
CHAPTER 19

OPTIMIZATION

Consider a system which can take many different configurations. Among the all configuration, we want find
one configuration which best fits to a given criteria. For example, a molecule consisting of several atoms can
take various geometric structures which are mechanically stable. However, only one of them are the ground
state and others are meta stable structures. We want to find a structure that has the lowest energy. That
is an optimization problem. In fact, the issue of protein folding has been a major optimization problem.[1]
Another example, which we already encounter, is the least square fitting (See Chapter 11.)

To put the optimization problem in a mathematical form, the criteria is given as a function of configuration
called fitness or cost function. The best optimized configuration corresponds to the global minimum (or
maximum) of the fitness function. In this chapter we assume that the best fit corresponds to the global
minimum of the fitness function. Then, the optimization is an minimization problem. We already learned
several methods to minimize a function, such as the steepest descent and conjugate gradient methods in
Chapter 7. However, when there are multiple minimums, those methods converges to a local minimum
which is not necessarily the global minimum. In the optimization problems, we want to find the global
minimum. See Fig 19.1.

In Chapter 11, the least square fitting tries to fit a function to the given data by minimizing a χ2 function.
If the χ2 function is linear with respect to the parameters, there is only one minimum and thus the downhill
method worked well. On the other hand, if χ2 is a nonlinear function, then multiple local minima are
possible. Hence, the downhill method does not guarantee the best fit.

Finding a global minimum is not an easy task. It turns out that the nature is doing it all time. For
example, when we heat up a material and cool it down slowly, we obtain a crystal with fewer defects. This
procedure is called annealing. However, if it is cooled down too quickly, the resulting crystal has a lot of
defects. It must be slowly cooled down to get a high quality crystal. We can use a similar method in

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

485

486 OPTIMIZATION

Local vs global minimization

F
itn

e
ss

d
ow

nh
ill

Local
minimum

Global
minimum

Glob
al

op
tim

iza
tio

n

Figure 19.1: Local minimization along the downhill goes down to the local minimum. The global optimization
must find the global minimum and thus the search method must be able to go over the barriers between
minimums.

computer to find a global minimum. The method is called simulated annealing. We ourselves are a result of
global optimization though biological evolution, although we have not reach the global minimum yet (if it
ever exists). We can use the Darwin’s evolution theory to find a global minimum. That method is known as
genetic algorithm.[2, 3] In this chapter we learn these two methods.

19.1 Fitness Functions

In order to solve optimization problem numerically, we must write the problem in mathematical forms. First,
we need a configuration space which is a set of parameters {xi}, (i = 1, · · · , N) to be adjusted and their
domain xi ∈ [ai, bi]. We want to find a particular configuration {x∗i } that fits best to a given criteria. To
express the crieteria in a mathematical form, we introduce a fitness function. F ({xi}). It is also called cost
or loss function. The criteria is simply given by an inequality:

F ({x∗i }) ≤ F ({xi} (19.1)

which means F ({x∗i }) is the global minimum. Hence, optimization is equivalent to finding the configuration
corresponding to the global minimum of a fitness function. An example of the fitness function is the ξ2

function [see Eq (11.18)].
The fitness function is not unique and you can construct many different fitness functions for the same

optimization problem. All of them have the same configuration {x∗i } at the global minimum. We can utilize
this freedom to construct a fitness function that is numerically easier to evaluate. In fact, the evaluation of
the fitness function consumes most of computation time during the minimization.Therfore, constructing a
good fitness function saves significant amount of computing time.

On he other hand, we can also construct ill-conditioned fitness functions if we are not careful. For example,
when we want to find the lowest energy geometric structure of a molecule, a convenient fitness function is
the potential energy of the molecule and the configuration is the coordinates of all atoms. We have to make
it sure that the configuration is uniquely determined by the optimization procedure. The potential energy
is a function of the position of atoms. If we treat all coordinates as the degrees of freedom, we cannot
uniquely determine the position of the all atoms by minimizingthe potential energy. If we shift or rotate the
molecule without changing its shape, the potential energy does not change. Depending on the algorithm, the
optimization procedure never stops and the molecule keeps rotating or sliding without changing the structure!

FITNESS FUNCTIONS 487

Removing the degrees of freedom with respect to the global translational and rotation, the number of degrees
of freedom to be determined for the N -atom system becomes 3N − 6 for N ≥ 3.

As a toy example, consider a pair of particles connected by a spring of natural length ℓ and spring constant
k. The potential energy of the system is given by

U(r1, r2) = k

2 (|r2 − r1| − ℓ)2
. (19.2)

where ri is a position vector of i-th particle. Now, we want to find the lowest energy structure. Then,
U(r1, r2) is the fitness function in the six dimensional configuration space. The solution can be found
immediately by direct inspection. When the distance between two particles equals the natural length of the
spring, the energy is exactly zero. Since the harmonic potential energy cannot be negative, it is the optimum
structure. However, the solution is not unique since any rotation of the system gives the same potential
energy. Therefore, the minimum energy configuration is not a point in the six dimensional space.

To avoid the above issue, we place the particles on the x axis. We limit the degrees of freedom to x1 and
x2. Other components of the position vectors are set to zero. This prohibits the rotation of the system. The
potential energy is

U(x1, x2) = k

2 (|x1 − x2| − ℓ)2
. (19.3)

Now the configuration space is only two-dimensional. The potential energy is plotted in Fig. The dark blue
corresponds to the configuration of low potential energy. Notice that the minimum is a diagonal line and
thus the minimum is not a unique point. This is because the translation displacement of the system does
not change the potential energy. This problem can be avoided, if we fix the position of one particle and
optimize the position of the other particle only. Letting x2 = 0, the potential energy is just

U(x1) = k

2 (|x1| − ℓ)2 (19.4)

with only one degree of freedom. Furthermore, we assume x1 > 0 since the potential does not depend on
the sign of x1. The optimized configurations are clearly x1 = ℓ, which we expected at the first place. It
is possible to ask computers to do all these reduction of degrees of freedom. However, the coding becomes
complicated in many cases. It is better to use our own brain to remove the difficulty when possible.

EXAMPLE 19.1

Consider N particles connected to eac other by identical springs. The spring has a natural length ℓ and a
spring constant k. Using the position vectors ri, i = 1, · · · , N , the potential energy is usually written
as

U(r1, r2, · · · , rN) =
∑
j>i

k

2 (|rj − ri| − ℓ)2. (19.5)

Here
∑

j>i means the summation over all possible pairs of particles without double counting. In this
expression, the parameters are three components xi, yi, and zi of ri for each particle and thus there are
3N parameters to be adjusted.

We already discussed the dimer (N = 2). For N = 3 and 4, it is easy to see that an equilateral
triangle and a tetrahedron are the minimum energy structures, respectively since every pair has the
same distance. However, the minimum energy structure for N ≥ 5 is not obvious. Is a cube the global
minimum for N = 8?

Searching for the global minimum with respect to all coordinates ri is not a good idea. We need to
remove the rotational and translation degrees of freedom. We can always put the atom 1 at the origin

488 OPTIMIZATION

Δ
F

k→

k←

F
itn
e
ss

x1 x2
x

Figure 19.2: The particles can jump between two minimums over the barrier. The transition rate k→. from
the deeper minimum at x1 to the shallow minimum at x2 is smaller than the other direction of transition rate
k←. Its ratio is given by k→/k← = e−∆F/T . The particle current is N1k→ −N2k← where Ni is the number
of particle in the basin of i-th minimum. At thermal equilibrium particle current must vanish (detailed
balance). Therefore, N1/N2 = k←/k→ > 1. At thermal equilibrium, more particles are found in the deeper
minimum than the other.

of coordinate (r1 = 0) to stop the translational motion. Now, how do we stop the rotation? If we place
any three atoms on a fixed plane. For simplicity we place the fist three atoms on the xy plane by

r1 = (0, 0, 0), r2 = (x2, 0, 0), r3 = (x3, y3, 0) (19.6)

Since six degrees of freedom are now fixed to zero, we need to optimize 3N − 6 degrees of freedom.
We have used Cartesian coordinates of the atoms to describe the geometric structure. There are other

methods. Among them, the Z-matrix is popular. It uses the distance between atoms and dihedral angles
specifying the relation of three atoms. It has no translational nor rotational freedom. The Z-matrix is
convenient when we optimize molecular geometries.[4] The Z-matrix can be converted to the Cartesian
coordinates.

19.2 Simulated Annealing

In metallurgy, defects in a material are removed by raising temperature to a certain level and cooling it down
gradually. The procedure is known as annealing. At high temperature the atoms diffuse rapidly. When the
temperature is reduced, the atoms settle down to a stable state. When cooled slowly enough, the most stable
state is formed. Ideally it is a defect-free crystal. Mathematically speaking, the annealing process can be
understood as global minimization of the system energy since the formation of defects costs some energy.

Perhaps, we can utilize the annealing mechanism to solve other optimization problems, even purely math-
ematical optimization problems unrelated to physics. In order to imitate the thermodynamics process of
annealing, we construct a fictitious thermodynamic system. Consider the fitness function F (p) as “energy”
of the system and the configuration p = (x1, · · · , xN) as “coordinates” of the atom. Note that we have only
one atom and the coordinate space is N -dimensional. We further introduce fictitious “temperature” T . At
“thermal equilibrium”, the probability to have a configuration p is assumed to be proportional to e−F (p)/T ,
analogous to the Boltzmann distribution. If we “anneal” this fictitious thermodynamical system, we should
be able to find the global minimum of the fitness function. In the following discussion, we use words like
energy or temperature for convenience but they are not real energy or temperature.

SIMULATED ANNEALING 489

Now, we let the atom diffuses at a fixed temperature. In Chapter 15, we learned the Monte Carlo
simulation of thermal equilibrium states using Metropolis algorithm. The microscopic state changes randomly
according to the Boltzmann distribution. We can use the exactly same algorithm to sample the configuration
space. Note that the atoms not always go down hill in the energy. The Metropolis method allows the atoms
to climb up the hill as long as it satisfies the detailed balance. Hence, the atoms are not confined in a basin
of a local minimum. Let Pi the probability of finding atoms at the i-th minimum. The detailed balance
suggests that when the system is at thermal equilibrium,

Pi

Pj
= e−(Fi−Fj)/T (19.7)

where Fi is the value of the fitness function at the i-th minimum. Equation (19.7) indicates that if Fi > Fj ,
then Pi < Pj . This means that the atoms are in the deeper energy minimum more often than the shallow
one. Figure 19.2 illustrates the case where there are two minimums. If temperature T is lowered, the
difference between Pi and Pj increases and it easier to identify the global minimum configuration. On the
other hand, if temperature is too low, it takes a long time to reach thermal equilibrium. Therefore, we start
with a considerably high temperature and keep the temperature constant until the thermal equilibrium is
established. Then, we slowly lower temperature so that system remains in thermal equilibrium until the
global minimum is clearly identified. This optimization procedure is called simulated annealing.

It is important to note that we identify the global minimum based on the probability distribution Pi.
To find the probability distribution, we must have a population of atoms (p1, · · · ,pK) each of which is
independently annealed. If the population size K is too small, the statistics is not accurate and we may not
have enough resolution to find the global minimum.

Theoretical speaking, the simulated annealing can find the global minimum configuration accurately by
lowering temperature to absolute zero. However, it is not practical. When the basin of the global minimum
is identified, the steepest descent or other minimization method based on the gradient is much more efficient
to go to the exact minimum. See Section 7.4

Algorithm 19.1 Simulated Annealing
1. Define a fitness function F (p) where p = (x1, · · · , xN) is a vector of size N in the given

configuration space.
2. Set an initial population (p1, · · · ,pK) at random .
3. Set an initial temperature T .
4. Repeat the following Metropolis method Nth times for all i.

(a) Pick a new configuration p′
i = pi + δpi where δpi is a small random vector.

(b) Evaluate the change in the fitness function ∆Fi = F (p′
i) − F (pi).

(c) Generate a uniform random number r between 0 and 1.
(d) If e−∆Fi > r, accept the new configuration and let pi = p′

i.
(e) Otherwise reject the new configuration and go to 4(a) until a new coordinate is found.

5. Reduce the temperature according to a cooling schedule. If T < Tc, it is done where Tc is a
cut of temperature. Otherwise go to Step 4 with the new temperature.

6. Find the basin of the minimum that has most populated. That minimum is the global mini-
mum.

490 OPTIMIZATION

-10 -5 0 5 10
x

0

2

4

6

8

10

12

14

16

18

F
itn

es
s

(a) The final population.

0 50 100 150 200
Steps

-2

-1

0

1

2

3

4

5

6

T
em

pe
ra

tu
re

/L
ow

es
t F

itn
es

s
V

al
ue

Temperature
Lowest Fitness Value

(b) Evolution of temperature and the lowest value of
the fitness.

Figure 19.3: Searching a global minimum by the simulated annealing method. Eight samplers explore the
landscape of the fitness function based on Metropolis method. (a) The fitness landscape shows several local
minimums and the rather high barrier between minimums. At the end of the annealing three out of eight
samplers are trapped in the basin of the global minimum. The remaining samplers are trapped in local
minimums. (b) The evolution of the temperature indicates the exponential cooling schedule. The lowest
fitness values among the population randomly changes when the temperature is high. As temperature is
reduced, the samples are trapped in basins of minimums and the lowest fitness value no longer changes
significantly.

EXAMPLE 19.2 One-dimensional global minimum by simulated annealing

We want to find a global minimum of a function

f(x) = 3 − 3 cos(2x) + 0.2x2 (19.8)

This function is the fitness function which depends only on one variable. We can interpret it as an
atom in one-dimensional potential well. We use a population of eight atoms to get a statistics. Eight
is not big enough in general but it works OK for this problem. Program 19.1 implements Algorithm
19.1 and solve this problem. The result is shown in Fig. 19.3. As shown in Fig. 19.3b, temperature is
lowered exponentially over 200 steps. At each step, the system was thermalized over 2000 Metropolis
steps. The lowest value of the fitness (red line) indicates that the atoms are jumping in and out from
the minimums until temperature approaches 0.5. Figure 19.3a suggests that five out of eight atoms
are found in the global minimum. Two other local minimums are occupied. No atom is found at the
remaining minimums. Therefore, the global minimum has the highest probability.

19.3 Genetic Algorithm

Evolution of biological systems roughly speaking follows the Darwin’s evolution theory. Consider a population
consisting of many diverse individuals. Some of them do not fit to the living conditions and die. The survivors
make offspring which inherits their parent’s genes and fits well to the same living conditions. After many
generations, most members in the population well fit to the conditions and survive until the condition
changes. If all members of the population are very similar, they would not survive when the living condition

GENETIC ALGORITHM 491

1st generation 2nd generation

3rd generation 4th generation

F
itn

e
ss

P
ar

e
nt

P
ar

en
t

O
ffs

p
rin

g

O
ffs

p
rin

g

D
ea

dD
e

ad

F
itn

e
ss

Figure 19.4: Schematic diagram of genetic algorithm. Evolution of a species which has only one gene.
The population consists of four individuals. The horizontal axis indicates genotype. The genes of the first
generation are chosen at random. A half of the population die due to the high fitness values. The remaining
two individuals become a bleeding pair and generate two children whose genotype is between parent’s gene.
Now the size of population is back to four. The same process is repeated. The third and forth generations
are shown. The unfit individuals die and the survived individuals are localized near the global minimum.

Offspring of MutantMutation

F
itn

e
ss

Figure 19.5: Effects of mutation: The left panel shows that all four individuals are trapped in the basin of a
local minimum. Their children will be also in the same basin. To avoid this situation, an individual jumps
to a random location (pink). This is the mutation. After the mutation, the individuals with higher fitness
values die. If the mutated individual happened to fit better than others, it survives. The children born from
the mutant are now outside of the basin of the local minimum. Now the four individuals are spread over
three different minimums and thus the diversity of the population increased by the mutation.

492 OPTIMIZATION

changes. However, the species survives because mutation keeps the diversity in the population. Upon the
change of the conditions, only a few members may survive and their offspring tends to survive. After several
generations, the size of the population recovers.

Learning from this remarkable process, we utilize the selection and mutation rules to navigate the pop-
ulation toward the minimum of the fitness function. After certain generation, their descendants populated
at the global minimum (the best place to live). We consider again the configuration p = {xi} as before. By
analogy from the biological evolution, p represents an individual in the population and the parameters {xi}
are its genes. A population consists of N individuals (p1, · · · , pN). A fitness function F (p) determines if
the individual fits to the current living condition. The individual fits better when the value of the fitness is
smaller. The optimal genes {x∗i } corresponds to the global minimum of the fitness.

Now we construct the fictitious evolution process. There are many possible evolution processes. He we
consider a simple one. First, we set a selection rule. The individuals with higher fitness values are considered
unfit and a half of population whose fitness value is above the median die. Figure 19.4 illustrates the evolution
process. Four individuals are generated at random. This is the 1st generation. Two individuals with high
fitness values die (colored grey in the second generation diagram). At this point only two individual survives
in the population.

After death of unfit individual, the population needs to make offspring. To do so, first we need to pair
two individuals. This is based on the popular form of life on the earth. In a fictitious biological world, it is
in principle possible that more than two individuals get married and make offspring inheriting genes from
all parents. For simplicity, we assume that a couple of individuals are mated. As a simplest mating rule, we
just make a pair at random. Algorithm of random paring will be discussed shortly after the overview of the
genetic algorithm is presented.

Once a couple is formed, they make two babies so that the population is back to the original size. We
need a rule to determine the genes of the babies. There are many other possible rules depending on the type
of optimization problems. Here we use a simple formula:

pbaby1 = ξpadult1 + (1 − ξ)padult2, pbaby2 = (1 − ξ)padult1 + ξpadult2 (19.9)

where ξ is a uniform random number between 0 and 1. This rule make it sure that the genes of the babies
are between the genes of the two parents. The fitness of the new genes is not necessarily lower than that of
the parents.

After the population recovers its original size, some of the individuals undergo mutation. Again, there
are many different way to introduce mutation. A simple example uses a mutation rate kmutation ∈ (0, 1).
Generate a uniform random number r for each individual. If r < kmutation then mutation takes place
and change the genes of the individual also at random. Figure 19.5 shows how mutation helps. When all
individuals in the population are trapped in a local minimum. The offspring they generates also in the same
minimum. However, if mutation happens, the offspring escape from the minimum. Mutation is important
to keep the diversity in the population. Otherwise, the whole population could trapped in a local minimum.
Usually we use a different mutation rate for each generation. In some cases, a proper variation of the
mutation rate increase the computation time dramatically.

Now we completed the formation of a new generation. By repeating the procedure, gradually the pop-
ulation drift to the global minimum. See the third and forth generations in Fig. Figure 19.4. All unfit
individuals are dead and those who have lower fitness survives in the global minimum.

An important and difficult question is when we stop the procedure. We monitor the lowest fitness value
among the population. If that does not change for many generations, we hope that one of the individuals
arrived at the global minimum. The waiting time must be sufficiently long so that mutation happens at least
several times to make it sure that the population is not stuck in a local minimum. Algorithm 19.2 summarizes
the procedure. Like the simulated annealing method, the genetic algorithm identify the basin of the global
minimum within a reasonable computing time but takes too long to reach the true global minimum. AS

GENETIC ALGORITHM 493

1??

21? 12?

312 231 213 321 132 123

1 2

1 2 3 1 2 3

Figure 19.6: Knuth shuffle algorithm

soon as we find the basin of gloabl minimum we can use steepest descent or other minimization methods
based on the gradient of the fitness function.

Now, we introduce an algorithm of random paring. Consider individuals with an ID number 1 through
M . We want to make N/2 pairs at random. If N is not an even integer, there is one individual who will
not have a mate and thus it cannot produce offspring. The random pairing is equivalent to a problem of
random permutation. For N = 4, we have a sequence {1234}. When it is randomly permuted, we obtained,
for example, {4132}. Then, we make pairs in the order of the permuted sequence. For this example, (4,1)
and (3,2) are the two couples. There is a simple algorithm to generate random permutation of integers from
1 through N . Figure 19.6 shows an algorithm called the Knuth shuffle. The rule is simple. We are going to
place integers from 1 through N in N empty seats. When we place j, we chose a seat at random between
seat 1 and seat j. If the seat is already occupied, the content of the seat will be relocated to seat j. Just
repeat this procedure from j = 1 to j = N . For N = 3 (See Fig 19.6), we start with j = 1. There is only
one allowed seat and thus 1 go to seat 1. j = 2 has two possibilities, seat 1 or 2. Use a random number
to choose one. If seat is 2, just put 2 there since the seat is unoccupied. If seat 1 is selected, put 2 there.
and the previous occupant bumps out to seat 2. For j = 3, there are three seats. Choose one at random.
If the selected seat is already occupied, put 3 there and the previous occupant bumps out to seat 3. At the
end, we have six different outcomes with equal probability. Since the total number of permutation is 3! = 6,
all of them are counted. The following code generates the random permutation. (MATLAB has a built-in
function for random permutation, see help for randperm(n).)

for i=1:n
j=ceil(rand(1)*i);
p(i)=p(j);
p(j)=i;

end

494 OPTIMIZATION

Algorithm 19.2 Genetic Algorithm for continuous parameters
1. Define a set of parameters p = {x1, x2, · · · , xN } which corresponds to the property of the

individual p.
2. Define a fitness function F (p) ≡ F (x1, x2, · · · , xN). The fitness of the individual is evaluate

by the fitness function.
3. Define a selection rule based on the fitness. For example anyone whose fitness is larger than a

cut off Fc or the worst 20% will be killed.
4. Generate an initial population consisting of M individuals {p1, p2, · · · , pM } at random.
5. Evaluate the fitness of each individual F (pi) and then determine which ones die based on the

selection rule.
6. Pair survived individuals for mating at random.
7. Generates two offspring from each mating couples until the size population becomes M again.

(Deads are replaced with children.) The parameter values of the offspring will be

pchild 1 = pi + ξ(pj − pi), pchild 2 = pj + ξ(pi − pj)

where pi and pj are their parents and ξ is a uniform random number between 0 and 1.
8. Mutate some individual. Generate a uniform random number ξ. If ξ < kmutation, then mutation

occurs. Select an individual at random and change its parameter values at random.
9. Now we have a new generation of population. Decide if some of them are at the global minimum

of the fitness. If the lowest fitness does not change for many generations, we hope that at least
some are at the lowest point.

10. If yes, stop the procedure. Otherwise, go to Step 4.

EXAMPLE 19.3 One-dimensional Global Optimization

We solve the same problem as Example 19.2 but with the genetic algorithm this time. First, we generate
an initial population consisting of N = 32 individuals {x1, · · · , x32}, which is distributed uniformly
random over the range of the variable x. It is convenient if the number of individual is a power of 2.

Now we enter the selection phase. We evaluate the fitness of the individuals, Fi = F (xi) and then
sort the individuals based on the fitness values

Fxi1
≤ Fxi2

≤ · · · ≤ FxiN
(19.10)

We assume that upper 50% of population die due to misfitting. The individuals from xiN/2+1 to xiN

are dead. There are many sorting algorithm. Here we just use the sorting function built in MATLAB.
Many systems such as Linux provides various sorting functions.

Mating is the next step. Survivors from xi1 to xiN/2 pick their mate at random using the Knuth
algorithm. Each mating couple produces two offspring so that the size population recovers from the
death of misfit individuals. The gen of the childrens are determined by the rule explained in Algorithm
19.2.

Final step is mutation. Now, we have a new generation of the population with a certain diversity. In
this world, there is no age. The individual can survive forever as long as it fits to the living condition.
We repeat this procedure and after certain generations and the population will hopefully find a ultimate
gene with which the fitness function takes the lowest value. But when does it happen? This is an big

APPLICATIONS IN PHYSICS 495

Generation
0 10 20 30 40 50 60

B
es

t F
itn

es
s

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 19.7: The evolution of the best fitness value. The best gene of the population gradually improves as
the generation moves on. After 20th generation, the best fitness stays almost constant, indicating that the
global minimum is discovered.

Table 19.1: Data set for Gaussian distribution

x -1.98 -1.48 -1.00 -0.50 -0.02 0.51 1.019 1.52 1.99 2.52 3.00 3.52 3.99

f̄ 0.10 0.11 0.31 0.65 1.28 1.785 2.13 1.92 1.73 0.70 0.31 0.14 0.14

σ 0.14 0.11 0.15 0.18 0.18 0.12 0.11 0.10 0.16 0.15 0.10 0.17 0.18

problem of the generic algorithm. There is no general rule that guarantees the global minimum. If the
whole population is stuck in a local minimum, they must wait until mutation brings some individuals
out of the local minimum. It might take a long time to escape from the local minimum. A common
method is to limit the waiting time τ . We check the lowest fitness Fi1 for every generation. If it does not
change over the given waiting period. We assume that Fi1 is the global minimum. The waiting period
must be long enough that the mutation happens many time during the waiting period. That is τk ≫ 1.

Program 19.2 implements the above algorithm and find the global minimum of the given function
within the given range. Simple selection, mating, inheritance, and mutation rules given in Algorithm
19.2 is used. In particular, a fixed mutation rate is used. Figure 19.7 shows that the best gene within the
population gets better as the generation goes on. After 20th generation, the improvement is no longer
seen, suggesting that the global minimum is discovered.

19.4 Applications in Physics

19.4.1 Fitting to Gaussian Distribution

In Chapter 11, we fitted a noisy data with a Lorentzian function using the nonlinear least square fitting
method (See Example 11.5). It worked very well. However, since the nonlinear χ2 function can have
multiple minimums, the nonlinear least square fitting is not guaranteed to work. If we tried to fit a noisy
Gaussian like data with a single Gaussian function using the least square fitting method, most likely it fails.
The matrix becomes very close to singular and linear equation cannot be solve accurately by numerical
methods.

496 OPTIMIZATION

x
-1 0 1 2 3

f(
x)

-0.5

0

0.5

1

1.5

2

2.5

Figure 19.8: The noisy data (Table 19.1) is plotted with red circles with the error bars. The solid line is the
result of the optimization using the genetic algorithm.

The genetic algorithm does not suffer from such difficulties. Consider a Gaussian function

f(x; a, b, c) = ae−(x−b)2/c (19.11)

where a, b, and c are the parameters to be adjusted. We want to fit the data set f̄i with error σi measured
at xi, i = 1, · · · ,M with the Gaussian function. The data is given in Table 19.1. As discussed in Chapter
11, the fitness function is given by

F (a, b, c) =
K∑
i

(
f(xi; a, b, c) − f̄i

)2
/σ2

i (19.12)

The i-the individual carries three genes, xj = (aj , bj , cj) and the genes are bound by a lower and upper limit.
For example, amin < aj < amax. The population consists of N individuals as p = (x1, x2, · · · , xN). We use
exactly the same algorithm as before. It is noted that the inheritance rule is the same for all genes, that is

xchild 1 = xi + ξ(xj − xi), xchild 2 = xj + ξ(xi − xj). (19.13)

The same random number ξ should be used for all genes so that the genes of offspring are between the
parents’ genes. We use a slightly different mutation rule. All members of the population are subject to the
mutation at each generation cycle. More than one members can be mutated at every generation cycle.

Program 19.3 fits the noisy data with the Gaussian function. The result is plotted in Fig. 19.8. The
fitting is quite reasonable. After 3118 generations, we obtained the best gene a = 2.09, b = 1.11, c = 2.21.
This values could be further optimizaed by the steepest descent. However, the fitting seems already good
enough.

19.4.2 Thomson problem

Consider N identical point charges q placed on the surface of a sphere as shown in Fig. 19.9. The charges is
free to move on the surface. We want to know the lowest energy configuration of the charges. This problem
is known as Thomson problem.[5] The lowest energy known at present is listed in WiKipedia for N=2 to 470.
We know the exact solution only for N=1–6 and 12. For other sizes, it is not yet known that the observed
lowest energy is actually the global minimum. The Thomson problem is still an unsolved mathematical
problem. It is also important for physics, for example, in connection to the atomic structure.[6].

APPLICATIONS IN PHYSICS 497

Figure 19.9: Thomson problem: Place N point charges on the surface of a sphere such that the electrostatic
potential energy is at the global minimum.

We attempt to solve this problem numerically using the genetic algorithm. The energy of the system is
simply Coulomb energy

U(r⃗1, r⃗2, · · · , r⃗N) = q

4πϵ0

∑
i>j

1
|r⃗i − r⃗j |

(19.14)

where r⃗i is the position vector for the i-th charge and its component is expressed in a spherical coordinate

xi = R sin θi cosϕi, yi = R sin θi sinϕi, zi = R cos θi (19.15)

where R is the radius of the sphere and θi and ϕi are elevation and azimuthal angles.
To find the global minimum of energy, we use the potential energy as a fitness function and optimize it

with respect to the angular variables using the genetic algorithm. Since the global rotation does not change
the energy, we set

θ1 = 0, ϕ1 = ϕ2 = 0. (19.16)

Hence, the number of variables (genes) is 2N − 3. This fitness function has many local minimums very close
to the global minimum and thus the finding the global minimum is challenging. For N = 5, the answer is
known to be E(5) = 6.474691495. For N = 8, E(8) = 19.675 is the lowest energy discovered up-to-now.

The simple mutation we used does not work well for the present problem. In Program 19.4, the mutation
rate changes randomly, occasionally the mutation rates jumps to a high value. It turns out that this burst
of the mutation improves the optimization significantly. We assume that the mutation rate bursts every ten
generations.∗

For N = 5, we find E(5) = 6.4746914947 and the configuration is triangular dipyramid (D3h) in perfect
agreement with known results.

∗This significant improvement was noted by Alex Skinner who took this course in 2014.

498 OPTIMIZATION

19.5 Problems

19.1 In Example 19.1, we constructed a fitness function for a fictitious molecule where all atoms are con-
nected by identical springs. Find the lowest energy structure for N = 5.

PROBLEMS 499

MATLAB Source Codes

Program 19.1
%**
%* Example 19.2 *
%* filename: ch19pr01.m *
%* program listing number: 19.1 *
%* *
%* This program attempt to find a grobal minimum of a fitness *
%* function U(x) using simulated annealing. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
close all
clc

L=241; % size of the descretized configuration space
dx=0.1;
xmin=(121-L)*dx; % bound of the configuration space
xmax=(L-121)*dx;
x=linspace(xmin,xmax,L);

% fitness function
U=@(x) -3.*cos(2.*x)+0.2*x.ˆ2+3.0;

% graphics parameter
movie=false; % movie slows down the simulation

NP=2ˆ3; % population size
p=rand(NP,1)*(xmax-xmin)+xmin; % initial configuration
T=5; % initial temperature
E=U(p); % initial fitness
dp=0.1; % Metropolis max step length

NT=200; % Total cooling steps
NS=2000; % Total thermalization steps
RT=0.98; % Cooling rate

if movie
figure(1)
set(gcf,'units','inches','position',[1,1,6,5])

end

for k=1:NT % Cooling Loop
temp(k)=T;

for i=1:NS % Thermalization Loop (Metropolis)

for j=1:NP % Loop over population

found=false;
while not(found)

p0=p(j)+(1-2*rand(1))*dp;
E0=U(p0);
if exp(-(E0-E(j))/T) > rand(1)

found=true;
if p0<xmin || p0>xmax

p(j)=rand(1)*(xmax-xmin)+xmin;
E(j)=U(p(j));

else

500 OPTIMIZATION

p(j)=p0;
E(j)=E0;

end
end

end
end

if movie && mod(i,10)==0 % update movie
plot(x,U(x))
xlim([xmin,xmax])
ylim([-1,19])
hold on
for j=1:NP

rectangle('Position',[p(j)-0.25,U(p(j))-0.25,0.5,0.5],...
'Curvature',[1 1],'FaceColor','b');

end
drawnow
hold off

end

end
Emin(k)=min(E);
fprintf('T=%f, Emin=%f\n',T,Emin(k))

T=T*0.98; % Exponential cooling schedule
end

fprintf('Final Temperature = %d\n',temp(200));
fprintf('Final Lowest Fitness = %d\n', Emin(200));

figure(1)
q=plot(x,U(x));
xlim([xmin,xmax])
ylim([-1,19])
xlabel('x','fontsize',14)
ylabel('Fitness','fontsize',14)
hold on
for j=1:NP
rectangle('Position',[p(j)-0.25,U(p(j))-0.25,0.5,0.5],'Curvature',[1 1]);
end
drawnow
hold off

figure(2)
q=plot([1:200],temp,[1:200],Emin);
set(q(1),'color','black')
set(q(2),'color','red')
ylim([-2,6]);
xlabel('Steps','fontsize',14)
ylabel('Temperature/Lowest Fitness Value','fontsize',14)
legend('Temperature','Lowest Fitness Value')

▲▲▲

Program 19.2
%**
%* Example 19.3 *
%* filename: ch19pr02.m *
%* program listing number: 19.2 *
%* *
%* This program findw a grobal minimum of a fitness function U(x) *

PROBLEMS 501

%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
close all

L=121; % size of the descretized configuration space
dx=0.1;
xmin=0; % bound of the configuration space
xmax=(L-1)*dx;
x=[0:L-1]*dx;
U=@(x) cos(5*x)-2*sin(3.5*x)+0.5*cos(x+0.5)+4; % fitness function

% parameter sof genetic algorithm
N=2ˆ8; % size of population
p=rand(N,1)*xmax; % initial population
max_count=100; % waiting time
mutaion=0.1; % mutation rate (fixed)

% initial fitness
f=U(p);
[f_sort,ix]=sort(f);
fmin=f_sort(1);
q=p(ix); % q=individual in the order of their fitness

% plot initial population
figure(1)
set(gcf,'units','inches','position',[1,1,6,6])
plot(x,U(x))
axis([xmin xmax -1 11])
hold on
for i=1:N;

rectangle('Position',[p(i)-0.2,U(p(i))-0.2,0.4,0.4],'Curvature',[1 1]);
end
drawnow
hold off

count=0;
found=false;
ip=zeros(N/2,1);
generation=0;

while not(found)
generation=generation+1;
pause(0.1)
%%
% select mating pairs from survivors (Knuth shuffle)
for i=1:N/2

j=ceil(rand(1)*i);
ip(i)=ip(j);
ip(j)=i;

end
% The following MATLAB builtin function can be used in place for
% the above Knuth shuffle
% ip=randperm(N/2);
%%%

% generate offspring

502 OPTIMIZATION

for k=1:2:N/2

i=ip(k);
j=ip(k+1);
g=rand(2);

% replace the deads with the new borns
q(k+1+N/2)= q(i)+g(1)*(q(j)-q(i)+0.01); % inheritance
q(k+2+N/2)= q(j)+g(2)*(q(i)-q(j)+0.01); % inheritance

end

% mutation
if mod(generation,10)==0

mutation=0.8;
else

mutation=0.1;
end
if rand(1)<mutaion

i=ceil(rand(1)*N);
q(i)=rand(1)*xmax;

end

p=q; % store new population

% evaluate fitness
f=U(p);
% plot the current generation
plot(x,U(x))
axis([xmin xmax -1 11])
hold on
for i=1:N;

rectangle('Position',[p(i)-0.2,U(p(i))-0.2,0.4,0.4],'Curvature',[1 1]);
end
drawnow
pause(0.5);
hold off

% sort the population
[f_sort,ix]=sort(f);
q=p(ix);

% check if converged
if f_sort(1)>=fmin

count=count+1;
if count > max_count

found=true; % waited long enough
end

else
count=0; % reset wating couter
fmin=f_sort(1);
fprintf('New low found: generation=%d fitness=%.15f\n',generation,fmin)

end

bestfit(generation)=fmin;

end

fprintf('optimal x=%f, U(x)=%f\n',q(1),f_sort(1))

figure(2)
plot([1:generation],bestfit(1:generation),'-or')

PROBLEMS 503

hold on
axis([0 generation 0.4 1])
xlabel('Generation','fontsize',14)
ylabel('Best Finess','fontsize',14)

▲▲▲

Program 19.3
%**
%* Section 19.4.1 *
%* filename: ch19pr03.m *
%* program listing number: 19.3 *
%* *
%* This program fits a Gaussian disitrbution to a noisy data set *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/02/2017. *
%**

% Generate an experimental data set
N=13;
x=[-1.98,-1.48,-1.00,-0.50,-0.02,0.51,1.02,1.52,1.99,2.52,3.00,3.52,3.99];
y=[0.10, 0.11, 0.31, 0.65, 1.28,1.79,2.13,1.92,1.73,0.70,0.31,0.14,0.14];
s=[0.14, 0.11, 0.15, 0.18, 0.18,0.12,0.11,0.10,0.16,0.15,0.10,0.17,0.18];

% theoretical data space
K=101;
dx=(x(N)-x(1))/(K-1);
X=linspace(x(1),x(N),K);

% control parameter for genetic algorithm
NP=2ˆ10;
MP=int32(NP/2);
max_count=200;
max_generation=10000;

% parameter spce (genes)
a_max=5; a_min=0;
b_max=5; b_min=-5;
c_max=5; c_min=0.01;

% initial parameters (genes)
a=rand(NP,1)*(a_max-a_min)+a_min;
b=rand(NP,1)*(b_max-b_min)+b_min;
c=rand(NP,1)*(c_max-c_min)+c_min;

% allocate arrays
ip=zeros(1,MP);
F=zeros(1,NP);
G=zeros(N,NP);

% graphics setting
close all;
movie = true;
if movie

figure(1);
axis([x(1) x(end) -0.5 2.5]);

end

504 OPTIMIZATION

% reset the counters
found=false;
count=0;
generation=0;
Fmin=realmax(); % some large number

% genetic evolution begins here
while not(found)

generation=generation+1;
if generation > max_generation % too many generations

fprintf('Max generation reached. Terminated.\n');
break;

end

% eveluate the initial fitness
for i=1:NP

for j=1:N
G(j,i)=a(i)*exp(-(x(j)-b(i))ˆ2/c(i));

end
F(i)=sum((G(:,i)-y(:)).ˆ2./s(:))/N;

end

% sort the population based on thier fitness
[Fs, IX]=sort(F);
as=a(IX); bs=b(IX); cs=c(IX);

if movie
% plot current best fitting
Y=as(1)*exp(-(X-bs(1)).ˆ2/cs(1));
r=plot(X,Y);
set(r,'linewidth',2)
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off
axis([x(1) x(N) -0.5 2.5]);
drawnow
pause(0.2)

end

% check if converged
if Fs(1)>=Fmin

count=count+1;
if count > max_count % exceed the waiting time limit

found=true;
break

end
else

count=0; %reset wating time counter
Fmin=Fs(1); % new lowest fitness
a0=as(1); b0=bs(1); c0=cs(1);
fprintf('New low found: generation=%i, fitness= %.15f, a=%f, b=%f, c=%f\n',...

generation,Fmin,a0,b0,c0)
end

% find mating pairs from the survived population
ip=randperm(MP);

PROBLEMS 505

% generate offsprings
for k=1:2:MP

g=rand(6);
i=ip(k);
j=ip(k+1);
as(k+1+NP/2)= as(i)+g(1)*(as(j)-as(i)+0.01);
as(k+2+NP/2)= as(j)+g(2)*(as(i)-as(j)+0.01);
bs(k+1+NP/2)= bs(i)+g(3)*(bs(j)-bs(i)+0.01);
bs(k+2+NP/2)= bs(j)+g(4)*(bs(i)-bs(j)+0.01);
cs(k+1+NP/2)= cs(i)+g(5)*(cs(j)-cs(i)+0.01);
cs(k+2+NP/2)= cs(j)+g(6)*(cs(i)-cs(j)+0.01);

end

% mutation rate (every 10 generations, mutation burst happens
if mod(generation,10)==0

mutation=0.8;
else

mutation=0.1;
end

% mutation
rm=rand(1,NP);
for i=2:NP

if rm(i)<mutation
as(i)=rand(1)*(a_max-a_min)+a_min;
bs(i)=rand(1)*(b_max-b_min)+b_min;
cs(i)=rand(1)*(c_max-c_min)+c_min;

end
end

% store genes of new population
a=as; b=bs; c=cs;

end

fprintf('Best fit=%.15f, a=%f, b=%f, c=%f\n',Fmin,a0,b0,c0)

% plot the best fitting
if not(movie)

figure(1);
axis([x(1) x(end) -0.5 2.5])

end

Y=a0*exp(-(X-b0).ˆ2/c0);
r=plot(X,Y);
set(r,'linewidth',2)
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
axis([x(1) x(N) -0.5 2.5]);
hold off
drawnow

▲▲▲

Program 19.4
%**
%* Section 19.4.2 *
%* filename: ch19pr04.m *

506 OPTIMIZATION

%* program listing number: 19.4 *
%* *
%* This program solves the Thomson problem using genetic algorithm. *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Improved by Alex Skinner. *
%* Last modification: 04/02/2017. *
%**
clear all;

% system parameters
N=5;
R=1;

% parameters for genetic algorithm
NP=2ˆ12; % population size
MP=int32(NP/2); % half of the population
max_count=200; % stopping condition
max_generation=10000; % maximum generation

% parameter space (genes)
th_max=pi; th_min=0;
ph_max=2*pi; ph_min=0;

% initial parameters (genes)
th=rand(N,NP)*(th_max-th_min)+th_min;
ph=rand(N,NP)*(ph_max-ph_min)+ph_min;
th(1,:)=0;
ph(1,:)=0;
ph(2,:)=0;
th(3,1)=th_max;
ph(3,2)=ph_max;

% allocate arrays
ip=zeros(1,MP);
F=zeros(1,NP);
phs=zeros(N,NP);
ths=zeros(N,NP);

% reset the counters
found=false;
count=0;
generation=0;
Fmin=realmax();

% genetic evolution begins here
while not(found)

generation=generation+1;
if generation > max_generation % too many generations

fprintf('Max generation reached. Terminated.\n')
break;

end

% eveluate the initial fitness
for i=1:NP

F(i)=UCoulomb(th(:,i),ph(:,i),R);
end

% sort the population based on thier fitness

PROBLEMS 507

[Fs, IX]=sort(F);
ths=th(:,IX); phs=ph(:,IX);

% check if converged
if Fs(1)>=Fmin

count=count+1;
if count > max_count % exceed the waiting time limit

found=true;
break

end
else

count=0; %reset wating time counter
Fmin=Fs(1);
fprintf('New low found: generation=%i, fitness= %.15f\n',generation,Fmin)

end

% find mating pairs from the survived population
ip=randperm(MP);

% generate offsprings
for k=1:2:NP/2

% g ranges from -1 to 1
g=-2*rand(2)+1;
i=ip(k);
j=ip(k+1);
ths(:,k+1+MP)= ths(:,i)+g(1)*(ths(:,j)-ths(:,i));
ths(:,k+2+MP)= ths(:,j)+g(2)*(ths(:,i)-ths(:,j));
phs(:,k+1+MP)= phs(:,i)+g(1)*(phs(:,j)-phs(:,i));
phs(:,k+2+MP)= phs(:,j)+g(2)*(phs(:,i)-phs(:,j));

end

% mutation rate
if mod(generation,10)==0

mutation=0.8*rand();
else

mutation=0.3*rand();
end

% mutation
rm=rand(NP,1);
for i=2:NP

if rm(i)<mutation
ths(:,i)=rand(N,1)*(th_max-th_min)+th_min;
phs(:,i)=rand(N,1)*(ph_max-ph_min)+ph_min;
ths(1,i)=0;
phs(1:2,i)=0;

end
end

% store new population
th=ths; ph=phs;

end

fprintf('Lowest Energy=%.15f\n',Fmin)
for i=1:N

fprintf('theta=%f, phi=%f\n',ths(i),phs(i))
end

for i=1:N
X(i)=R*sin(ths(i,1))*cos(phs(i,1));
Y(i)=R*sin(ths(i,1))*sin(phs(i,1));

508 OPTIMIZATION

Z(i)=R*cos(ths(i,1));
end

close all;
figure(1)
plot3(X,Y,Z,'o')
axis equal;
xlim([-1,1]);
ylim([-1,1]);
zlim([-1,1]);
grid on
hold on
drawnow

bond=10.0;
for i=1:N

for j=i+1:N
d=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
bond = min(bond,d);

end
end
bond=bond*1.25;
for i=1:N

for j=i+1:N
d=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
if d <= bond

line([X(i),X(j)],[Y(i),Y(j)],[Z(i),Z(j)]);
drawnow;

end
end

end
hold off

%**
%* filename: UCoulomb.m *
%* *
%* Function called by ch19pr04.m *
%**
function UC=UCoulomb(theta,phi,r)

N=size(theta,1);
UC=0;
X=sin(theta).*cos(phi);
Y=sin(theta).*sin(phi);
Z=cos(theta);
for i=1:N

for j=i+1:N
r12=sqrt((X(i)-X(j))ˆ2+(Y(i)-Y(j))ˆ2+(Z(i)-Z(j))ˆ2);
UC=UC+1.0/(r12*r);

end
end

▲▲▲

Python Source Codes

Program 19.1

PROBLEMS 509

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 19.2 *
%* filename: ch19pr01.py *
%* program listing number: 19.1 *
%* *
%* This program attempt to find a grobal minimum of a fitness *
%* function U(x) using simulated annealing. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

plt.close('all')

system setting
L=241 # size of the descretized configuration space
dx=0.1 # grid size
xmin=0.0 # lower bound of the configuration space
xmax=(L-1)*dx # upper boound
x=np.linspace(xmin,xmax,L)

def U(x): # fitness function
return -3.*np.cos(2.*(x-xmax/2.))+0.2*(x-xmax/2.)**2+3.0

graphics parameter
movie=False # show animation

NP=2**3 # population size
p=np.random.rand(NP)*(xmax-xmin)+xmin # initial configuration
T=5.0 # initial temperature
E=U(p) # initial fitness
dp=0.1 # Metropolis max step length

NT=200 # Total cooling steps
NS=2000 # Total thermalization steps
RT=0.98 # Cooling rate

allocate arrayss
temp=np.zeros(NT)
Emin=np.zeros(NT)

if movie:
plt.figure(figsize=(6,5))

for k in range(0,NT): # loop over time step
temp[k]=T

for i in range(0,NS): # Thermalization Loop (Metropolis)

for j in range(0,NP): # Loop over population

found=False
while not(found):

p0=p[j]+np.random.choice([-1,1])*dp
E0=U(p0)

510 OPTIMIZATION

if np.exp(-(E0-E[j])/T) > np.random.rand(1):
found=True
if p0<xmin or p0>xmax:

p[j]=np.random.rand(1)*(xmax-xmin)+xmin
E[j]=U(p[j])

else:
p[j]=p0
E[j]=E0

if movie: # update movie
plt.clf()
plt.plot(x,U(x))
plt.xlim([xmin,xmax])
plt.ylim([-1,19])

for j in range(0,NP):
circle=plt.Circle((p[j],U(p[j])),0.25,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Emin[k]=np.min(E)
print('T={0:f}, Emin={1:f}'.format(T,Emin[k]))

T=T*0.98 # Exponential cooling schedule

print('Final Temperature = {0:f}'.format(temp[k]))
print('Final Lowest Fitness = {0:f}'.format(Emin[k]))

if not(movie):
plt.figure(figsize=(6,5))
plt.plot(x,U(x))
plt.xlim([xmin,xmax])
plt.ylim([-1,19])

for j in range(0,NP):
circle=plt.Circle((p[j],U(p[j])),0.25,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

plt.xlabel('x',fontsize=14)
plt.ylabel('Fitness',fontsize=14)
plt.show()

plt.figure(figsize=(6,5))
t=np.linspace(1,NT,NT)
plt.plot(t,temp,'-k',label='temperature')
plt.plot(t,Emin,'-r',label='energy')
plt.xlabel('Steps',fontsize=14)
plt.ylabel('Energy',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 19.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 19.3 *
%* filename: ch19pr02.py *

PROBLEMS 511

%* program listing number: 19.2 *
%* *
%* This program findw a grobal minimum of a fitness function U(x) *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
plt.close('all')

#system configuration
L=121 # size of the descretized configuration space
dx=0.1 # grid size
xmin=0.0 # lower bound of the configuration space
xmax=(L-1)*dx # upper bound
x=np.linspace(xmin,xmax,L)

def U(x): # fitness function
return np.cos(5.0*x)-2.0*np.sin(3.5*x)+0.5*np.cos(x+0.5)+4.0

parameter sof genetic algorithm
N=2**8 # size of population
M=np.int(N/2)
p=np.random.rand(N)*xmax # initial population

max_count=100 # waiting time
mutaion=0.1 # mutation rate (fixed)
max_generation=10000
bestfit=np.zeros(max_generation)

initial fitness
f=U(p) # fitness
ix=np.argsort(f) # sorting population basd on their fitness
fmin=f[ix[0]]
q=p[ix]
bestfit[0]=fmin

plot initial population
plt.figure(figsize=(6,6))
plt.plot(x,U(x))
plt.xlim([xmin, xmax])
plt.ylim([-1, 11])
plt.axis('equal')

for i in range(0,N):
circle=plt.Circle((p[i],U(p[i])),0.2,facecolor='none', edgecolor='b')
plt.gca().add_patch(circle)

plt.pause(0.0001)

count=0;
found=False
ip=np.zeros(M)
generation=0;

while not(found):
generation=generation+1
if generation > max_generation:

print('Max generation reached. Terminated.')

512 OPTIMIZATION

break

ip=np.random.permutation(M)

generate offspring
for k in range(0,M,2):

i=ip[k]
j=ip[k+1]
g=np.random.rand(2)
replace the deads with the new borns
q[k+M]= q[i]+g[0]*(q[j]-q[i]+0.01) # inheritance
q[k+1+M]= q[j]+g[1]*(q[i]-q[j]+0.01) # inheritance

mutation
if np.mod(generation,10)==0:

mutation=0.8
else:

mutation=0.1

if np.random.rand(1)<mutaion:
i=np.random.randint(0,N)
q[i]=np.random.rand(1)*(xmax-xmin)

p=q # store new population

evaluate fitness
f=U(p)
plt.clf()
plt.plot(x,U(x))
plt.xlim([xmin, xmax])
plt.ylim([-1, 11])

for i in range(0,N):
circle=plt.Circle((p[i],U(p[i])),0.2,facecolor='none', edgecolor='b')
plt.gca().add_patch(circle)

plt.pause(0.0001)

sort the population
ix=np.argsort(f)
q=p[ix]

#check if converged
if f[ix[0]]>=fmin :

count=count+1
if count > max_count:

found=True # waited long enough

else:
count=0 # reset wating couter
fmin=f[ix[0]]
print('New low found: generation={0:d} fitness={1:.15f}'.format(generation,fmin))

bestfit[generation]=fmin

print('optimal x={0:f}, U(x)={1:f}'.format(q[0],f[ix[0]]))

plt.figure(figsize=(6,5))
t=np.linspace(0,generation,generation+1)
plt.plot(t,bestfit[0:generation+1],'-or',mfc=None)
plt.xlabel('Generation',fontsize=14)

PROBLEMS 513

plt.ylabel('Best Finess',fontsize=14)
plt.show()

▲▲▲

Program 19.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 19.4.1 *
%* filename: ch19pr03.m *
%* program listing number: 19.3 *
%* *
%* This program fits a Gaussian disitrbution to a noisy data set *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 04/02/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

sample experimental data set
N=13
x=[-1.98,-1.48,-1.00,-0.50,-0.02,0.51,1.02,1.52,1.99,2.52,3.00,3.52,3.99]
y=[0.10, 0.11, 0.31, 0.65, 1.28,1.79,2.13,1.92,1.73,0.70,0.31,0.14,0.14]
s=[0.14, 0.11, 0.15, 0.18, 0.18,0.12,0.11,0.10,0.16,0.15,0.10,0.17,0.18]

theoretical data space
K=101
X=np.linspace(x[0],x[-1],K)

control parameter for genetic algorithm
NP=2**10 # population size
MP=np.int(NP/2) # half of the population
max_count=200 # stopping condition
max_generation=10000 # maximum generation

parameter space (genes)
a_max=5.0; a_min=0.0
b_max=5.0; b_min=-5.0
c_max=5.0; c_min=0.01

initial parameters (genes)
a=np.random.rand(NP)*(a_max-a_min)+a_min
b=np.random.rand(NP)*(b_max-b_min)+b_min
c=np.random.rand(NP)*(c_max-c_min)+c_min

allocate arrays
ip=np.zeros(MP)
F=np.zeros(NP)
G=np.zeros((N,NP))

graphics setting
plt.close('all')
movie = True
if movie:

plt.figure(figsize=(6,5))
plt.axis([x[0], x[-1], -0.5, 2.5])

514 OPTIMIZATION

reset the counters
found=False
count=0
generation=0
Fmin=np.finfo(np.float64()).max # some large number

genetic evolution begins here
while not(found):

generation=generation+1
if generation > max_generation: # too many generations

print('Max generation reached. Terminated.')
break

eveluate the fitness
for i in range(0,NP):

for j in range(0,N):
G[j,i]=a[i]*np.exp(-(x[j]-b[i])**2/c[i])

F[i]=np.sum((G[:,i]-y[:])**2/s[:])/N

sort the population based on thier fitness
IX=np.argsort(F)
A=a[IX]; B=b[IX]; C=c[IX]

if movie:
#plot current best fitting
plt.clf()
Y=A[0]*np.exp(-(X-B[0])**2/C[0])
plt.plot(X,Y,'-r',linewidth=2)
plt.errorbar(x,y,yerr=s,fmt='ok')
plt.pause(0.001)

check if converged
if F[IX[0]]>=Fmin:

count=count+1
if count > max_count: # no more evolution

found=True
break

else:
count=0; # reset dewelling counter
Fmin=F[IX[0]] # new lowest fitness
a0=A[0]; b0=B[0]; c0=C[0] # current best genes
print('New low found: generation={0:d}, fitness={1:.15f}, a={2:f}, b={3:f}, c={4:f}'.format(generation,Fmin,a0,b0,c0))

find mating pairs from the survived population
ip=np.random.permutation(MP)

generating oggsprings
for k in range(0,MP,2):

g=np.random.rand(6)
i=ip[k]
j=ip[k+1]
A[k+MP] = A[i]+g[0]*(A[j]-A[i]+0.01)
A[k+MP+1]= A[j]+g[1]*(A[i]-A[j]+0.01)
B[k+MP] = B[i]+g[2]*(B[j]-B[i]+0.01)
B[k+MP+1]= B[j]+g[3]*(B[i]-B[j]+0.01)
C[k+MP]= C[i]+g[4]*(C[j]-C[i]+0.01)
C[k+MP+1]= C[j]+g[5]*(C[i]-C[j]+0.01)

mutation rate (every 10 generations, mutation burst happens)

PROBLEMS 515

if np.mod(generation,10)==0:
mutation=0.8

else:
mutation=0.1

mutation
rm=np.random.rand(NP)
for i in range(1,NP):

if rm[i]<mutation:
A[i]=np.random.rand(1)*(a_max-a_min)+a_min
B[i]=np.random.rand(1)*(b_max-b_min)+b_min;
C[i]=np.random.rand(1)*(c_max-c_min)+c_min;

store genes of new population
a[:]=A[:]; b[:]=B[:]; c[:]=C[:]

print('Best fit:{0:.15f}, a={1:f},b={2:f}, c={3:f}'.format(Fmin, a0, b0, c0))

plot the best fitting
if not(movie):

plt.figure(figsize=(6,5))
plt.axis([x[1], x[-1], -0.5, 2.5])

plt.clf()
Y=a0*np.exp(-(X-b0)**2/c0)
plt.plot(X,Y,'-r',linewidth=2)
plt.errorbar(x,y,yerr=s,fmt='ok')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.show()

▲▲▲

Program 19.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 19.4.2 *
%* filename: ch19pr04.m *
%* program listing number: 19.4 *
%* *
%* This program solves the Thomson problem using genetic algorithm. *
%* using genetic algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Improved by Alex Skinner. *
%* Last modification: 04/02/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

system parameters
N=5 # number of charges
R=1.0 # radius of the sphere

def U(theta,phi,r): # potential energy (fitness function)
u=0.0
X=np.sin(theta)*np.cos(phi)

516 OPTIMIZATION

Y=np.sin(theta)*np.sin(phi)
Z=np.cos(theta)
for i in range(0,N):

for j in range(i+1,N):
r12=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
u=u+1.0/(r12*r)

return u

parameters for genetic algorithm
NP=2**12 # population size
MP=np.int(NP/2) # half of the population
max_count=200; # stopping condition
max_generation=10000 # maximum generation

parameter space (genes)
th_max=np.pi; th_min=0.0
ph_max=2.0*np.pi; ph_min=0.0

initial parameters (genes)
th=np.random.rand(N,NP)*(th_max-th_min)+th_min
ph=np.random.rand(N,NP)*(ph_max-ph_min)+ph_min
th[0,:]=0.0
ph[0,:]=0.0
ph[1,:]=0.0
th[2,0]=th_max
ph[2,1]=ph_max

allocate arrays
ip=np.zeros(MP)
F=np.zeros(NP)
ths=np.zeros((N,NP))
phs=np.zeros((N,NP))

reset the counters
found=False
count=0
generation=0
Fmin=np.finfo(np.float64()).max # some large number

genetic evolution begins here
while not(found):

generation=generation+1
if generation > max_generation: # too many generations

print('Max generation reached. Terminated.')
break

eveluate the initial fitness
for i in range(0,NP):

F[i]=U(th[:,i],ph[:,i],R)

sort the population based on thier fitness
IX=np.argsort(F)
ths[:,:]=th[:,IX]; phs[:,:]=ph[:,IX]

check if converged
if F[IX[0]]>=Fmin:

count=count+1
if count > max_count: # exceed the waiting time limit

found=True
break

PROBLEMS 517

else:
count=0 # reset wating time counter
Fmin=F[IX[0]]
print('New low found: generation={0:d}, fitness={1:.15f}'.format(generation,Fmin))

find mating pairs from the survived population
ip=np.random.permutation(MP)

generate offsprings
for k in range(0,MP,2):

g ranges from -1 to 1
g=-2.0*np.random.rand(2)+1.0
i=ip[k]
j=ip[k+1]
ths[:,k+MP] = ths[:,i]+g[0]*(ths[:,j]-ths[:,i])
ths[:,k+1+MP]= ths[:,j]+g[1]*(ths[:,i]-ths[:,j])
phs[:,k+MP] = phs[:,i]+g[0]*(phs[:,j]-phs[:,i])
phs[:,k+1+MP]= phs[:,j]+g[1]*(phs[:,i]-phs[:,j])

mutation rate
if np.mod(generation,10)==0:

mutation=0.8*np.random.rand()
else:

mutation=0.3*np.random.rand()

mutation
rm=np.random.rand(NP)
for i in range(2,NP):

if rm[i]<mutation:
ths[:,i]=np.random.rand(N)*(th_max-th_min)+th_min
phs[:,i]=np.random.rand(N)*(ph_max-ph_min)+ph_min
ths[0,i]=0.0
phs[0:1,i]=0.0

store new population
th[:,:]=ths[:,:]; ph[:,:]=phs[:,:]

print('Lowest Energy={0:.15f}'.format(Fmin))
for i in range(0,N):

print('theta={0:f}, phi={1:f}'.format(ths[i,0],phs[i,0]))

X=np.zeros(N)
Y=np.zeros(N)
Z=np.zeros(N)

for i in range(0,N):
X[i]=R*np.sin(ths[i,0])*np.cos(phs[i,0])
Y[i]=R*np.sin(ths[i,0])*np.sin(phs[i,0])
Z[i]=R*np.cos(ths[i,0])

plot 3D phase trajectory
plt.close('all')
fig=plt.figure()
ax=fig.gca(projection='3d')
plt.plot(X, Y, Z,'ob')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.paspect=[1.0,1.0,1.0]
ax.set_xlim3d([-1.0,1.0])
ax.set_ylim3d([-1.0,1.0])

518 OPTIMIZATION

ax.set_zlim3d([-1.0,1.0])

bond=10.0
for i in range(0,N):

for j in range(i+1,N):
d=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
bond = np.min([bond,d])

bond=bond*1.25
for i in range(0,N):

for j in range(i+1,N):
d=np.sqrt((X[i]-X[j])**2+(Y[i]-Y[j])**2+(Z[i]-Z[j])**2)
if d <= bond:

ax.plot([X[i],X[j]],[Y[i],Y[j]],[Z[i],Z[j]],'-b')
plt.pause(0.0001)

plt.show()

▲▲▲

Bibliography

[1] Alka Dwevedi. Protein Folding: Examining the Challenges from Synthesis to Folded Form (SpringerBriefs
in Biochemistry and Molecular Biology). Springer, 2014.

[2] Randy L. Haupt and Sue Ellen Haupt. Practical Genetic Algorithms. Wiley-Interscience, 2nd edition
edition, 2004.

[3] Mitchell Melanie. An Introduction to Genetic Algorithms. MIT Press, 1996.

[4] James B. Foresman and AEleen Frisch. Exploring Chemistry With Electronic Structure Methods: A
Guide to Using Gaussian. Gaussian, 1996. Appendix B.

[5] J. J. Thomson. On the structure of the atom: an investigation of the stability and periods of oscillation of
a number of corpuscles arranged at equal intervals around the circumference of a circle; with application
of the results to the theory of atomic structure. Philosophical Magazine, 7:237–265, 1904.

[6] Jr. LaFave, Tim. Correspondences between the classical electrostatic thomson problem and atomic
electronic structure. Journal of Electrostatics, 71(6):1029 – 1035, 2013.

519

