18.1) On the other hand, the collisions happen in all directions and
on average the net impulses tend to cancel out. However, the net impulse is not exactly zero and fluctuates
due to the finite number of collisions. Occasionally bigger impulse from the left than from the right and then
the net force to the right is exerted on the Brownian particle. Therefore, the bead is subject to a random
force. In other words, the force on the bead is a stochastic variable. Einstein is the first person to explain
the Brownian motion using a mathematical model based on the probability distribution of the particles in
the surrounding liquid.[1] Another approach based on the trajectory of the Brownian particle was developed
by Langevin at a later time.[2] The equation of motion for the Brownian particle is known as the Langevin
equation.[3, 4] It is a kind of differential equations but contains random forces and thus the solution is also
stochastic. Even when the initial condition is uniquely specified, realized trajectories never be the same.
We call such differential equation stochastic differential equation (SDE) in contrast to ODE. The numerical
methods to solve SDE is similar to those for ODE but the random force must be treated in a different way
from the regular forces.

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

457

458 LANGEVIN EQUATIONS

Figure 18.1: A heavy particle experiences many collisions with smaller particles but its velocity remains
the same for a certain short period of time. The force exerted on the particle is the sum of the forces by
individual collisions over a period of time. In most times, the net force is nearly zero because collisions
take place on every direction. However, the number of collisions is finite and fluctuates from time to time.
Therefore, the net force also fluctuates and occasionally it is big enough to change the velocity of the particle
appreciatively.

18.1 Langevin equation

18.1.1 Definition

Microscopically, the motion of the bead and water molecules are determined by a set of Newton’s equations
of motion. However, the number of equations is too great to solve analytically. Since we are interested in
the motion of the bead, we want to find an effective equation of motion without the detailed knowledge of
the trajectories of water molecules. Langevin developed such an equation. It is a Newton’s equation for the
bead but with a random force due to the collision with the water molecules. A typical form of the Langevin
equation is

MẌ = −γẊ + αξ(t) + Fext(X, t) (18.1)

where M and X are the mass and the position of the Brownian particle. Fext is deterministic external force
such as gravity. The effect of collisions with the water molecules appears in two parts. One is the drag force
−γẊ where γ is the frictional coefficient. The drag office is due to the fact that when the Brownian particle
is moving more collisions take place in one direction than other direction. The other is a random force αξ(t)
where α is a constant to be determined. As we discussed above, the average of the random force is zero.
In addition, the random force at time t is independent of the random force at a different time t′. Putting
theses condition in mathematical form, we define the properties of the stochastic function ξ(t) by

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = δ(t− t′) (18.2)

where δ(·) is the delta function. Furthermore, we learned in Chapter 16 that the sum of many random
numbers is Gaussian distributed. Therefore, the random force, which is the sum of many random collisions,
is also Gaussian distributed. Then, the Gaussian stochastic variable is uniquely determined by the mean
and variance (18.2). This type of stochastic variable is commonly called Gaussian white noise.∗

∗The power spectrum of the random force does not depend on the frequency and thus includes all frequencies with equal
strength. The situation is similar to white color which consists of all colors (frequencies).

LANGEVIN EQUATION 459

Now we will determine the value of α. When there is no external force, the Brownian particle reaches
a thermodynamic equilibrium after sufficiently long time and the equipartition theorem[5] suggests that
M

2 〈Ẋ
2〉 t→∞−−−→ kBT

2 . This condition uniquely determines the strength of the random force. Using the
Langevin equarion (18.1) and the definition of Gaussian noise Eq. (18.2), the mean square velocity is give
by

〈Ẋ2〉 = e−2γt/M Ẋ(0)2 + α2

2γM

(
1− e−2γt/M

)
t→∞−−−→ α2

2γM . (18.3)

With the help of the equipartition theorem, we obtain

α =
√

2γkBT . (18.4)

See Ref. [3] for detailed derivation.
The mean square displacement can be also analytically computed using Eq. (18.2) and the result is

〈(X(t)−X(0))2〉 =
(
α

γ

)2 [
t− M

γ

(
1− e−γt/M

)]
t�M/γ−−−−−→ 2kBTt

γ
(18.5)

from which we find the diffusion constant
D = kBT

γ
(18.6)

This is the famous Einstein relation and an example of the fluctuation-dissipation theorem.[6] Using this
diffusion constant, the strength of the random force is expressed as

α = γ
√

2D. (18.7)

The Stokes frictional coefficient of a spherical particle is given by

γ = 6πηR (18.8)

where η is the viscosity of the surrounding fluid and R the radius of the Brownian particle. In general
the frictional constant depends the mass and density of water molecules, temperature and the shape of the
Brownian particle. To determine it from the experimental observation, one can measure the autocorrelation
function of the velocity[3]

〈V (τ)V (0)〉
〈V (0)2〉

= e−γt/M . (18.9)

Plotting it in the semi-log scale, the slope is −γ/M .

18.1.2 Overdamped Langevin equations and Wiener Processes

When the friction is very large, the effect of inertial mass M becomes negligible. Then, Eq. (18.1) can be
approximated by

Ẋ =
√

2Dξ(t) + 1
γ
Fext(X, t) (18.10)

which is known as the overdamped Langevin equation[4] and commonly used in biological systems. For
example the motion of a protein in a cytosol is investigated with the overdampled Langevin equation.

When Fext = 0, the trajectory X(t) determined by Eq. (18.10) is called the Wiener process which is solely
determined by the random force as

X(t) = X(0) +
√

2D
∫ t

0
ξ(s) ds (18.11)

460 LANGEVIN EQUATIONS

The mean square displacement grows as

〈(X(t)−X(0))2〉 = 2Dt (18.12)

which agrees with Eq. (18.5).

18.1.3 Ornstein-Uhlenbeck process

In the absence of the external force, the Langevin equation (18.1) does not depend on the position and is a
first order SDE of the velocity

V̇ = − γ

M
V + γ

M

√
2Dξ(t) (18.13)

The solution to this SDE is known as the Ornstein-Uhlenbeck process.
Another example of the Ornstein-Uhlenbeck process is an overdamped Brownian particle in a harmonic

potential. The overdumped Langevin equation fo this particle is given by the Ornstein-Uhlenbeck process

Ẋ = −k
γ
X +

√
2Dξ(t) (18.14)

where k is the spring constant. Apart from the parameters, Eq (18.14) is mathematically equivalent to Eq.
(18.13). Assuming that the Brownian particle is initially located at X(0) = 0, the mean square displacement
is given by

〈X(t)2〉 = kBT

k

[
1− e−2kt/γ

]
t→∞−−−→ kBT

k
(18.15)

Hence the mean potential energy satisfies the equipartition theorem[5]

〈U〉 = k

2 〈X
2〉 = kBT

2 (18.16)

indicating that the Brownian particle asymptotically reaches the thermal equilibrium.

18.1.4 Numerical Algorithm: the Heun method

In order to develop a numerical method for the Langevin equations, we need to understand the Wiener
process, in particular the integral of the random force in the overdamped Langevin equation (18.11) in the
absence of the external force. The stochastic function ξ(t) is not an ordinary function of time and we must
be very careful about it.† If ξ(t) were an ordinary function, the integral over infinitesimal time dt would be
proportional to dt: ∫ dt

0
ξ(s)ds = gdt (18.17)

where g is a stochastic constant. Then, the mean square displacement would be

〈(X(dt)−X(0))2〉 = 2D〈g2〉(dt)2 (18.18)

which contradicts with Eq. (18.12). In order to get the correct relations (18.2) and (18.12), we conclude
that ∫ dt

0
ξ(s)ds = g

√
dt. (18.19)

†The function ξ(t) is continous but not differentiable at any point!

LANGEVIN EQUATION 461

with 〈g〉 = 0 and 〈g2〉 = 1. Since ξ is Gaussian distributed, g is also Gaissian-distributed. See Refs [3, 4] for
more detailed discussion of the Wiener process.

Now we find a simplest numerical method for the overdamped Langevin equation (18.11) including the
external force. We assume that the diffusion constant does not depend on X nor t. Integrating Eq. (18.10)
from t to t+ h,

X(t+ h)−X(t) =
√

2Dhg + 1
γ

∫ t+h

t

F (X(t′), t′)dt′ ≈
√

2Dhg + 1
γ
F (X(t), t)h (18.20)

where we used the Euler method for the integral of the external force. The value of g is normally a distributed
random number. Note that the integral of the random force is exact since D is just a constant. If the diffusion
constant depends on the position, the mathematics of stochastic differential equation is more complicated [4]
and we do not discuss it here. The discretization error arises from the Euler method for the external force.
As we discussed in Chapter 4, the Euler method is accurate only up to the order of h. A better method is to
use the Runge-Kutta or predictor-corrector method for the external force. The following algorithm, known
as the Heun method, is equivalent to the predictor-corrector method (Section 4.2.3) for ODE and accurate
up to the order of h2.

Algorithm 18.1 Heun method for the overdamped Langevin equation

1. Assuming that X(ti) is known, we predict X(ti+1) where ti+1 = ti + h.
2. Generate a normally-distributed random number g (use a Box-Muller method. See

Chapter 14.)
3. Generate a random force G =

√
2Dg.

4. Generate a deterministic force if any

F1 = Fext(X(ti), ti)/γ. (18.21)

5. Predict the next X (This is just a first prediction.)

X ′(ti+1) = X(ti) + F1h+G
√
h (18.22)

If there is no external force go to Step 8
6. Evaluate the deterministic force again but at the new time ti+1 using predicted

X ′(ti+1).
F2 = Fext(X ′(ti+1), ti+1)/γ. (18.23)

7. Apply the corrector step

X(ti+1) = X(ti) + 1
2(F1 + F2)h+G

√
h (18.24)

Note that the same random force must be used for the prediction and correction steps.
8. Increment i and repeat from Step 2.

Now we solve the Langevin equations (18.1). Again the basic idea is similar to the numerical methods of
ODE. The simplest method equivalent to the Euler method is

X(ti+1) = X(ti) + V (ti)h (18.25)
V (ti+1) = V (t) + Fh+G

√
h (18.26)

462 LANGEVIN EQUATIONS

where h is a step size of time. The deterministic force F and random force G are defined by

F = − γ

M
V (ti) + Fext(X(ti), ti)

M
(18.27)

G = γ

M

√
2Dg (18.28)

where g is a normally-distributed random number. By repeating this step, we find the trajectory. This
method is not recommended for practical application since it is accurate only up to the order of h. The
Heun method which is locally accurate up to the order of h2, is summarized in Algorithm 18.2,

Algorithm 18.2 Heun method for the Langevin equation

1. Assuming that X(ti) and V (ti) are known, we predict X(ti+1) and V (Ti+1) where
ti+1 = ti + h.

2. Generate a normally-distributed random number g (use a Box-Muller method. See
Chapter 14.)

3. Generate a random force G = γ

M

√
2Dg.

4. Generate a deterministic force

F1 = − γ

M
V (ii) + Fext(X(ti), ti) (18.29)

5. Predict the next X and V (This is just a first prediction.)

X ′(ti+1) = X(ti) + V (ti)h (18.30)
V ′(ti+1) = V (ti) + F1h+G

√
h (18.31)

6. Evaluate the deterministic force again but at the new time ti+1 using predicted
X ′(ti+1) and V ′(ti+1).

F2 = − γ

M
V ′(ti+1) + Fext(X ′(ti+1), ti+1) (18.32)

7. Apply the corrector step

X(ti+1) = X(ti) + 1
2 [V (ti) + V ′(ti+1)]h (18.33)

V (ti+1) = V (ti) + 1
2(F1 + F2)h+G

√
h (18.34)

Note that the same random force must be used for the prediction and correction steps.
8. Increment i and repeat from Step 2.

EXAMPLE 18.1 One-dimensional Wiener process

Consider a one-dimensional overdamped Brownian particle freely diffusing in a fluid. The equation of
motion for the Brownian particle is the simplest Langevin equation

Ẋ =
√

2Dξ(t) (18.35)

LANGEVIN EQUATION 463

0 10 20 30 40 50 60 70 80 90 100
−150

−100

−50

0

50

100

150

t

x(
t)

(a) 100 sample trajectories. The red dashed line and
solid lines are the mean 〈X〉 and standard deviation√
〈X2〉 − 〈X〉2, respectively.

0 10 20 30 40 50 60 70 80 90 100
−500

0

500

1000

1500

2000

t

<
x>

, σ
2

<x>

σ2

exact

(b) Diffusion. Statistics is taken over 1000 real-
ization. The red line shows the theoretical value
〈x2〉 = 2Dt.

Figure 18.2: Diffusion of the one-dimensional Brownian motion modeled by the overdamped Langevin equa-
tion. Parameter values are T = 1, γ = 0.1, and thus D = 10.

x
-100 -50 0 50 100

y

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

(a) An example of Brownian motion in the two-
dimensional space.

t
0 200 400 600 800 1000

<
x>

,
<

2

#104

-0.5

0

0.5

1

1.5

2

2.5

<x>
<y>
<

x
2

<
y
2

theory

(b) Diffusion. Statistics is taken over 1000 real-
ization. The red line shows the theoretical value
〈x2〉 = 2Dt.

Figure 18.3: Diffusion of the two-dimensional Brownian motion modeled by the overdamped Langevin equa-
tions. Parameter values are T = 1, γ = 0.1, and thus D = 10.

464 LANGEVIN EQUATIONS

where DkBT/γ. Assuming that the Brownian particle was initially located at X = 0, we want to find the
mean position and the mean square deviation from the mean, i.e., the variance of the particle position,
as a function of time.

Program 18.1 integrates the Langevin equation (18.35) using the Heun method (Algorithm 18.1) from
t = 0 to t = 100 with time step h = 0.005. Parameter values kBT = 1, γ = 0.1, and thus D = 10,
are used. Figure 18.2a shows 100 trajectories chosen at random. The mean position is indicated by
the dashed line and the mean deviation σ = ±

√
〈X2〉 is plotted with the red solid line. Despite that

all trajectories began at the same point, they are all different. On the other hand, the mean position
remains at 〈X〉 = 0 all time. The uncertainty of the location increases as time goes. Figure 18.2b shows
the time evolution of σ2. As predicted by Eq. (18.12), it increases linearly with time and its slope is
2D = 20.

LANGEVIN EQUATION 465

EXAMPLE 18.2 Brownian motion in two-dimentional space

A Brownian particle is freely diffusin in the two-dimensional space. WE model it using overdamped
Langevin equations

Ẋ =
√

2Dξx(t) (18.36a)
Ẏ =

√
2Dξy(t) (18.36b)

where ξx and ξy are two independent Gaussian noises defined by

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′), ∀i, j ∈ {x, y} (18.37)

where δij is the Kronecker’s delta.
Program 18.2 numerically solves Eq (18.36) using the Heun method. Initially the particle was located

at the origin of the coordinates and diffuses with D = 10. Figure 18.3a illustrates an example trajectory.
The diffusion in x and y directions are independent and each coordinate diffuses in the same way as the
one-dimensional Brownian motion as Fig. 18.3b demonstrates.

EXAMPLE 18.3 Velocity auto-correlation

A Brownian particle freely diffusing is an Ornstein-Uhlenbeck process and mathematically modeled by
the Langenvin equation (18.13). Since the inertial mass plays a role in this case, there is a memory effect.
The autocorrelation function of the velocity (18.9) suggests that the correlation time is τc = M/γ. We
solve Eq. (18.13) numerically and compute the correlation function.

Program 18.3 integrates Eq. 18.13 using the Heun method (Algorithm 18.2). The velocity is calculated
from t = 0 to t = 220 with the time step dt = 0.002. Then the autocorrelation function is computed by
FFT (see Section 10.5). The mass and friction coefficient are assumed to be M = 1 and γ = 0.1. Thus,
the expected correlation time is τc = 10. The result is shown in Figure 18.4. A sample of stochastic
velocity shown in Fig 18.4a illustrates that the velocity fluctuates around the zero mean. Since there is no
external force, the average velocity should remain zero. However, due to the random force, the velocity
fluctuates around zero. The velocity looks completely random and there seems no relation between
velocity measured at two different time, at least from the naked eye. However, there is a short time
correlation. The autocorrelation function plotted in Fig 18.4b shows it clearly. The correlation decays
exponentially as expected from Eq. (18.9) and the correlation time appears to be about 10, which agrees
with the theoretical value.. It is also noted that up to the correlation time τc, the agreement between the
simulation and the exact curve is very good. Beyond the correlation time, the memory effect phases out
and the randomness dominates. Then, the agreement between the simulation and theory becomes poor
since the fluctuation in the correlation becomes larger and more sampling are needed to get a better
statistics.

EXAMPLE 18.4 Brownian Harmonic Oscillators

A Brownian particle of mass M is trapped in harmonic potential U(x) = k

2x
2. In a regular classical

mechanics course, we learned that the particle eventually settles down at the equilibrium position x = 0.
When the mass M is very large, that is what happens. However, when the mass is not so large, the
random force kicks the particle all time. Hence, it cannot dumps out to the resting position. The
Brownian particle diffuses around the equilibrium position.

466 LANGEVIN EQUATIONS

t
0 500 1000 1500 2000

v(
t)

-6

-4

-2

0

2

4

6

(a) A fluctuating velocity.

=
0 10 20 30 40

<
v(
=)

 v
(0

)>

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
Exact
Simulation

(b) Autocorrelation function of the velocity. As the
result, the agreement becomes poor due to the insuf-
ficient statistical sampling.

Figure 18.4: Ornstein-Uhlenbeck process is simulated with the langevin equation. The parameter values
M = 1 and γ = 0.1 is used. The theoretical correlation time is τc = 10.

t
0 200 400 600 800 1000

x(
t)

-15

-10

-5

0

5

10

15

(a) A sample trajectory. The particle
does not stay at the most stable posi-
tion and fluctuates around the mean
position.

t
0 200 400 600 800 1000

<
x>

,
<

2

-2

0

2

4

6

8

10

12

<x>
<2

theory

(b) The mean and the variance sam-
pled over 1000 particles. The fluscu-
ation is due to the finite sampling.

x
-10 -5 0 5 10

;
(x

)

0

0.05

0.1

0.15

0.2
simulation
theory

(c) The probability density of the
Brownian particle position. It is
Gaussian distributed and agreement
with the theory is very good.

Figure 18.5: Brownian harmonic oscillator. Parameter values M = 1, γ = 0.1, and k = 1 are used. The
Overdumpled Langevin equation (18.14) is integrated with ∆t = 0.005.

APPLICATIONS IN PHYSICS 467

Figure 18.6: Mechanism of a flashing ratchet. When the potential is on, the particles are localized near the
bottom of the potential. As soon as the potential is turned off, the particles diffuse. If there is an external
force, they also drift (to the left in this setting). By the time when the potential is turned on again, the
distribution is wide enough to reach adjacent potential minima. However, due to the asymmetry in the
potential, the chance that the particles go to the right is higher against the external force. In this model the
Brownian particles rectified the thermal fluctuation and move to the right on average.

Here the motion of the Brownian particle is modeled by the overdamped Langevin equation (18.14).
This is an Orstein-Uhlenbeck process. Theoretical analysis suggests that after a certain time, the prob-
ability distribution of the particle reaches a steady distribution

ρ(X) ∝ e−U(X)/kBT = e−kX
2/2kBT (18.38)

which is a Gaussian distribution with the mean position 〈x〉 = 0 and the mean square displacement
σ = kBT/k. Note that unlike the free diffusion, the mean square displacement does not increase. It
remains constant.

We want to confirm this theoretical prediction using a numerical method. Program 18.4 integrates Eq.
(18.14) using the Heun method and compare the results with the analytic theory. The parameter values
are M = 1, γ = 0.1, and k = 1. The results are plotted in Figures 18.5. First, Fig 18.5a shows an expmple
of the trajectory. Unlike the determinstic overdumpled oscillator, it does not do=ump out to the resting
position at X = 0. Instead it fluctuates around it due to the random force. Second figure 18.5b shows
the mean and the variance of the position. The average is taken over 1000 realizations. The number of
samples is not so large and the instantaneous mean and variance fluctuate significantly. However, the
system is self averaging, meaning that average over time also converges to the same statistical average.
Figure 18.5c plots the probability density. Tahnks to the self-sveraging, the agreement between the
simulation and theory is rather good compared to Figure 18.5b despite the number of sampling was
relatively small.

18.2 Applications in Physics

18.2.1 Brownian Motors: Flashing Ratchet

A regular heat engine extracts energy as heat from the environment and converts it to work. However, the
thermodynamic second law prohibits the conversion of the whole of heat to work. Some energy must be

468 LANGEVIN EQUATIONS

dumped to another environment at a lower temperature. Therefore, a heat engine needs to interact with
two heat baths with different temperature. In other words, we cannot rectify thermal energy in a single heat
bath to drive the heat engine. That is a common sense of thermodynamics.

However, the laws of thermodynamics do not apply to the systems in non-equilibrium conditions. It
has been shown that it is possible to rectify thermal energy in a single heat bath by creating certain non-
equilibrium conditions. It requires to break two symmetries, detailed balance and inversion symmetry
(f(x) 6= f(−x). One example of such a system is a flashing ratchet[7, 8] shown in Fig 18.6. Brownian
particles are in a periodic potential with a sawtooth like profile. Initially, the particles are localized near
the bottom of the potential. The potential is deep enough that thermal fluctuation is small. Then, the
potential is switched off for a while and the particles begin to diffuse freely. When the potential is back
on, the particle slides down to the bottom of the potential. However, it may not be the same location as
they started. The particles are spread over three minima. Due to the asymmetry in the potential profile,
more particles move to the right. Hence, on the average the particles move to the right. Even when a small
external force toward the left, the particles still move to the right. Although there is only one heat bath, the
particles are able to move in one direction by rectifying the thermal fluctuation. This does not violate the
second law of thermodynamics since some external source injects energy to the system by switching potential
on and off, which breaks the detailed balance. The asymmetry in the potential profile breaks the inversion
symmetry. We call this “engine” a flashing ratchet, which is one kind of Brownian motors.‡

Program 18.5 simulates this Brownian motor with the overdamped Langevin equation. We use a potential
function (see the inset in Fig 18.7a.)

U(x) = U0 [sin(2πx/L)− sin(4πx/L)/4]− xFext (18.39)

where L is the period and U0 is a positive constant and F ext is an external constant force. The barrier
height is about 2U0 and the probability that the particles jump over the barrier due to random force is about
e−2U0/D = e−2γU0/kBT . In order for the ratchet to work, the particles should not jump over the barrier and
thus 2U0/D > 1.

Using the parameter values indicated in the caption of Fig. 18.7, the particles are clearly moving to the
left against the external force. The mean position plotted in Fig 18.7b shows that the drift toward the left
is steady.

Exercise 18.1 When the external load is too large, the Brownian motor fails as all motors do. For the
parameter values used here, find the stall load where the drift vanishes.

18.2.2 Stochastic Resonance

Consider a bistable potential

U(x) = U0

(
x4

4 −
x2

2

)
(18.40)

which has two stable points at x = ±1, See Fig.18.8a. The height of the potential barrier separating two
minimums is ∆U = U0/4. Suppose that a Brownian particle is trapped in the left side of potential. Due
to the thermal fluctuation, there is a chance that the particle crosses the barrier to the right side. The
transition rate is proportional to e−∆U/kBT . Therefore, when kBT � ∆U , the particle stays in one side for
a long time. On the other hand, when kBT � ∆U , the particle can move between two minimums almost
freely. When kBT ∼ ∆U , the particle stays in one side for a while and jumps to the other side and stays
there for a certain time. Then, come back again. This is a kind of oscillator. However, the jump happens at
random and there is no clear period.

‡Motor proteins such as myosin and kinesin are considered as Brownian motors.

APPLICATIONS IN PHYSICS 469

t
0 20 40 60 80 100

x(
t)

-350

-300

-250

-200

-150

-100

-50

0

50

x
0 2 4

U
(x

)/
U

0

-20

-10

0

10

20

(a) Sample trajectories.

t
0 20 40 60 80 100

<
x>

,
<

2

-500

0

500

1000

1500

2000

2500

<x>
<2

(b) Mean and variance

Figure 18.7: Langevin simulation of the flashing ratchet. The inset in the left panel shows the total potential
[Eq. (18.39)]. The solid line indicates the potential due to the external force to the right. Parameter values
kBT = 1, γ = 0.1, L = 1, U0 = 10, and Fext = 2 are used. The corresponding diffusion constant is D = 10.
The potential is alternatively on for τon = 10 and off for τoff = 10. The left panel shows that the particles
are moving to the left despite that the external force is applied to the right. The mean position shown in
the right panel indicates that the particles move to the left with constant velocity on average.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

x

U
(x

)/
U

0

(a) A bistable potential. There are two minimums at
x = ±1 and one maximum at x = 0. The potential
barrier at x = 0 has a barrier height ∆U = U0/4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

(b) A bistable potential with a force. An additional
potential corresponding to a constant force F = 0.2
is added to the bistable potential. A particle in the
shallow minimum can easily cross over to the deeper
minimum. However the transition from the deeper
side to the shallow side is much more difficult.

Figure 18.8: Bistable potentials used in the stochastic resonance model.

470 LANGEVIN EQUATIONS

When a constant force F > 0 is applied, the potential loses the symmetry and one side becomes deeper
than the other as illustrated in Fig 18.8b. When the force is weak, the barrier height from the shallow
minimum is ∆U− = −U0/4 +F and the other barrier height is ∆U+ = −U0/4−F . If temperature is chosen
so that ∆U+ > kBT > ∆U+, then the particle in the shallower minimum easily jumps over to the deeper
minimum. On the other hand, the particle in the deeper minimum stays in the deeper minimum for a long
time.

Now we apply a locking force
F (t) = A cos(Ωt) (18.41)

where A and Ω are an amplitude and frequency. We regard this force as an input signal. The output signal is
the motion of the Brownian particle. We assume that A < 2U0/3

√
3 so that the potential barrier exist. When

temperature is sufficiently low (low noise), the particle tends to stay in one side. Therefore, information of
the input signal is lost. When temerature is too high, the particle jumps between two minimum randomly
and thus the input signal is lost again. If an appropriate noise intensity is used, the particle moves toward
the deeper minimum and oscillates between the minima as the force rocks back and forth. The input signal
is retained only when the noise intensity is right. This phenomena is known as stochastic resonance. You can
tune into the input frequency by adjusting the strength of the noise. This is counter intuitive since noises
usually destroy the signal.

We model this process using the overdamped Langevin equation

Ẋ = −U ′(X) +A cos(Ωt) +
√

2Dξ(t) (18.42)

inplimented in Program 18.6. The parameter values U0 = 10, A = 1,Ω = 0.5 are fixed. Then, we very the
noise intensity D. In Fig. 18.9, three different cases, weak noise, D = 0.5 (left panel), resonant noise D = 1.2
(center panel), and strong noise, D = 2.0 (right panel). When the noise is too week, the particle stay in the
same side for a long time and occasionally jumps to the other side. It is not following the input signal. On
the other hand, the strong noise causes rapid random jumps and again it is not following the input signal.
when the noise intensity takes an appropriate value, the Brownian particle follows the input signal. The
power spectrum of the trajectories are plotted in the lower panel. When the stochastic resonance occurs,
the spectrum clearly shows a peak at ω = Ω and thus the trajectory and the signal have the same periodic
motion. The two other cases do not have such a peak.

The stochastic resonance is originally introduced to explain the periodic recurrences of the ice ages.[9, 10]
SInce then, it has been demonstrated in variety of physical systems including laser systems. It is also widely
spread in biology for an example sensory systems. Now it is observed in network. It became a most poplar
noise induced phenomena.

newpage

18.3 Problems

18.1 In Example 18.4, we investigated the Brownian particles in a harmonic potential. The motion of the
Brownian particles is the Orstein-Uhlenbeck process. Using the same parameter values and the same
initial condition, evaluate the mean square displacement as a function of time and compare the results
with the analytic solution

〈X(t)2〉 − 〈X(t)〉2 = kBT

k

[
1− e−2kt/γ

]
(18.43)

PROBLEMS 471

0 10 20 30 40 50 60 70 80 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x(
t)

(a)

0 10 20 30 40 50 60 70 80 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x(
t)

(b)

0 10 20 30 40 50 60 70 80 90
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

x(
t)

(c)

//

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

P
ow

er
 s

pe
ct

ru
m

ω

(d)

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

900

P
ow

er
 s

pe
ct

ru
m

ω

(e)

0 0.5 1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

800

900

P
ow

er
 s

pe
ct

ru
m

ω

(f)

Figure 18.9: Stochastic Resonance. The upper panels show the trajectories of the Brownian particle and
the lower panels plot the power spectrum of the corresponding trajectories. Parameter values U0 = 10, A =
1,Ω = 0.5 are fixed. There different noise intensity, D = 0.5 (left), D = 1.2 (center) and D = 2.0 (right) are
used. The trajectory in the center panel shows that the Brownian particle roughly flows the input signal.
The power spectrum clearly shos a peak at ω = Ω, indicating that the input and output signals are in
resonance.

472 LANGEVIN EQUATIONS

MATLAB Source Codes

Program 18.1
%**
%* Exercise 18.1 *
%* filename: ch18pr01.m *
%* program listing number: 18.1 *
%* *
%* This program simulates the one-dimensional free continuous-time *
%* random walk (Wiener process) using the Heun method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/25/2017. *
%**
close all
clc

% system parameters
gamma=0.1; % friction coefficient
T=1.0; % temperature

% control parameter
tau=100; % total duration
dt=0.005; % time step
D=T/gamma; % diffusion constant
ds=sqrt(2.0*D*dt); % time step for Wiener process
N=int32(tau/dt); % number of steps
M=1000; %number of samplings
t=linspace(0.0,double(N*dt),N+1);

figure(1)
theory=2.0*T/gamma*t; % theoretical variance
p=plot([t(1),t(N+1)],[0,0],'--');
set(p,'color','red')
p=plot(t,sqrt(theory),t,-sqrt(theory));
set(p,'color','red','linewidth',2)
xlabel('t','fontsize',14)
ylabel('x(t)','fontsize',14)
hold on

% reset to zero
sumx1=zeros(N+1,1);
sumx2=zeros(N+1,1);
x=zeros(N+1,1);

% loop over M samplings
for j=1:M

% initial condition
x(1)=0;
% random force with Gaussian stribution
g=randn(N,1);

% solving Langevin equation
for i=1:N

x(i+1) = x(i)+g(i)*ds;
end
if j<11

plot(t,x)
drawnow

end

PROBLEMS 473

% save the data for statistical analysis
sumx1(:) = sumx1(:)+x(:);
sumx2(:) = sumx2(:)+x(:).ˆ2;

end

hold off

% statistical analysis
xmean=sumx1./M; % <x>
sumx2=sumx2./M; % <xˆ2>
xvar=sumx2-xmean.ˆ2; % variance

figure(2)
p=plot(t,xmean,t,xvar,t,theory)
set(p,'linewidth',2)
xlabel('t');
ylabel('<x>, \sigmaˆ2','fontsize',14)
legend('\langle x \rangle','\sigmaˆ2','exact')
legend('location','northwest')
hold off

Program 18.2

%**
%* Exercise 18.2 *
%* filename: ch18pr02.m *
%* program listing number: 18.2 *
%* *
%* This program simulates the two-dimensional free continuous-time *
%* random walk (Wiener process) using the Heun method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/25/2017. *
%**
close all
clc

% system parameters
gamma=0.1; % frictional constant
T=1.0; % temperature
D=T/gamma; % strength of noise

% control parameter
tau=100; % total time
dt=0.005; % time step
ds=sqrt(2.*D*dt); % Wiener step size
N=ceil(tau/dt); % number of steps
t=linspace(0.0,double(N*dt),N+1);
M=100; % number of samples

% reset the counters
sumx1=zeros(N+1,1);
sumx2=zeros(N+1,1);
sumy1=zeros(N+1,1);
sumy2=zeros(N+1,1);
x=zeros(N+1,1);
y=zeros(N+1,1);

% sampling loop begins
for j=1:M

x(1)=0; % initial position

474 LANGEVIN EQUATIONS

y(1)=0;

% Normally ditributed random numbers by the Box-Muller method
g=randn(N,2);

% integration of the Langevin equation
for i=1:N

x(i+1) = x(i)+g(i,1)*ds;
y(i+1) = y(i)+g(i,2)*ds;

end

% record the data for statistical analysis
sumx1 = sumx1+x;
sumy1 = sumy1+y;
sumx2 = sumx2+x.ˆ2;
sumy2 = sumy2+y.ˆ2;

end

% plot a sample trajectory
figure(1)
plot(x,y)
hold on
plot(x(1),y(1),'.','color','Red')
axis equal;
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off

% statistical analysis
figure(2);
xmean=sumx1/M; % <x>
ymean=sumy1/M; % <y>
sumx2=sumx2/M; % <xˆ2>
sumy2=sumy2/M; % <yˆ2>
xvar=sumx2-xmean.ˆ2; % variance_x
yvar=sumy2-ymean.ˆ2; % variance_y
theory=2*T/gamma*t; % theoretical variance
p=plot(t,xmean,t,ymean,t,xvar,t,yvar,t,theory);
set(p,'linewidth',2)
xlabel('t','fontsize',14)
ylabel('<x>, \sigmaˆ2','fontsize',14)
legend('<x>','<y>','\sigma_xˆ2','\sigma_yˆ2','theory')
legend('location','east')

Program 18.3

%**
%* Exercise 18.3 *
%* filename: ch18pr03.m *
%* program listing number: 18.3 *
%* *
%* This program calculates temporal autocorrelation of velocity of *
%* one-dimensional Brownian particles. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
close all
clc

% system parameters
m=1; % mass

PROBLEMS 475

gamma=0.1/m; % friction
T=2; % temperature
w=sqrt(2*gamma*T)/m;

% control parameters
N=2ˆ20; % number of data points
dt=0.01;
ds=sqrt(dt)*w;

% initial conditions
x(1)=0; % initial position
v(1)=1; % initial velocity

% random number
g=randn(N,1);

% solve Langevin Eq.
for i=1:N-1

% Euler step
x(i+1)=x(i)+v(i)*dt;
v(i+1)=v(i)-gamma*v(i)*dt+g(i)*ds;
%Heun step
x(i+1)=x(i)+(v(i)+v(i+1))*dt/2;
v(i+1)=v(i)-gamma*(v(i)+v(i+1))*dt/2+g(i)*ds;

end

% velocity autocorrelation
z=fft(v);
y=abs(z).ˆ2;
vc=ifft(y)/N;
vc=vc/vc(1);
t=[0:N-1]*dt;
vx=exp(-gamma*t);

subplot(1,2,1)
p=plot(t,v);
hold on
p=plot([1,t(N)],[0,0],'--');
set(p,'color','red')
xlabel('t','fontsize',14)
ylabel('v(t)','fontsize',14)
axis([t(1) t(N) -7 7])
hold off

subplot(1,2,2)
nc=floor(50/dt);
p=plot(t(1:nc),vx(1:nc));
set(p,'linewidth',2,'color','red')
hold on
p=plot(t(1:nc),vc(1:nc));
set(p,'linewidth',2)
legend('Exact','Simulation');
legend('location','northeast')
xlabel('\tau','fontsize',14)
ylabel('<v(\tau) v(0)>','fontsize',14)
axis([0 t(nc) -0.2 1.2])
p=plot([0,t(nc)],[0,0],'--');
set(p,'color','black')
hold off

Program 18.4
%**

476 LANGEVIN EQUATIONS

%* Example 18.4 *
%* filename: ch18pr04.m *
%* program listing number: 18.4 *
%* *
%* This program simulates the Orstein-Uhlenbeck process. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
clear all
clc

% system parameters
gamma=0.1; %friction
T=1.0; %temperature
k=1.0; %spring constant

% control parameter
tau=1000;
dt=0.01;
ds=sqrt(2*T/gamma*dt);
dk=k*dt;
N=ceil(tau/dt); % numner of time steps
M=1000; %number of realization

t=(0:N-1)*dt;

sumx1=zeros(N,1);
sumx2=zeros(N,1);

for j=1:M

x(1)=0; % initial position
r=rand(N,2); % Gaussian random numner
g = sqrt(-2*log(r(:,1))).*cos(2*pi*r(:,2)); % by the Box-Muller

for i=2:N
t(i)=(i-1)*dt;
x(i) = x(i-1)+ds*g(i) - dk*x(i-1); % Eulrer step
x(i) = x(i-1)+ds*g(i) - dk*(x(i)+x(i-1))/2; % Huen step

end
sumx1(:) = sumx1(:)+x(:);
sumx2(:) = sumx2(:)+x(:).ˆ2;

end

figure(1);
plot(t,x)
hold on
p=plot([0,t(N)],[0,0],'--');
set(p,'color','red')
xlabel('t','fontsize',14)
ylabel('x(t)','fontsize',14)
hold off

figure(2);
xmean=sumx1./M;
sumx2=sumx2./M;
sigma2=sumx2-xmean.ˆ2;
theory = T/gamma;
p=plot(t,xmean,t,sigma2,[t(1),t(N)],[theory,theory]);

PROBLEMS 477

set(p,'linewidth',2)
xlabel('t','fontsize',14)
ylabel('<x>, \sigmaˆ2','fontsize',14)
legend('<x>','\sigmaˆ2','theory')
legend('location','east')

figure(3)
[f,z]=hist(x,21);
dz=z(2)-z(1);
s=sum(f)*dz;
f=f/s;
y0=z(1);
y1=z(end);
y=[1:100]*(y1-y0)/100;
y=y+y0;
h=sqrt(gamma/(2*pi*T))*exp(-k*y(:).ˆ2*gamma/(2*T));
p=plot(z,f,'s',y,h);
xm=max(abs(z(:)));
set(p(1),'MarkerFaceColor','black')
set(p(2),'color','red','linewidth',2)
legend('simulation','theory')
xlabel('x','fontsize',14)
ylabel('\rho(x)','fontsize',14)
axis([-xm xm 0 0.2])

Program 18.5

%**
%* Section 18.2.1 *
%* filename: ch18pr05.m *
%* program listing number: 18.5 *
%* *
%* This program simulates a flashing ratchet. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
close all
clear all

% system parameters
gamma=0.1; %friction
T=1; % temperature
L=1; % periodicity
k=2*pi/L; % wave number
U0=10; % potential strength
F0=U0*pi/L; % force strength
Fx=2; %external load
h=10; % pontential on-off period
D=T/gamma; %noise strength

% control parameter
tau=100; % total time
dt=0.005; % time step
ds=sqrt(2.0*D*dt); % Wiener time step
N=ceil(tau/dt); % number of iterations
M=1000;

% prepare the arrays
sumx1=zeros(1,N);
sumx2=zeros(1,N);
t=linspace(0,dt*(N-1),N);

478 LANGEVIN EQUATIONS

x=zeros(1,N);

figure(1)
for j=1:M

u=0;
potential=true;

x(1)=0; % initial position
g=randn(1,N); % generate Gaussian white noise

for i=1:N-1
u=u+dt;
if potential % diffusion inside the potential

f1 = -F0*(2.0*cos(k*x(i))-cos(2.0*k*x(i)))+Fx;
x(i+1) = x(i)+g(i)*ds + f1*dt;
f2 = -F0*(2.0*cos(k*x(i+1))-cos(2.0*k*x(i+1)))+Fx;
x(i+1) = x(i)+g(i)*ds + (f1+f2)*dt/2.0;

else % free diffusion
x(i+1) = x(i)+g(i)*ds+Fx*dt;

end
if u>h

potential = not(potential);
u=0;

end
end
if j < 11 % show only 10 trajectories

plot(t,x)
drawnow
hold on

end
sumx1 = sumx1+x;
sumx2 = sumx2+x.ˆ2;

end

% statstical analysis
xmean=sumx1./M;
sumx2=sumx2./M;
sigma2=sumx2-xmean.ˆ2;

p=plot([0,t(N)],[0,0],'--');
set(p,'color','red')
p=plot(t,xmean);
set(p,'color','red','linewidth',2)
xlabel('t','fontsize',14)
ylabel('x(t)','fontsize',14)
hold off

figure(2);
p=plot(t,xmean,t,sigma2);
set(p,'linewidth',2)
xlabel('t','fontsize',14)
ylabel('<x>, \sigmaˆ2','fontsize',14)
legend('<x>','\sigmaˆ2')
legend('location','east')
hold on
p=plot([0,tau],[0,0],'--');
set(p,'color','black')
hold off

Program 18.6
%**

PROBLEMS 479

%* Section 18.2.2 *
%* filename: ch18pr06.m *
%* program listing number: 18.6 *
%* *
%* This program simulates a stochastic resonace. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
close all
clear all

% system parameters
% To see stochastic resonance, use the parameter valesu
% A=1.0; D=1.2; U0=10; w=0.5;
%
A=1.0;
D=1.2;
U0=10;
w=0.5;

% constrol parameters
movie=false;
tau=100;
N=2ˆ14;
dt=tau/N;
ds=sqrt(2.*D*dt);

x=zeros(1,N);
t=linspace(0.0,dt*(N-1),N);

L=101;
q=linspace(-2.0,2.0,L);
U1=U0*(q.ˆ4/4-q.ˆ2/2);

if movie
figure(1)
plot(q,U1-A*cos(w*t(1))*q);
hold on
y=U0*(x(1)ˆ4/4-x(1)ˆ2/2)+0.05-A*cos(w*t(1))*x(1);
rectangle('Position',[x(1)-0.05,y-0.05,0.1,0.1],'Curvature',[1,1],'FaceColor',[0,0.75,0.75])
axis equal
axis([-2 2 -U0/2 2])
drawnow;
hold off

end

g=randn(1,N);

for i=1:N-1
t(i+1)=i*dt;
f1=U0*(-x(i)ˆ3+x(i))+A*cos(w*t(i));
x(i+1)=x(i) + f1*dt + g(i)*ds;
f2=U0*(-x(i+1)ˆ3+x(i+1))+A*cos(w*t(i+1));
x(i+1)=x(i) + (f1+f2)*dt/2 + g(i)*ds;
if movie

plot(q,U1-A*cos(w*t(i+1))*q);
hold on
y=U0*(x(i+1)ˆ4/4-x(i+1)ˆ2/2)+0.05-A*cos(w*t(i+1))*x(i+1);
rectangle('Position',[x(i+1)-0.05,y-0.05,0.1,0.1],'Curvature',[1,1],'FaceColor',[0,0.75,0.75])
axis equal

480 LANGEVIN EQUATIONS

axis([-2 2 -U0/2 2])
drawnow;
hold off

end
end

figure(2)
plot(t,x)
hold on
p=plot(t,cos(w*t),'--');
set(p,'color','red')
axis([t(1),t(N),-2 2])
xlabel('t','fontsize',14')
ylabel('x(t)','fontsize',14)
hold off

figure(3)
z=fft(x)*tau/N;
q=linspace(0,N-1,N)*2*pi/tau;
p=plot(q,abs(z).ˆ2);
set(p,'linewidth',2)
xlim([0 3])
ylabel('Power spectrum','fontsize',14)
xlabel('\omega','fontsize',14)
hold on
p=plot([0.5,0.5],[0,900],'--');
set(p,'color','black')
hold off

NNN

Python Source Codes

Program 18.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 18.1 *
%* filename: ch18pr01.py *
%* program listing number: 18.1 *
%* *
%* This program simulates the one-dimensional free continuous-time *
%* random walk (Wiener process) using the Heun method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

plt.close('all')

system parameters
gamma=0.1 # friction coefficient

PROBLEMS 481

T=1.0 # temperature

control parameter
tau=100 # duration
dt=0.005 # time step
D=T/gamma # diffusion constant
ds=np.sqrt(2.*D*dt) # time step for Wiener process
N=np.int(tau/dt) # number of steps
M=1000 # number of samplings
t = np.linspace(0.0,N*dt,N+1) # time grid

create arrays
sumx1=np.zeros(N+1)
sumx2=np.zeros(N+1)
x=np.zeros(N+1)
plt.figure()
theory=2.0*T/gamma*t # theoretical variance
plt.plot([t[0],t[N]],[0,0],'--r')
plt.plot(t,sqrt(theory),'-r')
plt.plot(t,-sqrt(theory),'-r')

loop over M samplings
for j in range(0,M):

initial condition
x[0]=0

random force with Gaussian stribution
g=np.random.randn(N)

solving Langevin equation
for i in range(0,N):

x[i+1] = x[i]+g[i]*ds
if j<10:

plt.plot(t,x,)
plt.pause(0.0001)

save the data for statistical analysis
sumx1 = sumx1+x
sumx2 = sumx2+x**2

plt.xlabel('t',fontsize=14)
plt.ylabel('x(t)',fontsize=14)
plt.show()

statistical analysis
xmean=sumx1/M # <x>
sumx2=sumx2/M # <xˆ2>
xvar=sumx2-xmean**2 # variance

plt.figure()
plt.plot(t,xmean,'-b',label='mean')
plt.plot(t,xvar,'-g',label='variance')
plt.plot(t,theory,'--g',label='var_exact')
plt.xlabel('t',fontsize=14)
plt.ylabel('mean, vriance',fontsize=14)
plt.legend(loc=2)
plt.show()

NNN

Program 18.2

482 LANGEVIN EQUATIONS

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 18.2 *
%* filename: ch18pr02.py *
%* program listing number: 18.2 *
%* *
%* This program simulates the two-dimensional free continuous-time *
%* random walk (Wiener process) using the Heun method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

plt.close('all')

system parameters
gamma=0.1 # frictional constant
T=1.0 # temperature
D=T/gamma # strength of noise

control parameter
tau=100# total time
dt=0.005 # time step
ds=np.sqrt(2.*D*dt) # Wiener step size
N=np.int(tau/dt) # number of steps
t = np.linspace(0.0,N*dt,N+1) # time grid
M=1000 # number of samplings

reset the counters
sumx1=np.zeros(N+1)
sumx2=np.zeros(N+1)
sumy1=np.zeros(N+1)
sumy2=np.zeros(N+1)
x=np.zeros(N+1)
y=np.zeros(N+1)

sampling loop begins
for j in range(0,M):

x[0]=0; y[0]=0 # initial position

Normally ditributed random numbers by the Box-Muller method
g=np.random.randn(N,2)

integration of the Langevin equation
for i in range(0,N):

x[i+1] = x[i]+g[i,0]*ds
y[i+1] = y[i]+g[i,1]*ds

record the data for statistical analysis
sumx1 = sumx1+x
sumy1 = sumy1+y
sumx2 = sumx2+x**2
sumy2 = sumy2+y**2

PROBLEMS 483

plot a sample trajectory
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,y,'-b')
plt.plot(x[0],y[0],'.r')
plt.axis('equal')
plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()

statistical analysis
plt.subplot(1,2,2)
xmean=sumx1/M # <x>
ymean=sumy1/M # <y>
sumx2=sumx2/M # <xˆ2>
sumy2=sumy2/M # <yˆ2>
xvar=sumx2-xmean**2 # variance_x
yvar=sumy2-ymean**2 # variance_y
theory=2.0*T/gamma*t # theoretical variance
plt.plot(t,xmean,'-b',label=r'$\langle x \rangle')
plt.plot(t,ymean,'-b',label=r'$\langle y \rangle')
plt.plot(t,xvar,'-r',label=r'$\sigma_xˆ2$')
plt.plot(t,yvar,'-r',label=r'$\sigma_yˆ2$')
plt.plot(t,theory,'--r',label=r'$\sigmaˆ2_{ex}$')
plt.xlabel('t',fontsize=14)
plt,ylabel('moments',fontsize=14)
plt.legend(loc=2)
plt.show()

NNN

Program 18.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 18.3 *
%* filename: ch18pr03.py *
%* program listing number: 18.3 *
%* *
%* This program calculates temporal autocorrelation of velocity of *
%* one-dimensional Brownian particles. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

plt.close('all')

system parameters
m=1.0 # mass
gamma=0.1/m # friction
T=2.0 # temperature
w=np.sqrt(2.0*gamma*T)/m

control parameters

484 LANGEVIN EQUATIONS

N=2**20 # number of data points
dt=0.01
ds=np.sqrt(dt)*w

x=np.zeros(N)
v=np.zeros(N)
t=np.linspace(0.0,dt*(N-1),N)

initial conditions
x[0]=0.0 # initial position
v[0]=1.0 # initial velocity

random number
g=np.random.randn(N)

solve Langevin Eq.
for i in range(0,N-1):

Euler step
x[i+1]=x[i]+v[i]*dt;
v[i+1]=v[i]-gamma*v[i]*dt+g[i]*ds
#Heun step
x[i+1]=x[i]+(v[i]+v[i+1])*dt/2.0
v[i+1]=v[i]-gamma*(v[i]+v[i+1])*dt/2.0+g[i]*ds

velocity autocorrelation
z=np.fft.fft(v)
y=abs(z)**2
vc=np.fft.ifft(y)/N
vc=vc/vc[0]
vx=np.exp(-gamma*t)

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,v,'-b')
plt.plot([0,t[N-1]],[0,0],'--r')
plt.xlabel('t',fontsize=14)
plt.ylabel('v(t)',fontsize=14)
plt.show()

plt.subplot(1,2,2)
nc=np.int(50/dt)
plt.plot(t[0:nc],vx[0:nc],'-r',label='simulation')
plt.plot(t[0:nc],vc[0:nc],'-b',label='exact')
plt.legend(loc=1)
plt.xlabel(r'τ',fontsize=14)
plt.ylabel(r'$\langle v(\tau) v(0) \rangle$',fontsize=14)
plt.plot([0,t[nc]],[0,0],'--k')
plt.show()

NNN

Program 18.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 18.4 *
%* filename: ch18pr04.py *
%* program listing number: 18.4 *
%* *
%* This program simulates the Orstein-Uhlenbeck process. *

PROBLEMS 485

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=0.1 # friction
T=1.0 # temperature
k=1.0 # spring constant

control parameter
tau=1000.0
dt=0.01
ds=sqrt(2*T/gamma*dt)
dk=k*dt
N=np.int(tau/dt) # numner of time steps
M=1000 # number of realization

x=np.zeros(N+1)
t=np.linspace(0.0,dt*N,N+1)

sumx1=zeros(N+1)
sumx2=zeros(N+1)

for j in range(0,M):

x[0]=0 # initial position
g=np.random.randn(N) # Gaussian random numner

for i in range(0,N):
x[i+1] = x[i]+ds*g[i] - dk*x[i] # Eulrer step
x[i+1] = x[i]+ds*g[i] - dk*(x[i+1]+x[i])/2.0 # Huen step

sumx1 = sumx1+x
sumx2 = sumx2+x**2

plt.close('all')
plt.figure(figsize=(6,5))
plt.plot(t,x,'-b')
plt.plot([t[0],t[N]],[0,0],'--r')
plt.xlabel('t',fontsize=14)
plt.ylabel('x(t)',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
xmean=sumx1/M
sumx2=sumx2/M
sigma2=sumx2-xmean**2
theory = T/gamma
plt.plot(t,xmean,'-k',label=r'$\langle x \rangle$')
plt.plot(t,sigma2,'-b',label=r'$\sigmaˆ2$')
plt.plot([t[0],t[N]],[theory,theory],'--r',label='exact')
plt.xlabel('t',fontsize=14)
plt.ylabel('moments',fontsize=14)
plt.legend(loc=5)
plt.show()

plt.figure(figsize=(6,5))

486 LANGEVIN EQUATIONS

counts, bins = np.histogram(x,21,normed=1)
X=(bins[:-1] + bins[1:])/2.0
Y=sqrt(gamma/(2.0*np.pi*T))*exp(-k*X**2*gamma/(2*T))
plt.plot(X,counts,'ok',label='simulation')
plt.plot(X,Y,'-r',label='exact')
plt.xlabel('x',fontsize=14)
plt.ylabel(r'$\rho(x)$',fontsize=14)
plt.show()

NNN

Program 18.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 18.2.1 *
%* filename: ch18pr05.py *
%* program listing number: 18.5 *
%* *
%* This program simulates a flashing ratchet. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=0.1 # friction
T=1.0 # temperature
L=1.0 # periodicity
k=2.0*np.pi/L # wave number
U0=10.0 # potential strength
F0=U0*np.pi/L # force strength
Fx=2.0 # external load
h=10.0 # pontential on-off period
D=T/gamma # noise strength

control parameter
tau=100. # total time
dt=0.005 # time step
ds=np.sqrt(2.0*D*dt) # Wiener time step
N=np.int(tau/dt) # number of iterations
M=1000 # sample numbers

prepare the arrays
sumx1=np.zeros(N+1)
sumx2=np.zeros(N+1)
x=np.zeros(N+1)
t=np.linspace(0.0,dt*N,N+1)

plt.close('all')
plt.figure(figsize=(6,5))
for j in range(0,M):

u=0.0
potential=True
x[0]=0.0 # initial position
g=np.random.randn(N) # generate Gaussian white noise

PROBLEMS 487

for i in range(0,N):
u=u+dt
if potential: # diffusion inside the potential

f1 = -F0*(2.0*np.cos(k*x[i])-np.cos(2.0*k*x[i]))+Fx
x[i+1] = x[i]+g[i]*ds + f1*dt
f2 = -F0*(2.0*np.cos(k*x[i+1])-np.cos(2.0*k*x[i+1]))+Fx
x[i+1] = x[i]+g[i]*ds + (f1+f2)*dt/2.0

else: # free diffusion
x[i+1] = x[i]+g[i]*ds+Fx*dt

if u>h:
potential = not(potential)
u=0.0

if j < 11: # show only 10 trajectories
plt.plot(t,x,'-k')
plt.pause(0.00001)

sumx1 = sumx1+x
sumx2 = sumx2+x**2

statstical analysis
xmean=sumx1/M
sumx2=sumx2/M
sigma2=sumx2-xmean**2

plt.plot([t[0],t[N]],[0,0],'--r')
plt.plot(t,xmean,'-r')
plt.xlabel('t',fontsize=14)
plt.ylabel('x(t)',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
plt.plot(t,xmean,'-b',label=r'$\langle x \rangle$')
plt.plot(t,sigma2,'-r',label=r'$\sigmaˆ2$')
plt.xlabel('t',fontsize=14)
plt.ylabel('moments',fontsize=14)
plt.legend(loc=5)
plt.plot([t[0],t[N]],[0,0],'--k');
plt.show()

NNN

Program 18.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 18.2.2 *
%* filename: ch18pr06.m *
%* program listing number: 18.6 *
%* *
%* This program simulates a stochastic resonace. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

488 LANGEVIN EQUATIONS

system parameters
To see stochastic resonance, use the parameter valesu
A=1.0; D=1.2; U0=10; w=0.5;
#
A=1.0
D=1.2
U0=10
w=0.5

def U(x,t):
return U0*(x**4/4.0-x**2/2.0)+0.05-A*np.cos(w*t)*x

def F(x,t):
return U0*(-x**3+x)+A*np.cos(w*t)

constrol parameters
movie=False
tau=100.0
N=2**14
dt=tau/N
ds=np.sqrt(2.0*D*dt)

t=np.linspace(0.0,dt*(N-1),N)
x=np.zeros(N)

L=101
q=np.linspace(-2.0,2.0,L)
U1=U0*(q**4/4.0-q**2/2.0)

plt.close('all')
if movie:

fig1=plt.figure(figsize=(4,7))

plt.plot(q,U1-A*np.cos(w*t[0])*q,'-b')
y=U(x[0],t[0])
circle=plt.Circle((x[0],y),0.05,fc='k')
plt.gca().add_patch(circle)
plt.axis([-2, 2, -U0/2, 4])

plt.axis('equal')
plt.pause(0.001)

g=np.random.randn(N)

for i in range(0,N-1):

f1=F(x[i],t[i])
x[i+1]=x[i] + f1*dt + g[i]*ds
f2=F(x[i+1],t[i+1])
x[i+1]=x[i] + (f1+f2)*dt/2.0 + g[i]*ds
if movie :

plt.clf()

plt.plot(q,U1-A*np.cos(w*t[i+1])*q,'-b')

plt.axis([-2, 2, -U0/2, 4])
plt.axis('equal')

y=U(x[i+1],t[i+1])
circle=plt.Circle((x[i+1],y),0.1,fc='k')
plt.gca().add_patch(circle)
plt.pause(0.001)

PROBLEMS 489

plt.figure(figsize=(6,5))
plt.plot(t,x)
plt.plot(t,np.cos(w*t),'--r')
plt.xlabel('t',fontsize=14)
plt.ylabel('x(t)',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
z=np.fft.fft(x)*tau/N
u=np.linspace(0.0,2.0*np.pi/tau*(N-1),N)
plt.plot(u,abs(z)**2)
plt.xlim([0,3])
plt.ylabel('Power spectrum',fontsize=14)
plt.xlabel(r'ω',fontsize=14)
plt.plot([0.5,0.5],[0,900],'--k');
plt.show()

NNN

Bibliography

[1] Albert Einstein. Investigations on the Theory of the Brownian Movement. Dover Publications, 1956.

[2] Don S. Lemons and Anthony Gythiel. Paul langevin’s 1908 paper “on the theory of brownian motion”
[“sur la théorie du mouvement brownien,” c. r. acad. sci. (paris) 146, 530–533 (1908)]. American Journal
of Physics, 65(11):1079–1081, 1997. (An English tranlation of the original paper in French.).

[3] Robert Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press, 2001. Chapter 1.

[4] Ken Sekimoto. Stochastic Energetics. Springer, 2010. Chapter 1.

[5] Stephen J. Blundell and Katherine M. Blundell. Concepts in Thermal Physics. Oxford University Press,
2nd edition, 2010. Chapter 19.

[6] Stephen J. Blundell and Katherine M. Blundell. Concepts in Thermal Physics. Oxford University Press,
2nd edition, 2010. Chapter 33.

[7] R. Dean Astumian. Making molecules into motors. Scientific American, 285(1):57, July 2001.

[8] R. Dean Astumian and Peter Hänggi. Brownian motors. Physics Today, pages 33–39, November 2002.

[9] Kurt Wiesenfeld and Frank Moss. Stochastic resonance and the benefits of noise: from ice ages to
crayfish and squids. Nature, 375:33–36, 1995.

[10] Adi R. Bulsara and Luca Gammaitoni. Tuning in to noise. Physics Today, 1996.

490

CHAPTER 19

OPTIMIZATION

Consider a system which can take many different configurations. Among the all configuration, we want find
one configuration which best fits to a given criteria. For example, a molecule consisting of several atoms can
take various geometric structures which are mechanically stable. However, only one of them are the ground
state and others are meta stable structures. We want to find a structure that has the lowest energy. That
is an optimization problem. In fact, the issue of protein folding has been a major optimization problem.[1]
Another example, which we already encounter, is the least square fitting (See Chapter 11.)

To put the optimization problem in a mathematical form, the criteria is given as a function of configuration
called fitness or cost function. The best optimized configuration corresponds to the global minimum (or
maximum) of the fitness function. In this chapter we assume that the best fit corresponds to the global
minimum of the fitness function. Then, the optimization is an minimization problem. We already learned
several methods to minimize a function, such as the steepest descent and conjugate gradient methods in
Chapter 7. However, when there are multiple minimums, those methods converges to a local minimum
which is not necessarily the global minimum. In the optimization problems, we want to find the global
minimum. See Fig 19.1.

In Chapter 11, the least square fitting tries to fit a function to the given data by minimizing a χ2 function.
If the χ2 function is linear with respect to the parameters, there is only one minimum and thus the downhill
method worked well. On the other hand, if χ2 is a nonlinear function, then multiple local minima are
possible. Hence, the downhill method does not guarantee the best fit.

Finding a global minimum is not an easy task. It turns out that the nature is doing it all time. For
example, when we heat up a material and cool it down slowly, we obtain a crystal with fewer defects. This
procedure is called annealing. However, if it is cooled down too quickly, the resulting crystal has a lot of
defects. It must be slowly cooled down to get a high quality crystal. We can use a similar method in

First Step to Computational Physics: Edition 0.5.
Copyright © 2019 Ryoichi Kawai

491

492 OPTIMIZATION

Local vs global minimization

F
itn

e
ss

d
ow

nh
ill

Local
minimum

Global
minimum

Glob
al

op
tim

iza
tio

n

Figure 19.1: Local minimization along the downhill goes down to the local minimum. The global optimization
must find the global minimum and thus the search method must be able to go over the barriers between
minimums.

computer to find a global minimum. The method is called simulated annealing. We ourselves are a result of
global optimization though biological evolution, although we have not reach the global minimum yet (if it
ever exists). We can use the Darwin’s evolution theory to find a global minimum. That method is known as
genetic algorithm.[2, 3] In this chapter we learn these two methods.

19.1 Fitness Functions

In order to solve optimization problem numerically, we must write the problem in mathematical forms. First,
we need a configuration space which is a set of parameters {xi}, (i = 1, · · · , N) to be adjusted and their
domain xi ∈ [ai, bi]. We want to find a particular configuration {x∗i } that fits best to a given criteria. To
express the crieteria in a mathematical form, we introduce a fitness function. F ({xi}). It is also called cost
or loss function. The criteria is simply given by an inequality:

F ({x∗i }) ≤ F ({xi} (19.1)

which means F ({x∗i }) is the global minimum. Hence, optimization is equivalent to finding the configuration
corresponding to the global minimum of a fitness function. An example of the fitness function is the ξ2

function [see Eq (11.18)].
The fitness function is not unique and you can construct many different fitness functions for the same

optimization problem. All of them have the same configuration {x∗i } at the global minimum. We can utilize
this freedom to construct a fitness function that is numerically easier to evaluate. In fact, the evaluation of
the fitness function consumes most of computation time during the minimization.Therfore, constructing a
good fitness function saves significant amount of computing time.

On he other hand, we can also construct ill-conditioned fitness functions if we are not careful. For example,
when we want to find the lowest energy geometric structure of a molecule, a convenient fitness function is
the potential energy of the molecule and the configuration is the coordinates of all atoms. We have to make
it sure that the configuration is uniquely determined by the optimization procedure. The potential energy
is a function of the position of atoms. If we treat all coordinates as the degrees of freedom, we cannot
uniquely determine the position of the all atoms by minimizingthe potential energy. If we shift or rotate the
molecule without changing its shape, the potential energy does not change. Depending on the algorithm, the
optimization procedure never stops and the molecule keeps rotating or sliding without changing the structure!

FITNESS FUNCTIONS 493

Removing the degrees of freedom with respect to the global translational and rotation, the number of degrees
of freedom to be determined for the N -atom system becomes 3N − 6 for N ≥ 3.

As a toy example, consider a pair of particles connected by a spring of natural length ` and spring constant
k. The potential energy of the system is given by

U(r1, r2) = k

2 (|r2 − r1| − `)2
. (19.2)

where ri is a position vector of i-th particle. Now, we want to find the lowest energy structure. Then,
U(r1, r2) is the fitness function in the six dimensional configuration space. The solution can be found
immediately by direct inspection. When the distance between two particles equals the natural length of the
spring, the energy is exactly zero. Since the harmonic potential energy cannot be negative, it is the optimum
structure. However, the solution is not unique since any rotation of the system gives the same potential
energy. Therefore, the minimum energy configuration is not a point in the six dimensional space.

To avoid the above issue, we place the particles on the x axis. We limit the degrees of freedom to x1 and
x2. Other components of the position vectors are set to zero. This prohibits the rotation of the system. The
potential energy is

U(x1, x2) = k

2 (|x1 − x2| − `)2
. (19.3)

Now the configuration space is only two-dimensional. The potential energy is plotted in Fig. The dark blue
corresponds to the configuration of low potential energy. Notice that the minimum is a diagonal line and
thus the minimum is not a unique point. This is because the translation displacement of the system does
not change the potential energy. This problem can be avoided, if we fix the position of one particle and
optimize the position of the other particle only. Letting x2 = 0, the potential energy is just

U(x1) = k

2 (|x1| − `)2 (19.4)

with only one degree of freedom. Furthermore, we assume x1 > 0 since the potential does not depend on
the sign of x1. The optimized configurations are clearly x1 = `, which we expected at the first place. It
is possible to ask computers to do all these reduction of degrees of freedom. However, the coding becomes
complicated in many cases. It is better to use our own brain to remove the difficulty when possible.

EXAMPLE 19.1

Consider N particles connected to eac other by identical springs. The spring has a natural length ` and a
spring constant k. Using the position vectors ri, i = 1, · · · , N , the potential energy is usually written
as

U(r1, r2, · · · , rN) =
∑
j>i

k

2 (|rj − ri| − `)2. (19.5)

Here
∑
j>i means the summation over all possible pairs of particles without double counting. In this

expression, the parameters are three components xi, yi, and zi of ri for each particle and thus there are
3N parameters to be adjusted.

We already discussed the dimer (N = 2). For N = 3 and 4, it is easy to see that an equilateral
triangle and a tetrahedron are the minimum energy structures, respectively since every pair has the
same distance. However, the minimum energy structure for N ≥ 5 is not obvious. Is a cube the global
minimum for N = 8?

Searching for the global minimum with respect to all coordinates ri is not a good idea. We need to
remove the rotational and translation degrees of freedom. We can always put the atom 1 at the origin

494 OPTIMIZATION

Δ
F

k→

k←

F
itn
e
ss

x1 x2
x

Figure 19.2: The particles can jump between two minimums over the barrier. The transition rate k→. from
the deeper minimum at x1 to the shallow minimum at x2 is smaller than the other direction of transition rate
k←. Its ratio is given by k→/k← = e−∆F/T . The particle current is N1k→ −N2k← where Ni is the number
of particle in the basin of i-th minimum. At thermal equilibrium particle current must vanish (detailed
balance). Therefore, N1/N2 = k←/k→ > 1. At thermal equilibrium, more particles are found in the deeper
minimum than the other.

of coordinate (r1 = 0) to stop the translational motion. Now, how do we stop the rotation? If we place
any three atoms on a fixed plane. For simplicity we place the fist three atoms on the xy plane by

r1 = (0, 0, 0), r2 = (x2, 0, 0), r3 = (x3, y3, 0) (19.6)

Since six degrees of freedom are now fixed to zero, we need to optimize 3N − 6 degrees of freedom.
We have used Cartesian coordinates of the atoms to describe the geometric structure. There are other

methods. Among them, the Z-matrix is popular. It uses the distance between atoms and dihedral angles
specifying the relation of three atoms. It has no translational nor rotational freedom. The Z-matrix is
convenient when we optimize molecular geometries.[4] The Z-matrix can be converted to the Cartesian
coordinates.

19.2 Simulated Annealing

In metallurgy, defects in a material are removed by raising temperature to a certain level and cooling it down
gradually. The procedure is known as annealing. At high temperature the atoms diffuse rapidly. When the
temperature is reduced, the atoms settle down to a stable state. When cooled slowly enough, the most stable
state is formed. Ideally it is a defect-free crystal. Mathematically speaking, the annealing process can be
understood as global minimization of the system energy since the formation of defects costs some energy.

Perhaps, we can utilize the annealing mechanism to solve other optimization problems, even purely math-
ematical optimization problems unrelated to physics. In order to imitate the thermodynamics process of
annealing, we construct a fictitious thermodynamic system. Consider the fitness function F (p) as “energy”
of the system and the configuration p = (x1, · · · , xN) as “coordinates” of the atom. Note that we have only
one atom and the coordinate space is N -dimensional. We further introduce fictitious “temperature” T . At
“thermal equilibrium”, the probability to have a configuration p is assumed to be proportional to e−F (p)/T ,
analogous to the Boltzmann distribution. If we “anneal” this fictitious thermodynamical system, we should
be able to find the global minimum of the fitness function. In the following discussion, we use words like
energy or temperature for convenience but they are not real energy or temperature.

SIMULATED ANNEALING 495

Now, we let the atom diffuses at a fixed temperature. In Chapter 15, we learned the Monte Carlo
simulation of thermal equilibrium states using Metropolis algorithm. The microscopic state changes randomly
according to the Boltzmann distribution. We can use the exactly same algorithm to sample the configuration
space. Note that the atoms not always go down hill in the energy. The Metropolis method allows the atoms
to climb up the hill as long as it satisfies the detailed balance. Hence, the atoms are not confined in a basin
of a local minimum. Let Pi the probability of finding atoms at the i-th minimum. The detailed balance
suggests that when the system is at thermal equilibrium,

Pi
Pj

= e−(Fi−Fj)/T (19.7)

where Fi is the value of the fitness function at the i-th minimum. Equation (19.7) indicates that if Fi > Fj ,
then Pi < Pj . This means that the atoms are in the deeper energy minimum more often than the shallow
one. Figure 19.2 illustrates the case where there are two minimums. If temperature T is lowered, the
difference between Pi and Pj increases and it easier to identify the global minimum configuration. On the
other hand, if temperature is too low, it takes a long time to reach thermal equilibrium. Therefore, we start
with a considerably high temperature and keep the temperature constant until the thermal equilibrium is
established. Then, we slowly lower temperature so that system remains in thermal equilibrium until the
global minimum is clearly identified. This optimization procedure is called simulated annealing.

It is important to note that we identify the global minimum based on the probability distribution Pi.
To find the probability distribution, we must have a population of atoms (p1, · · · ,pK) each of which is
independently annealed. If the population size K is too small, the statistics is not accurate and we may not
have enough resolution to find the global minimum.

Theoretical speaking, the simulated annealing can find the global minimum configuration accurately by
lowering temperature to absolute zero. However, it is not practical. When the basin of the global minimum
is identified, the steepest descent or other minimization method based on the gradient is much more efficient
to go to the exact minimum. See Section 7.4

Algorithm 19.1 Simulated Annealing

1. Define a fitness function F (p) where p = (x1, · · · , xN) is a vector of size N in the given
configuration space.

2. Set an initial population (p1, · · · ,pK) at random .
3. Set an initial temperature T .
4. Repeat the following Metropolis method Nth times for all i.

(a) Pick a new configuration p′i = pi + δpi where δpi is a small random vector.
(b) Evaluate the change in the fitness function ∆Fi = F (p′i)− F (pi).
(c) Generate a uniform random number r between 0 and 1.
(d) If e−∆Fi > r, accept the new configuration and let pi = p′i.
(e) Otherwise reject the new configuration and go to 4(a) until a new coordinate is found.

5. Reduce the temperature according to a cooling schedule. If T < Tc, it is done where Tc is a
cut of temperature. Otherwise go to Step 4 with the new temperature.

6. Find the basin of the minimum that has most populated. That minimum is the global mini-
mum.

496 OPTIMIZATION

-10 -5 0 5 10
x

0

2

4

6

8

10

12

14

16

18

F
itn

es
s

(a) The final population.

0 50 100 150 200
Steps

-2

-1

0

1

2

3

4

5

6

T
em

pe
ra

tu
re

/L
ow

es
t F

itn
es

s
V

al
ue

Temperature
Lowest Fitness Value

(b) Evolution of temperature and the lowest value of
the fitness.

Figure 19.3: Searching a global minimum by the simulated annealing method. Eight samplers explore the
landscape of the fitness function based on Metropolis method. (a) The fitness landscape shows several local
minimums and the rather high barrier between minimums. At the end of the annealing three out of eight
samplers are trapped in the basin of the global minimum. The remaining samplers are trapped in local
minimums. (b) The evolution of the temperature indicates the exponential cooling schedule. The lowest
fitness values among the population randomly changes when the temperature is high. As temperature is
reduced, the samples are trapped in basins of minimums and the lowest fitness value no longer changes
significantly.

EXAMPLE 19.2 One-dimensional global minimum by simulated annealing

We want to find a global minimum of a function

f(x) = 3− 3 cos(2x) + 0.2x2 (19.8)

This function is the fitness function which depends only on one variable. We can interpret it as an
atom in one-dimensional potential well. We use a population of eight atoms to get a statistics. Eight
is not big enough in general but it works OK for this problem. Program 19.1 implements Algorithm
19.1 and solve this problem. The result is shown in Fig. 19.3. As shown in Fig. 19.3b, temperature is
lowered exponentially over 200 steps. At each step, the system was thermalized over 2000 Metropolis
steps. The lowest value of the fitness (red line) indicates that the atoms are jumping in and out from
the minimums until temperature approaches 0.5. Figure 19.3a suggests that five out of eight atoms
are found in the global minimum. Two other local minimums are occupied. No atom is found at the
remaining minimums. Therefore, the global minimum has the highest probability.

19.3 Genetic Algorithm

Evolution of biological systems roughly speaking follows the Darwin’s evolution theory. Consider a population
consisting of many diverse individuals. Some of them do not fit to the living conditions and die. The survivors
make offspring which inherits their parent’s genes and fits well to the same living conditions. After many
generations, most members in the population well fit to the conditions and survive until the condition

GENETIC ALGORITHM 497

1st generation 2nd generation

3rd generation 4th generation

F
itn

e
ss

P
ar

e
nt

P
ar

en
t

O
ffs

p
rin

g

O
ffs

p
rin

g

D
ea

dD
e

ad

F
itn

e
ss

Figure 19.4: Schematic diagram of genetic algorithm. Evolution of a species which has only one gene.
The population consists of four individuals. The horizontal axis indicates genotype. The genes of the first
generation are chosen at random. A half of the population die due to the high fitness values. The remaining
two individuals become a bleeding pair and generate two children whose genotype is between parent’s gene.
Now the size of population is back to four. The same process is repeated. The third and forth generations
are shown. The unfit individuals die and the survived individuals are localized near the global minimum.

Offspring of MutantMutation

F
itn

e
ss

Figure 19.5: Effects of mutation: The left panel shows that all four individuals are trapped in the basin of a
local minimum. Their children will be also in the same basin. To avoid this situation, an individual jumps
to a random location (pink). This is the mutation. After the mutation, the individuals with higher fitness
values die. If the mutated individual happened to fit better than others, it survives. The children born from
the mutant are now outside of the basin of the local minimum. Now the four individuals are spread over
three different minimums and thus the diversity of the population increased by the mutation.

498 OPTIMIZATION

changes. If all members of the population are very similar, they would not survive when the living condition
changes. However, the species survives because mutation keeps the diversity in the population. Upon the
change of the conditions, only a few members may survive and their offspring tends to survive. After several
generations, the size of the population recovers.

Learning from this remarkable process, we utilize the selection and mutation rules to navigate the pop-
ulation toward the minimum of the fitness function. After certain generation, their descendants populated
at the global minimum (the best place to live). We consider again the configuration p = {xi} as before. By
analogy from the biological evolution, p represents an individual in the population and the parameters {xi}
are its genes. A population consists of N individuals (p1, · · · , pN). A fitness function F (p) determines if
the individual fits to the current living condition. The individual fits better when the value of the fitness is
smaller. The optimal genes {x∗i } corresponds to the global minimum of the fitness.

Now we construct the fictitious evolution process. There are many possible evolution processes. He we
consider a simple one. First, we set a selection rule. The individuals with higher fitness values are considered
unfit and a half of population whose fitness value is above the median die. Figure 19.4 illustrates the evolution
process. Four individuals are generated at random. This is the 1st generation. Two individuals with high
fitness values die (colored grey in the second generation diagram). At this point only two individual survives
in the population.

After death of unfit individual, the population needs to make offspring. To do so, first we need to pair
two individuals. This is based on the popular form of life on the earth. In a fictitious biological world, it is
in principle possible that more than two individuals get married and make offspring inheriting genes from
all parents. For simplicity, we assume that a couple of individuals are mated. As a simplest mating rule, we
just make a pair at random. Algorithm of random paring will be discussed shortly after the overview of the
genetic algorithm is presented.

Once a couple is formed, they make two babies so that the population is back to the original size. We
need a rule to determine the genes of the babies. There are many other possible rules depending on the type
of optimization problems. Here we use a simple formula:

pbaby1 = ξpadult1 + (1− ξ)padult2, pbaby2 = (1− ξ)padult1 + ξpadult2 (19.9)

where ξ is a uniform random number between 0 and 1. This rule make it sure that the genes of the babies
are between the genes of the two parents. The fitness of the new genes is not necessarily lower than that of
the parents.

After the population recovers its original size, some of the individuals undergo mutation. Again, there
are many different way to introduce mutation. A simple example uses a mutation rate kmutation ∈ (0, 1).
Generate a uniform random number r for each individual. If r < kmutation then mutation takes place
and change the genes of the individual also at random. Figure 19.5 shows how mutation helps. When all
individuals in the population are trapped in a local minimum. The offspring they generates also in the same
minimum. However, if mutation happens, the offspring escape from the minimum. Mutation is important
to keep the diversity in the population. Otherwise, the whole population could trapped in a local minimum.
Usually we use a different mutation rate for each generation. In some cases, a proper variation of the
mutation rate increase the computation time dramatically.

Now we completed the formation of a new generation. By repeating the procedure, gradually the pop-
ulation drift to the global minimum. See the third and forth generations in Fig. Figure 19.4. All unfit
individuals are dead and those who have lower fitness survives in the global minimum.

An important and difficult question is when we stop the procedure. We monitor the lowest fitness value
among the population. If that does not change for many generations, we hope that one of the individuals
arrived at the global minimum. The waiting time must be sufficiently long so that mutation happens at least
several times to make it sure that the population is not stuck in a local minimum. Algorithm 19.2 summarizes
the procedure. Like the simulated annealing method, the genetic algorithm identify the basin of the global
minimum within a reasonable computing time but takes too long to reach the true global minimum. AS

GENETIC ALGORITHM 499

1??

21? 12?

312 231 213 321 132 123

1 2

1 2 3 1 2 3

Figure 19.6: Knuth shuffle algorithm

soon as we find the basin of gloabl minimum we can use steepest descent or other minimization methods
based on the gradient of the fitness function.

Now, we introduce an algorithm of random paring. Consider individuals with an ID number 1 through
M . We want to make N/2 pairs at random. If N is not an even integer, there is one individual who will
not have a mate and thus it cannot produce offspring. The random pairing is equivalent to a problem of
random permutation. For N = 4, we have a sequence {1234}. When it is randomly permuted, we obtained,
for example, {4132}. Then, we make pairs in the order of the permuted sequence. For this example, (4,1)
and (3,2) are the two couples. There is a simple algorithm to generate random permutation of integers from
1 through N . Figure 19.6 shows an algorithm called the Knuth shuffle. The rule is simple. We are going to
place integers from 1 through N in N empty seats. When we place j, we chose a seat at random between
seat 1 and seat j. If the seat is already occupied, the content of the seat will be relocated to seat j. Just
repeat this procedure from j = 1 to j = N . For N = 3 (See Fig 19.6), we start with j = 1. There is only
one allowed seat and thus 1 go to seat 1. j = 2 has two possibilities, seat 1 or 2. Use a random number
to choose one. If seat is 2, just put 2 there since the seat is unoccupied. If seat 1 is selected, put 2 there.
and the previous occupant bumps out to seat 2. For j = 3, there are three seats. Choose one at random.
If the selected seat is already occupied, put 3 there and the previous occupant bumps out to seat 3. At the
end, we have six different outcomes with equal probability. Since the total number of permutation is 3! = 6,
all of them are counted. The following code generates the random permutation. (MATLAB has a built-in
function for random permutation, see help for randperm(n).)

for i=1:n
j=ceil(rand(1)*i);
p(i)=p(j);
p(j)=i;

end

Algorithm 19.2 Genetic Algorithm for continuous parameters

500 OPTIMIZATION

1. Define a set of parameters p = {x1, x2, · · · , xN} which corresponds to the property of the
individual p.

2. Define a fitness function F (p) ≡ F (x1, x2, · · · , xN). The fitness of the individual is evaluate
by the fitness function.

3. Define a selection rule based on the fitness. For example anyone whose fitness is larger than a
cut off Fc or the worst 20% will be killed.

4. Generate an initial population consisting of M individuals {p1, p2, · · · , pM} at random.
5. Evaluate the fitness of each individual F (pi) and then determine which ones die based on the

selection rule.
6. Pair survived individuals for mating at random.
7. Generates two offspring from each mating couples until the size population becomes M again.

(Deads are replaced with children.) The parameter values of the offspring will be

pchild 1 = pi + ξ(pj − pi), pchild 2 = pj + ξ(pi − pj)

where pi and pj are their parents and ξ is a uniform random number between 0 and 1.
8. Mutate some individual. Generate a uniform random number ξ. If ξ < kmutation, then mutation

occurs. Select an individual at random and change its parameter values at random.
9. Now we have a new generation of population. Decide if some of them are at the global minimum

of the fitness. If the lowest fitness does not change for many generations, we hope that at least
some are at the lowest point.

10. If yes, stop the procedure. Otherwise, go to Step 4.

EXAMPLE 19.3 One-dimensional Global Optimization

We solve the same problem as Example 19.2 but with the genetic algorithm this time. First, we generate
an initial population consisting of N = 32 individuals {x1, · · · , x32}, which is distributed uniformly
random over the range of the variable x. It is convenient if the number of individual is a power of 2.

Now we enter the selection phase. We evaluate the fitness of the individuals, Fi = F (xi) and then
sort the individuals based on the fitness values

Fxi1
≤ Fxi2

≤ · · · ≤ FxiN
(19.10)

We assume that upper 50% of population die due to misfitting. The individuals from xiN/2+1 to xiN
are dead. There are many sorting algorithm. Here we just use the sorting function built in MATLAB.
Many systems such as Linux provides various sorting functions.

Mating is the next step. Survivors from xi1 to xiN/2 pick their mate at random using the Knuth
algorithm. Each mating couple produces two offspring so that the size population recovers from the
death of misfit individuals. The gen of the childrens are determined by the rule explained in Algorithm
19.2.

Final step is mutation. Now, we have a new generation of the population with a certain diversity. In
this world, there is no age. The individual can survive forever as long as it fits to the living condition.
We repeat this procedure and after certain generations and the population will hopefully find a ultimate
gene with which the fitness function takes the lowest value. But when does it happen? This is an big
problem of the generic algorithm. There is no general rule that guarantees the global minimum. If the
whole population is stuck in a local minimum, they must wait until mutation brings some individuals

APPLICATIONS IN PHYSICS 501

Generation
0 10 20 30 40 50 60

B
es

t F
itn

es
s

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 19.7: The evolution of the best fitness value. The best gene of the population gradually improves as
the generation moves on. After 20th generation, the best fitness stays almost constant, indicating that the
global minimum is discovered.

Table 19.1: Data set for Gaussian distribution

x -1.98 -1.48 -1.00 -0.50 -0.02 0.51 1.019 1.52 1.99 2.52 3.00 3.52 3.99

f̄ 0.10 0.11 0.31 0.65 1.28 1.785 2.13 1.92 1.73 0.70 0.31 0.14 0.14

σ 0.14 0.11 0.15 0.18 0.18 0.12 0.11 0.10 0.16 0.15 0.10 0.17 0.18

out of the local minimum. It might take a long time to escape from the local minimum. A common
method is to limit the waiting time τ . We check the lowest fitness Fi1 for every generation. If it does not
change over the given waiting period. We assume that Fi1 is the global minimum. The waiting period
must be long enough that the mutation happens many time during the waiting period. That is τk � 1.

Program 19.2 implements the above algorithm and find the global minimum of the given function
within the given range. Simple selection, mating, inheritance, and mutation rules given in Algorithm
19.2 is used. In particular, a fixed mutation rate is used. Figure 19.7 shows that the best gene within the
population gets better as the generation goes on. After 20th generation, the improvement is no longer
seen, suggesting that the global minimum is discovered.

19.4 Applications in Physics

19.4.1 Fitting to Gaussian Distribution

In Chapter 11, we fitted a noisy data with a Lorentzian function using the nonlinear least square fitting
method (See Example 11.5). It worked very well. However, since the nonlinear χ2 function can have
multiple minimums, the nonlinear least square fitting is not guaranteed to work. If we tried to fit a noisy
Gaussian like data with a single Gaussian function using the least square fitting method, most likely it fails.
The matrix becomes very close to singular and linear equation cannot be solve accurately by numerical
methods.

502 OPTIMIZATION

x
-1 0 1 2 3

f(
x)

-0.5

0

0.5

1

1.5

2

2.5

Figure 19.8: The noisy data (Table 19.1) is plotted with red circles with the error bars. The solid line is the
result of the optimization using the genetic algorithm.

The genetic algorithm does not suffer from such difficulties. Consider a Gaussian function

f(x; a, b, c) = ae−(x−b)2/c (19.11)

where a, b, and c are the parameters to be adjusted. We want to fit the data set f̄i with error σi measured
at xi, i = 1, · · · ,M with the Gaussian function. The data is given in Table 19.1. As discussed in Chapter
11, the fitness function is given by

F (a, b, c) =
K∑
i

(
f(xi; a, b, c)− f̄i

)2
/σ2

i (19.12)

The i-the individual carries three genes, xj = (aj , bj , cj) and the genes are bound by a lower and upper limit.
For example, amin < aj < amax. The population consists of N individuals as p = (x1, x2, · · · , xN). We use
exactly the same algorithm as before. It is noted that the inheritance rule is the same for all genes, that is

xchild 1 = xi + ξ(xj − xi), xchild 2 = xj + ξ(xi − xj). (19.13)

The same random number ξ should be used for all genes so that the genes of offspring are between the
parents’ genes. We use a slightly different mutation rule. All members of the population are subject to the
mutation at each generation cycle. More than one members can be mutated at every generation cycle.

Program 19.3 fits the noisy data with the Gaussian function. The result is plotted in Fig. 19.8. The
fitting is quite reasonable. After 3118 generations, we obtained the best gene a = 2.09, b = 1.11, c = 2.21.
This values could be further optimizaed by the steepest descent. However, the fitting seems already good
enough.

19.4.2 Thomson problem

Consider N identical point charges q placed on the surface of a sphere as shown in Fig. 19.9. The charges is
free to move on the surface. We want to know the lowest energy configuration of the charges. This problem
is known as Thomson problem.[5] The lowest energy known at present is listed in WiKipedia for N=2 to 470.
We know the exact solution only for N=1–6 and 12. For other sizes, it is not yet known that the observed
lowest energy is actually the global minimum. The Thomson problem is still an unsolved mathematical
problem. It is also important for physics, for example, in connection to the atomic structure.[6].

APPLICATIONS IN PHYSICS 503

Figure 19.9: Thomson problem: Place N point charges on the surface of a sphere such that the electrostatic
potential energy is at the global minimum.

We attempt to solve this problem numerically using the genetic algorithm. The energy of the system is
simply Coulomb energy

U(~r1, ~r2, · · · , ~rN) = q

4πε0

∑
i>j

1
|~ri − ~rj |

(19.14)

where ~ri is the position vector for the i-th charge and its component is expressed in a spherical coordinate

xi = R sin θi cosφi, yi = R sin θi sinφi, zi = R cos θi (19.15)

where R is the radius of the sphere and θi and φi are elevation and azimuthal angles.
To find the global minimum of energy, we use the potential energy as a fitness function and optimize it

with respect to the angular variables using the genetic algorithm. Since the global rotation does not change
the energy, we set

θ1 = 0, φ1 = φ2 = 0. (19.16)

Hence, the number of variables (genes) is 2N − 3. This fitness function has many local minimums very close
to the global minimum and thus the finding the global minimum is challenging. For N = 5, the answer is
known to be E(5) = 6.474691495. For N = 8, E(8) = 19.675 is the lowest energy discovered up-to-now.

The simple mutation we used does not work well for the present problem. In Program 19.4, the mutation
rate changes randomly, occasionally the mutation rates jumps to a high value. It turns out that this burst
of the mutation improves the optimization significantly. We assume that the mutation rate bursts every ten
generations.∗

For N = 5, we find E(5) = 6.4746914947 and the configuration is triangular dipyramid (D3h) in perfect
agreement with known results.

∗This significant improvement was noted by Alex Skinner who took this course in 2014.

504 OPTIMIZATION

19.5 Problems

19.1 In Example 19.1, we constructed a fitness function for a fictitious molecule where all atoms are con-
nected by identical springs. Find the lowest energy structure for N = 5.

PROBLEMS 505

MATLAB Source Codes

Program 19.1
%**
%* Example 19.2 *
%* filename: ch19pr01.m *
%* program listing number: 19.1 *
%* *
%* This program attempt to find a grobal minimum of a fitness *
%* function U(x) using simulated annealing. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
close all
clc

L=241; % size of the descretized configuration space
dx=0.1;
xmin=(121-L)*dx; % bound of the configuration space
xmax=(L-121)*dx;
x=linspace(xmin,xmax,L);

% fitness function
U=@(x) -3.*cos(2.*x)+0.2*x.ˆ2+3.0;

% graphics parameter
movie=false; % movie slows down the simulation

NP=2ˆ3; % population size
p=rand(NP,1)*(xmax-xmin)+xmin; % initial configuration
T=5; % initial temperature
E=U(p); % initial fitness
dp=0.1; % Metropolis max step length

NT=200; % Total cooling steps
NS=2000; % Total thermalization steps
RT=0.98; % Cooling rate

if movie
figure(1)
set(gcf,'units','inches','position',[1,1,6,5])

end

for k=1:NT % Cooling Loop
temp(k)=T;

for i=1:NS % Thermalization Loop (Metropolis)

for j=1:NP % Loop over population

found=false;
while not(found)

p0=p(j)+(1-2*rand(1))*dp;
E0=U(p0);
if exp(-(E0-E(j))/T) > rand(1)

found=true;
if p0<xmin || p0>xmax

p(j)=rand(1)*(xmax-xmin)+xmin;
E(j)=U(p(j));

else

506 OPTIMIZATION

p(j)=p0;
E(j)=E0;

end
end

end
end

if movie && mod(i,10)==0 % update movie
plot(x,U(x))
xlim([xmin,xmax])
ylim([-1,19])
hold on
for j=1:NP

rectangle('Position',[p(j)-0.25,U(p(j))-0.25,0.5,0.5],...
'Curvature',[1 1],'FaceColor','b');

end
drawnow
hold off

end

end
Emin(k)=min(E);
fprintf('T=%f, Emin=%f\n',T,Emin(k))

T=T*0.98; % Exponential cooling schedule
end

fprintf('Final Temperature = %d\n',temp(200));
fprintf('Final Lowest Fitness = %d\n', Emin(200));

figure(1)
q=plot(x,U(x));
xlim([xmin,xmax])
ylim([-1,19])
xlabel('x','fontsize',14)
ylabel('Fitness','fontsize',14)
hold on
for j=1:NP
rectangle('Position',[p(j)-0.25,U(p(j))-0.25,0.5,0.5],'Curvature',[1 1]);
end
drawnow
hold off

figure(2)
q=plot([1:200],temp,[1:200],Emin);
set(q(1),'color','black')
set(q(2),'color','red')
ylim([-2,6]);
xlabel('Steps','fontsize',14)
ylabel('Temperature/Lowest Fitness Value','fontsize',14)
legend('Temperature','Lowest Fitness Value')

NNN

Program 19.2
%**
%* Example 19.3 *
%* filename: ch19pr02.m *
%* program listing number: 19.2 *
%* *
%* This program findw a grobal minimum of a fitness function U(x) *

PROBLEMS 507

%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
close all

L=121; % size of the descretized configuration space
dx=0.1;
xmin=0; % bound of the configuration space
xmax=(L-1)*dx;
x=[0:L-1]*dx;
U=@(x) cos(5*x)-2*sin(3.5*x)+0.5*cos(x+0.5)+4; % fitness function

% parameter sof genetic algorithm
N=2ˆ8; % size of population
p=rand(N,1)*xmax; % initial population
max_count=100; % waiting time
mutaion=0.1; % mutation rate (fixed)

% initial fitness
f=U(p);
[f_sort,ix]=sort(f);
fmin=f_sort(1);
q=p(ix); % q=individual in the order of their fitness

% plot initial population
figure(1)
set(gcf,'units','inches','position',[1,1,6,6])
plot(x,U(x))
axis([xmin xmax -1 11])
hold on
for i=1:N;

rectangle('Position',[p(i)-0.2,U(p(i))-0.2,0.4,0.4],'Curvature',[1 1]);
end
drawnow
hold off

count=0;
found=false;
ip=zeros(N/2,1);
generation=0;

while not(found)
generation=generation+1;
pause(0.1)
%%
% select mating pairs from survivors (Knuth shuffle)
for i=1:N/2

j=ceil(rand(1)*i);
ip(i)=ip(j);
ip(j)=i;

end
% The following MATLAB builtin function can be used in place for
% the above Knuth shuffle
% ip=randperm(N/2);
%%%

% generate offspring

508 OPTIMIZATION

for k=1:2:N/2

i=ip(k);
j=ip(k+1);
g=rand(2);

% replace the deads with the new borns
q(k+1+N/2)= q(i)+g(1)*(q(j)-q(i)+0.01); % inheritance
q(k+2+N/2)= q(j)+g(2)*(q(i)-q(j)+0.01); % inheritance

end

% mutation
if mod(generation,10)==0

mutation=0.8;
else

mutation=0.1;
end
if rand(1)<mutaion

i=ceil(rand(1)*N);
q(i)=rand(1)*xmax;

end

p=q; % store new population

% evaluate fitness
f=U(p);
% plot the current generation
plot(x,U(x))
axis([xmin xmax -1 11])
hold on
for i=1:N;

rectangle('Position',[p(i)-0.2,U(p(i))-0.2,0.4,0.4],'Curvature',[1 1]);
end
drawnow
pause(0.5);
hold off

% sort the population
[f_sort,ix]=sort(f);
q=p(ix);

% check if converged
if f_sort(1)>=fmin

count=count+1;
if count > max_count

found=true; % waited long enough
end

else
count=0; % reset wating couter
fmin=f_sort(1);
fprintf('New low found: generation=%d fitness=%.15f\n',generation,fmin)

end

bestfit(generation)=fmin;

end

fprintf('optimal x=%f, U(x)=%f\n',q(1),f_sort(1))

figure(2)
plot([1:generation],bestfit(1:generation),'-or')

PROBLEMS 509

hold on
axis([0 generation 0.4 1])
xlabel('Generation','fontsize',14)
ylabel('Best Finess','fontsize',14)

NNN

Program 19.3
%**
%* Section 19.4.1 *
%* filename: ch19pr03.m *
%* program listing number: 19.3 *
%* *
%* This program fits a Gaussian disitrbution to a noisy data set *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/02/2017. *
%**

% Generate an experimental data set
N=13;
x=[-1.98,-1.48,-1.00,-0.50,-0.02,0.51,1.02,1.52,1.99,2.52,3.00,3.52,3.99];
y=[0.10, 0.11, 0.31, 0.65, 1.28,1.79,2.13,1.92,1.73,0.70,0.31,0.14,0.14];
s=[0.14, 0.11, 0.15, 0.18, 0.18,0.12,0.11,0.10,0.16,0.15,0.10,0.17,0.18];

% theoretical data space
K=101;
dx=(x(N)-x(1))/(K-1);
X=linspace(x(1),x(N),K);

% control parameter for genetic algorithm
NP=2ˆ10;
MP=int32(NP/2);
max_count=200;
max_generation=10000;

% parameter spce (genes)
a_max=5; a_min=0;
b_max=5; b_min=-5;
c_max=5; c_min=0.01;

% initial parameters (genes)
a=rand(NP,1)*(a_max-a_min)+a_min;
b=rand(NP,1)*(b_max-b_min)+b_min;
c=rand(NP,1)*(c_max-c_min)+c_min;

% allocate arrays
ip=zeros(1,MP);
F=zeros(1,NP);
G=zeros(N,NP);

% graphics setting
close all;
movie = true;
if movie

figure(1);
axis([x(1) x(end) -0.5 2.5]);

end

510 OPTIMIZATION

% reset the counters
found=false;
count=0;
generation=0;
Fmin=realmax(); % some large number

% genetic evolution begins here
while not(found)

generation=generation+1;
if generation > max_generation % too many generations

fprintf('Max generation reached. Terminated.\n');
break;

end

% eveluate the initial fitness
for i=1:NP

for j=1:N
G(j,i)=a(i)*exp(-(x(j)-b(i))ˆ2/c(i));

end
F(i)=sum((G(:,i)-y(:)).ˆ2./s(:))/N;

end

% sort the population based on thier fitness
[Fs, IX]=sort(F);
as=a(IX); bs=b(IX); cs=c(IX);

if movie
% plot current best fitting
Y=as(1)*exp(-(X-bs(1)).ˆ2/cs(1));
r=plot(X,Y);
set(r,'linewidth',2)
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off
axis([x(1) x(N) -0.5 2.5]);
drawnow
pause(0.2)

end

% check if converged
if Fs(1)>=Fmin

count=count+1;
if count > max_count % exceed the waiting time limit

found=true;
break

end
else

count=0; %reset wating time counter
Fmin=Fs(1); % new lowest fitness
a0=as(1); b0=bs(1); c0=cs(1);
fprintf('New low found: generation=%i, fitness= %.15f, a=%f, b=%f, c=%f\n',...

generation,Fmin,a0,b0,c0)
end

% find mating pairs from the survived population
ip=randperm(MP);

PROBLEMS 511

% generate offsprings
for k=1:2:MP

g=rand(6);
i=ip(k);
j=ip(k+1);
as(k+1+NP/2)= as(i)+g(1)*(as(j)-as(i)+0.01);
as(k+2+NP/2)= as(j)+g(2)*(as(i)-as(j)+0.01);
bs(k+1+NP/2)= bs(i)+g(3)*(bs(j)-bs(i)+0.01);
bs(k+2+NP/2)= bs(j)+g(4)*(bs(i)-bs(j)+0.01);
cs(k+1+NP/2)= cs(i)+g(5)*(cs(j)-cs(i)+0.01);
cs(k+2+NP/2)= cs(j)+g(6)*(cs(i)-cs(j)+0.01);

end

% mutation rate (every 10 generations, mutation burst happens
if mod(generation,10)==0

mutation=0.8;
else

mutation=0.1;
end

% mutation
rm=rand(1,NP);
for i=2:NP

if rm(i)<mutation
as(i)=rand(1)*(a_max-a_min)+a_min;
bs(i)=rand(1)*(b_max-b_min)+b_min;
cs(i)=rand(1)*(c_max-c_min)+c_min;

end
end

% store genes of new population
a=as; b=bs; c=cs;

end

fprintf('Best fit=%.15f, a=%f, b=%f, c=%f\n',Fmin,a0,b0,c0)

% plot the best fitting
if not(movie)

figure(1);
axis([x(1) x(end) -0.5 2.5])

end

Y=a0*exp(-(X-b0).ˆ2/c0);
r=plot(X,Y);
set(r,'linewidth',2)
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
axis([x(1) x(N) -0.5 2.5]);
hold off
drawnow

NNN

Program 19.4
%**
%* Section 19.4.2 *
%* filename: ch19pr04.m *

512 OPTIMIZATION

%* program listing number: 19.4 *
%* *
%* This program solves the Thomson problem using genetic algorithm. *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Improved by Alex Skinner. *
%* Last modification: 04/02/2017. *
%**
clear all;

% system parameters
N=5;
R=1;

% parameters for genetic algorithm
NP=2ˆ12; % population size
MP=int32(NP/2); % half of the population
max_count=200; % stopping condition
max_generation=10000; % maximum generation

% parameter space (genes)
th_max=pi; th_min=0;
ph_max=2*pi; ph_min=0;

% initial parameters (genes)
th=rand(N,NP)*(th_max-th_min)+th_min;
ph=rand(N,NP)*(ph_max-ph_min)+ph_min;
th(1,:)=0;
ph(1,:)=0;
ph(2,:)=0;
th(3,1)=th_max;
ph(3,2)=ph_max;

% allocate arrays
ip=zeros(1,MP);
F=zeros(1,NP);
phs=zeros(N,NP);
ths=zeros(N,NP);

% reset the counters
found=false;
count=0;
generation=0;
Fmin=realmax();

% genetic evolution begins here
while not(found)

generation=generation+1;
if generation > max_generation % too many generations

fprintf('Max generation reached. Terminated.\n')
break;

end

% eveluate the initial fitness
for i=1:NP

F(i)=UCoulomb(th(:,i),ph(:,i),R);
end

% sort the population based on thier fitness

PROBLEMS 513

[Fs, IX]=sort(F);
ths=th(:,IX); phs=ph(:,IX);

% check if converged
if Fs(1)>=Fmin

count=count+1;
if count > max_count % exceed the waiting time limit

found=true;
break

end
else

count=0; %reset wating time counter
Fmin=Fs(1);
fprintf('New low found: generation=%i, fitness= %.15f\n',generation,Fmin)

end

% find mating pairs from the survived population
ip=randperm(MP);

% generate offsprings
for k=1:2:NP/2

% g ranges from -1 to 1
g=-2*rand(2)+1;
i=ip(k);
j=ip(k+1);
ths(:,k+1+MP)= ths(:,i)+g(1)*(ths(:,j)-ths(:,i));
ths(:,k+2+MP)= ths(:,j)+g(2)*(ths(:,i)-ths(:,j));
phs(:,k+1+MP)= phs(:,i)+g(1)*(phs(:,j)-phs(:,i));
phs(:,k+2+MP)= phs(:,j)+g(2)*(phs(:,i)-phs(:,j));

end

% mutation rate
if mod(generation,10)==0

mutation=0.8*rand();
else

mutation=0.3*rand();
end

% mutation
rm=rand(NP,1);
for i=2:NP

if rm(i)<mutation
ths(:,i)=rand(N,1)*(th_max-th_min)+th_min;
phs(:,i)=rand(N,1)*(ph_max-ph_min)+ph_min;
ths(1,i)=0;
phs(1:2,i)=0;

end
end

% store new population
th=ths; ph=phs;

end

fprintf('Lowest Energy=%.15f\n',Fmin)
for i=1:N

fprintf('theta=%f, phi=%f\n',ths(i),phs(i))
end

for i=1:N
X(i)=R*sin(ths(i,1))*cos(phs(i,1));
Y(i)=R*sin(ths(i,1))*sin(phs(i,1));

514 OPTIMIZATION

Z(i)=R*cos(ths(i,1));
end

close all;
figure(1)
plot3(X,Y,Z,'o')
axis equal;
xlim([-1,1]);
ylim([-1,1]);
zlim([-1,1]);
grid on
hold on
drawnow

bond=10.0;
for i=1:N

for j=i+1:N
d=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
bond = min(bond,d);

end
end
bond=bond*1.25;
for i=1:N

for j=i+1:N
d=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
if d <= bond

line([X(i),X(j)],[Y(i),Y(j)],[Z(i),Z(j)]);
drawnow;

end
end

end
hold off

%**
%* filename: UCoulomb.m *
%* *
%* Function called by ch19pr04.m *
%**
function UC=UCoulomb(theta,phi,r)

N=size(theta,1);
UC=0;
X=sin(theta).*cos(phi);
Y=sin(theta).*sin(phi);
Z=cos(theta);
for i=1:N

for j=i+1:N
r12=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
UC=UC+1.0/(r12*r);

end
end

NNN

Python Source Codes

Program 19.1

PROBLEMS 515

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 19.2 *
%* filename: ch19pr01.py *
%* program listing number: 19.1 *
%* *
%* This program attempt to find a grobal minimum of a fitness *
%* function U(x) using simulated annealing. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

plt.close('all')

system setting
L=241 # size of the descretized configuration space
dx=0.1 # grid size
xmin=0.0 # lower bound of the configuration space
xmax=(L-1)*dx # upper boound
x=np.linspace(xmin,xmax,L)

def U(x): # fitness function
return -3.*np.cos(2.*(x-xmax/2.))+0.2*(x-xmax/2.)**2+3.0

graphics parameter
movie=False # show animation

NP=2**3 # population size
p=np.random.rand(NP)*(xmax-xmin)+xmin # initial configuration
T=5.0 # initial temperature
E=U(p) # initial fitness
dp=0.1 # Metropolis max step length

NT=200 # Total cooling steps
NS=2000 # Total thermalization steps
RT=0.98 # Cooling rate

allocate arrayss
temp=np.zeros(NT)
Emin=np.zeros(NT)

if movie:
plt.figure(figsize=(6,5))

for k in range(0,NT): # loop over time step
temp[k]=T

for i in range(0,NS): # Thermalization Loop (Metropolis)

for j in range(0,NP): # Loop over population

found=False
while not(found):

p0=p[j]+np.random.choice([-1,1])*dp
E0=U(p0)

516 OPTIMIZATION

if np.exp(-(E0-E[j])/T) > np.random.rand(1):
found=True
if p0<xmin or p0>xmax:

p[j]=np.random.rand(1)*(xmax-xmin)+xmin
E[j]=U(p[j])

else:
p[j]=p0
E[j]=E0

if movie: # update movie
plt.clf()
plt.plot(x,U(x))
plt.xlim([xmin,xmax])
plt.ylim([-1,19])

for j in range(0,NP):
circle=plt.Circle((p[j],U(p[j])),0.25,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Emin[k]=np.min(E)
print('T={0:f}, Emin={1:f}'.format(T,Emin[k]))

T=T*0.98 # Exponential cooling schedule

print('Final Temperature = {0:f}'.format(temp[k]))
print('Final Lowest Fitness = {0:f}'.format(Emin[k]))

if not(movie):
plt.figure(figsize=(6,5))
plt.plot(x,U(x))
plt.xlim([xmin,xmax])
plt.ylim([-1,19])

for j in range(0,NP):
circle=plt.Circle((p[j],U(p[j])),0.25,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

plt.xlabel('x',fontsize=14)
plt.ylabel('Fitness',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
t=np.linspace(1,NT,NT)
plt.plot(t,temp,'-k',label='temperature')
plt.plot(t,Emin,'-r',label='energy')
plt.xlabel('Steps',fontsize=14)
plt.ylabel('Energy',fontsize=14)
plt.legend(loc=1)
plt.show()

NNN

Program 19.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 19.3 *
%* filename: ch19pr02.py *

PROBLEMS 517

%* program listing number: 19.2 *
%* *
%* This program findw a grobal minimum of a fitness function U(x) *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
plt.close('all')

#system configuration
L=121 # size of the descretized configuration space
dx=0.1 # grid size
xmin=0.0 # lower bound of the configuration space
xmax=(L-1)*dx # upper bound
x=np.linspace(xmin,xmax,L)

def U(x): # fitness function
return np.cos(5.0*x)-2.0*np.sin(3.5*x)+0.5*np.cos(x+0.5)+4.0

parameter sof genetic algorithm
N=2**8 # size of population
M=np.int(N/2)
p=np.random.rand(N)*xmax # initial population

max_count=100 # waiting time
mutaion=0.1 # mutation rate (fixed)
max_generation=10000
bestfit=np.zeros(max_generation)

initial fitness
f=U(p) # fitness
ix=np.argsort(f) # sorting population basd on their fitness
fmin=f[ix[0]]
q=p[ix]
bestfit[0]=fmin

plot initial population
plt.figure(figsize=(6,6))
plt.plot(x,U(x))
plt.xlim([xmin, xmax])
plt.ylim([-1, 11])
plt.axis('equal')

for i in range(0,N):
circle=plt.Circle((p[i],U(p[i])),0.2,facecolor='none', edgecolor='b')
plt.gca().add_patch(circle)

plt.pause(0.0001)

count=0;
found=False
ip=np.zeros(M)
generation=0;

while not(found):
generation=generation+1
if generation > max_generation:

print('Max generation reached. Terminated.')

518 OPTIMIZATION

break

ip=np.random.permutation(M)

generate offspring
for k in range(0,M,2):

i=ip[k]
j=ip[k+1]
g=np.random.rand(2)
replace the deads with the new borns
q[k+M]= q[i]+g[0]*(q[j]-q[i]+0.01) # inheritance
q[k+1+M]= q[j]+g[1]*(q[i]-q[j]+0.01) # inheritance

mutation
if np.mod(generation,10)==0:

mutation=0.8
else:

mutation=0.1

if np.random.rand(1)<mutaion:
i=np.random.randint(0,N)
q[i]=np.random.rand(1)*(xmax-xmin)

p=q # store new population

evaluate fitness
f=U(p)
plt.clf()
plt.plot(x,U(x))
plt.xlim([xmin, xmax])
plt.ylim([-1, 11])

for i in range(0,N):
circle=plt.Circle((p[i],U(p[i])),0.2,facecolor='none', edgecolor='b')
plt.gca().add_patch(circle)

plt.pause(0.0001)

sort the population
ix=np.argsort(f)
q=p[ix]

#check if converged
if f[ix[0]]>=fmin :

count=count+1
if count > max_count:

found=True # waited long enough

else:
count=0 # reset wating couter
fmin=f[ix[0]]
print('New low found: generation={0:d} fitness={1:.15f}'.format(generation,fmin))

bestfit[generation]=fmin

print('optimal x={0:f}, U(x)={1:f}'.format(q[0],f[ix[0]]))

plt.figure(figsize=(6,5))
t=np.linspace(0,generation,generation+1)
plt.plot(t,bestfit[0:generation+1],'-or',mfc=None)
plt.xlabel('Generation',fontsize=14)

PROBLEMS 519

plt.ylabel('Best Finess',fontsize=14)
plt.show()

NNN

Program 19.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 19.4.1 *
%* filename: ch19pr03.m *
%* program listing number: 19.3 *
%* *
%* This program fits a Gaussian disitrbution to a noisy data set *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/02/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

sample experimental data set
N=13
x=[-1.98,-1.48,-1.00,-0.50,-0.02,0.51,1.02,1.52,1.99,2.52,3.00,3.52,3.99]
y=[0.10, 0.11, 0.31, 0.65, 1.28,1.79,2.13,1.92,1.73,0.70,0.31,0.14,0.14]
s=[0.14, 0.11, 0.15, 0.18, 0.18,0.12,0.11,0.10,0.16,0.15,0.10,0.17,0.18]

theoretical data space
K=101
X=np.linspace(x[0],x[-1],K)

control parameter for genetic algorithm
NP=2**10 # population size
MP=np.int(NP/2) # half of the population
max_count=200 # stopping condition
max_generation=10000 # maximum generation

parameter space (genes)
a_max=5.0; a_min=0.0
b_max=5.0; b_min=-5.0
c_max=5.0; c_min=0.01

initial parameters (genes)
a=np.random.rand(NP)*(a_max-a_min)+a_min
b=np.random.rand(NP)*(b_max-b_min)+b_min
c=np.random.rand(NP)*(c_max-c_min)+c_min

allocate arrays
ip=np.zeros(MP)
F=np.zeros(NP)
G=np.zeros((N,NP))

graphics setting
plt.close('all')
movie = True
if movie:

plt.figure(figsize=(6,5))
plt.axis([x[0], x[-1], -0.5, 2.5])

520 OPTIMIZATION

reset the counters
found=False
count=0
generation=0
Fmin=np.finfo(np.float64()).max # some large number

genetic evolution begins here
while not(found):

generation=generation+1
if generation > max_generation: # too many generations

print('Max generation reached. Terminated.')
break

eveluate the fitness
for i in range(0,NP):

for j in range(0,N):
G[j,i]=a[i]*np.exp(-(x[j]-b[i])**2/c[i])

F[i]=np.sum((G[:,i]-y[:])**2/s[:])/N

sort the population based on thier fitness
IX=np.argsort(F)
A=a[IX]; B=b[IX]; C=c[IX]

if movie:
#plot current best fitting
plt.clf()
Y=A[0]*np.exp(-(X-B[0])**2/C[0])
plt.plot(X,Y,'-r',linewidth=2)
plt.errorbar(x,y,yerr=s,fmt='ok')
plt.pause(0.001)

check if converged
if F[IX[0]]>=Fmin:

count=count+1
if count > max_count: # no more evolution

found=True
break

else:
count=0; # reset dewelling counter
Fmin=F[IX[0]] # new lowest fitness
a0=A[0]; b0=B[0]; c0=C[0] # current best genes
print('New low found: generation={0:d}, fitness={1:.15f}, a={2:f}, b={3:f}, c={4:f}'.format(generation,Fmin,a0,b0,c0))

find mating pairs from the survived population
ip=np.random.permutation(MP)

generating oggsprings
for k in range(0,MP,2):

g=np.random.rand(6)
i=ip[k]
j=ip[k+1]
A[k+MP] = A[i]+g[0]*(A[j]-A[i]+0.01)
A[k+MP+1]= A[j]+g[1]*(A[i]-A[j]+0.01)
B[k+MP] = B[i]+g[2]*(B[j]-B[i]+0.01)
B[k+MP+1]= B[j]+g[3]*(B[i]-B[j]+0.01)
C[k+MP]= C[i]+g[4]*(C[j]-C[i]+0.01)
C[k+MP+1]= C[j]+g[5]*(C[i]-C[j]+0.01)

mutation rate (every 10 generations, mutation burst happens)

PROBLEMS 521

if np.mod(generation,10)==0:
mutation=0.8

else:
mutation=0.1

mutation
rm=np.random.rand(NP)
for i in range(1,NP):

if rm[i]<mutation:
A[i]=np.random.rand(1)*(a_max-a_min)+a_min
B[i]=np.random.rand(1)*(b_max-b_min)+b_min;
C[i]=np.random.rand(1)*(c_max-c_min)+c_min;

store genes of new population
a[:]=A[:]; b[:]=B[:]; c[:]=C[:]

print('Best fit:{0:.15f}, a={1:f},b={2:f}, c={3:f}'.format(Fmin, a0, b0, c0))

plot the best fitting
if not(movie):

plt.figure(figsize=(6,5))
plt.axis([x[1], x[-1], -0.5, 2.5])

plt.clf()
Y=a0*np.exp(-(X-b0)**2/c0)
plt.plot(X,Y,'-r',linewidth=2)
plt.errorbar(x,y,yerr=s,fmt='ok')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.show()

NNN

Program 19.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 19.4.2 *
%* filename: ch19pr04.m *
%* program listing number: 19.4 *
%* *
%* This program solves the Thomson problem using genetic algorithm. *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Improved by Alex Skinner. *
%* Last modification: 04/02/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

system parameters
N=5 # number of charges
R=1.0 # radius of the sphere

def U(theta,phi,r): # potential energy (fitness function)
u=0.0
X=np.sin(theta)*np.cos(phi)

522 OPTIMIZATION

Y=np.sin(theta)*np.sin(phi)
Z=np.cos(theta)
for i in range(0,N):

for j in range(i+1,N):
r12=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
u=u+1.0/(r12*r)

return u

parameters for genetic algorithm
NP=2**12 # population size
MP=np.int(NP/2) # half of the population
max_count=200; # stopping condition
max_generation=10000 # maximum generation

parameter space (genes)
th_max=np.pi; th_min=0.0
ph_max=2.0*np.pi; ph_min=0.0

initial parameters (genes)
th=np.random.rand(N,NP)*(th_max-th_min)+th_min
ph=np.random.rand(N,NP)*(ph_max-ph_min)+ph_min
th[0,:]=0.0
ph[0,:]=0.0
ph[1,:]=0.0
th[2,0]=th_max
ph[2,1]=ph_max

allocate arrays
ip=np.zeros(MP)
F=np.zeros(NP)
ths=np.zeros((N,NP))
phs=np.zeros((N,NP))

reset the counters
found=False
count=0
generation=0
Fmin=np.finfo(np.float64()).max # some large number

genetic evolution begins here
while not(found):

generation=generation+1
if generation > max_generation: # too many generations

print('Max generation reached. Terminated.')
break

eveluate the initial fitness
for i in range(0,NP):

F[i]=U(th[:,i],ph[:,i],R)

sort the population based on thier fitness
IX=np.argsort(F)
ths[:,:]=th[:,IX]; phs[:,:]=ph[:,IX]

check if converged
if F[IX[0]]>=Fmin:

count=count+1
if count > max_count: # exceed the waiting time limit

found=True
break

PROBLEMS 523

else:
count=0 # reset wating time counter
Fmin=F[IX[0]]
print('New low found: generation={0:d}, fitness={1:.15f}'.format(generation,Fmin))

find mating pairs from the survived population
ip=np.random.permutation(MP)

generate offsprings
for k in range(0,MP,2):

g ranges from -1 to 1
g=-2.0*np.random.rand(2)+1.0
i=ip[k]
j=ip[k+1]
ths[:,k+MP] = ths[:,i]+g[0]*(ths[:,j]-ths[:,i])
ths[:,k+1+MP]= ths[:,j]+g[1]*(ths[:,i]-ths[:,j])
phs[:,k+MP] = phs[:,i]+g[0]*(phs[:,j]-phs[:,i])
phs[:,k+1+MP]= phs[:,j]+g[1]*(phs[:,i]-phs[:,j])

mutation rate
if np.mod(generation,10)==0:

mutation=0.8*np.random.rand()
else:

mutation=0.3*np.random.rand()

mutation
rm=np.random.rand(NP)
for i in range(2,NP):

if rm[i]<mutation:
ths[:,i]=np.random.rand(N)*(th_max-th_min)+th_min
phs[:,i]=np.random.rand(N)*(ph_max-ph_min)+ph_min
ths[0,i]=0.0
phs[0:1,i]=0.0

store new population
th[:,:]=ths[:,:]; ph[:,:]=phs[:,:]

print('Lowest Energy={0:.15f}'.format(Fmin))
for i in range(0,N):

print('theta={0:f}, phi={1:f}'.format(ths[i,0],phs[i,0]))

X=np.zeros(N)
Y=np.zeros(N)
Z=np.zeros(N)

for i in range(0,N):
X[i]=R*np.sin(ths[i,0])*np.cos(phs[i,0])
Y[i]=R*np.sin(ths[i,0])*np.sin(phs[i,0])
Z[i]=R*np.cos(ths[i,0])

plot 3D phase trajectory
plt.close('all')
fig=plt.figure()
ax=fig.gca(projection='3d')
plt.plot(X, Y, Z,'ob')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.paspect=[1.0,1.0,1.0]
ax.set_xlim3d([-1.0,1.0])
ax.set_ylim3d([-1.0,1.0])

524 OPTIMIZATION

ax.set_zlim3d([-1.0,1.0])

bond=10.0
for i in range(0,N):

for j in range(i+1,N):
d=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
bond = np.min([bond,d])

bond=bond*1.25
for i in range(0,N):

for j in range(i+1,N):
d=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
if d <= bond:

ax.plot([X[i],X[j]],[Y[i],Y[j]],[Z[i],Z[j]],'-b')
plt.pause(0.0001)

plt.show()

NNN

Bibliography

[1] Alka Dwevedi. Protein Folding: Examining the Challenges from Synthesis to Folded Form (SpringerBriefs
in Biochemistry and Molecular Biology). Springer, 2014.

[2] Randy L. Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. Wiley-Interscience, 2nd edition
edition, 2004.

[3] Mitchell Melanie. An Introduction to Genetic Algorithms. MIT Press, 1996.

[4] James B. Foresman and AEleen Frisch. Exploring Chemistry With Electronic Structure Methods: A
Guide to Using Gaussian. Gaussian, 1996. Appendix B.

[5] J. J. Thomson. On the structure of the atom: an investigation of the stability and periods of oscillation of
a number of corpuscles arranged at equal intervals around the circumference of a circle; with application
of the results to the theory of atomic structure. Philosophical Magazine, 7:237–265, 1904.

[6] Jr. LaFave, Tim. Correspondences between the classical electrostatic thomson problem and atomic
electronic structure. Journal of Electrostatics, 71(6):1029 – 1035, 2013.

525

	List of Figures
	List of Tables
	Preface
	Acknowledgments
	I Numerical Evaluations of Mathematical Expressions
	Numerical Values and Quantization Errors
	Bits
	Integers
	Characters
	Floating Point Numbers
	Overflow/Underflow
	Machine Epsilon
	Round-off Errors
	Loss of Significance
	Problems
	Examples in Python
	MATLAB Source Codes
	Python Source Codes

	Numerical Derivatives
	First order derivatives
	Second order derivatives
	Problems
	MATLAB Source Codes
	Python Source Codes

	Numerical Integration
	Rectangular rule
	Trapezoidal rule
	Simpson method
	Adaptive quadrature

	Improper Integrals
	Improper Integrals: in Limits
	Improper Integrals II: Integrable Singularities

	Gaussian Quadrature
	Applications in Physics
	Period of Classical Oscillation I.
	Scattering by Yukawa Potential: Part 1
	Debye Model of Heat Capacity
	Heat Capacity of Free Electron Gas

	Problems
	Appendix
	MATLAB Source Codes
	Examples in Python
	Python Source Codes

	Root Finding
	Quadratic, Cubic, and Quartic Polynomials
	Quadratic Polynomials
	Cubic Polynomials
	Quartic Polynomials

	Iterative Methods
	Bisection method
	Newton-Raphson method
	Secant method

	Applications in Physics Problems
	Magnetic Phase Transition
	Energy of a Quantum Particle in a Square Potential
	Classical Turning Points
	Closest Approach in Scattering

	Problems
	MATLAB Source Codes
	Python Source Codes

	Ordinary Differential Equations I: Initial Value Problems
	Standard forms of Initial Value Problems in Physics
	First Order Differential Equations
	Euler Method
	Predictor-Corrector Method
	2nd-Order Runge-Kutta Method
	4th-Order Runge-Kutta Method
	Adaptive Step: Runge-Kutta-Fehlberg Method

	Coupled ODEs
	Second-Order Differential Equations
	Converting to a Coupled First-Order ODEs
	Verlet Method

	Applications in Physics
	Nonlinear Chemical Dynamics: Brusselator
	Nonlinear Dynamics in Laser: Maxwell-Bloch equation
	Frequency Entrainment and Phase Synchronization
	Period of Oscillation
	Pendulum
	Scattering Angle
	Double Pendulum

	Problems
	MATLAB Source Codes
	Python Source Codes

	Ordinary Differential Equations II: Boundary Value Problems
	Shooting method
	Numerov method
	Applications in Physics
	Quantum Free Falling (See Problem 3.3)
	Heating a rod

	Problems
	MATLAB Source Codes
	Python Source Codes

	Ordinary Differential Equations III: Eigenvalue Problems
	Shooting Method for Eigenvalue Problems
	Applications in Physical Problems
	Quamtum Harmonic Oscillator
	Bouncing Quantum Particle
	Diatomic Molecules

	Problems
	MATLAB Source Codes
	Python Source Codes

	Matrix I: Linear Algebraic Equations
	Triangular Matrices
	Forward/Back Substitutions

	Gaussian Elimination
	Elmination Procedures
	Pivoting
	Determinant
	Matrix Inversion

	LU Decomposition
	Decomposition Algorithm
	Linear equations
	Matrix Inverse
	Determinant

	Tridiagonal Matrices
	Linear Equations
	Determinant and Inverse

	Solving Linear Equations by Minimization
	Steepest Descent Method
	Conjugate Gradient Method

	Applications in Physics
	Multiloop circute: Kirchhoff rules
	Coupled Harmonic Oscillators in a Uniform Gravity
	Determinant of Tree Graphs: Graham-Pollack theorem

	Problems
	MATLAB Source Codes
	Python Source Codes

	Matrix II: Nonlinear Equations
	Multi-Dimensional Newton-Raphson Methods
	Broyden method: (Multidimentional Secant Method)

	Minimization of Mutivariable Non-Linear Functions
	Applications in Physics
	Steady states in Laser Dynamics

	MATLAB Source Codes
	Python Source Codes

	Matrix III: Eigenvalue Problems
	The Power Method
	Jacobi Transformation
	Advanced Methods
	Triangular Matrices
	Tridiagonal Matrices
	Householder Reduction
	QR Method

	Applications in Physics
	Coupled Harmonic Oscillators
	Chains of Atoms

	Problems
	MATLAB Source Codes
	Python Source Codes

	Discrete Fourier Transform
	Discrete Fourier Transform
	Fast Fourier Transform
	Remarks on the use of canned routines in MATLAB and Python
	Forward or Backward Transformation
	Prefactor in front of the Summation
	Input/Output Format: Bit Reversed or Not
	Input/Output format: Periodicity

	Applications in Physics
	Laplacian operator
	Correlation Functions
	Spectral Analysis
	Wave Function in Momentum Space

	Problems
	MATLAB Source Codes
	Python Source Codes

	Data Fitting
	Spline
	Linear Spline
	Cubic Spline
	Vandermonde matrix
	Lagrange Polynomial

	Least Square Fitting
	General Theory
	Linear Regression
	General Linear Least Square Fitting
	Nonlinear Least Square Fitting: Gauss-Newton method

	Applications in Physics
	Arrhenius Plot
	Life Time Broadening in Optical Spectrum

	Problems
	Appendix
	MATLAB Source Codes
	Python Source Codes

	Partial Differential Equations I: Parabolic Equations
	Diffusion Equation
	Boundary Conditions
	Forward Time Centered Space method
	Runge-Kutta time evolution
	Higher spatial dimensions
	Schrödinger Equations
	Crank-Nicolson method

	Applications in Physics
	Quantum Tunneling
	Pattern Formation

	Program Lists

	Partial Differential Equations II: Schrödinger Equation

	II Computer Simulation
	Random Numbers
	Stochastic Variables
	Uniform Random Numbers
	Non-uniform distributions
	Gaussian random number
	Exponential distributions
	Evaluation of Mean

	Applications in Physics
	Thermal Speed
	Sedimentation-diffusion equilibrium
	Surface Growth: Random Deposition Models

	Problems
	MATLAB Source Codes
	Python Source Codes

	Random Walks
	One-dimensional Random Walk
	Persistent Random Walk
	Multi-dimensional Random Walk
	Applications in Physics
	Diffusion Limited Aggregates
	Dendrites
	Parrondo Paradox

	Problems
	MATLAB Source Codes
	Python Source Codes

	Metropolis Method
	Metropolis Algorithm for Thermal Equilibrium
	Applications in Physics
	Ferromagnetic Phase Transition: 2D Ising Model
	Percolation

	MATLAB Source Codes
	Python Source Codes

	Langevin Equations
	Langevin equation
	Definition
	Overdamped Langevin equations and Wiener Processes
	Ornstein-Uhlenbeck process
	Numerical Algorithm: the Heun method

	Applications in Physics
	Brownian Motors: Flashing Ratchet
	Stochastic Resonance

	Problems
	MATLAB Source Codes
	Python Source Codes

	Optimization
	Fitness Functions
	Simulated Annealing
	Genetic Algorithm
	Applications in Physics
	Fitting to Gaussian Distribution
	Thomson problem

	Problems
	MATLAB Source Codes
	Python Source Codes

