
CHAPTER 17

METROPOLIS METHOD

The fundamental laws of classical physics suggest that the future is uniquely determined by the present state
and there is no room for stochastic variables. If the degree of freedom is small enough, we can predict the
future of the system at least it is not a distance future. The necessity of stochastic variables in classical
physics is due to our ignorance. When the system consists of many particles, as many as 1023, interacting
among themselves, it is practically impossible to predict future of the system precisely. Fortunately, many
physical quantities we are interested in do not depend on the detailed state of individual particles. Think of
the air around us. We are mostly interested in its temperature and pressure. Nobody asks what is the position
and velocity of individual oxygen molecules. Nevertheless the temperature and pressure (macroscopic states)
are determined by the state of the molecules in the air (microscopic states). The rigorous relations between
microscopic states and macroscopic states are very complicated. Statistical mechanics was devised to make
some intuitive connection between microscopic states and macroscopic states.[1, 2] The state of a microscopic
system is described by stochastic variables. For example, the velocity of the molecules in the air is a stochastic
variable for which a probability distribution is constructed based on the fundamental laws of physics at the
microscopic scale. Once we find the probability distribution, we calculate the mean value which is regarded
as a macroscopic quantity. In other words, we don’t solve the Newton’s equations of motion to find the
position and velocity of all particles. Instead we treat the position and velocity as stochastic variables and
we somehow find the corresponding probability distribution consistent to the Newtons’ laws of motion.

Mathematical approach to stochastic system requires a bit of additional tasks since we need to find
probability distributions and various statistical quantities such as mean and variance using the probability
distribution. On the other hand, computational approach is rather straight forward. We just generate a
large set of random numbers corresponding to microscopic states and construct the probability distribution.
The calculation of mean and variance is essentially addition of many random numbers. Computers are

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

425

426 METROPOLIS METHOD

very good at repeating simple operations many times and do it very quickly. We call such approach Monte
Carlo simulation[3] after the famous casino city in Monaco.[3] In this chapter, a few simple examples are
introduced.

The present interpretation of quantum mechanics inherently involves stochastic variables. We can inves-
tigate quantum systems using random numbers (quantum Monte Carlo simulation). We will discuss it in a
later chapter.

17.1 Metropolis Algorithm for Thermal Equilibrium

When a system is in a thermal equilibrium at temperature T , all macroscopic quantities remain constant
in time and all macroscopic flow such as heat flow and particle current vanish. It looks no activity in the
system. However, if we look at the system at a microscopic level, the atoms are moving and the microscopic
state of the system is evolving in time rather rapidly. Macroscopic measurement devices simply do not have
a sufficient resolution to see such rapidly changing quantities. Instead the devices measure the time-averaged
quantities. For classical systems, a physical quantity is in general a function of a set of coordinates {qi(t)}
and momenta {pi(t)} and the time-average of a physical quantity A is defined by

⟨A⟩ = 1
t

∫ t

0
A[q1(τ), q2(τ), · · · , p1(τ), p2(τ), · · ·]dτ (17.1)

The time average is done rather quickly in our scale, say a micro second. However, it is almost infinitely
long in the microscopic world. Atoms in solid oscillate 1013 times in 1 second. It is difficult to simulate the
motion of atoms long enough to get macroscopic time average even with modern supercomputers.

Statistical mechanics offers us an alternative method to calculate the macroscopic average. The probability
that the system is found to be in a microscopic state ψi whose energy is Ei is given by the Boltzmann
distribution

Pi = 1
Z

e−βEi (17.2)

where β = 1/kBT . The normalization constant Z =
∑

e−βEi is called the partition function. Then, the
mean can be computed by

⟨A⟩ =
∑

i

AiPi = 1
Z

∑
i

Aie−βEi . (17.3)

This summation is done over all microscopic states. Unfortunately, the number of microscopic states is huge
and the exact enumeration is impossible. However, a reasonably large but finite random sampling is good
enough to get accurate mean value. If we want evaluate the mean of stochastic variable Â, we pick N random
numbers Ai

⟨A⟩ ≈ 1
N

∑
j∈S

Aj (17.4)

where S is a subset of the all possible microscopic states chosen at random according to the probability
(17.2) and N is the number of samples in S. A question is how to find the subset S. Metropolis et al.[4]
found a good way.

We want to take a finite number of samples from the all possible microscopic states in a way that the
samples are consistent with thermodynamic equilibrium. The chance that a particular state ψi is sampled
must be proportional to the Boltzmann factor e−βEi . Making a question more concrete, suppose that we
pick a state ψi at random. Then, which state should we pick next. If you just pick at random, you don’t
satisfy the equilibrium distribution. In Chapter 14, we learned how to pick a random number from a desired
distribution. Unfortunately, we cannot use it here since the distribution is given as a function of energy

METROPOLIS ALGORITHM FOR THERMAL EQUILIBRIUM 427

instead of Ai. We can pick an energy in accordance with the Boltzmann distribution. However, we can not
construct the corresponding microscopic state from the energy since many states have the same energy.

When the system is at an thermal equilibrium, any transition must satisfy the detailed balance[5]

pi→je−βEi = pj→ie−βEj ⇒ pi→j

pj→i
= e−β(Ej−Ei) (17.5)

where pi→j is the transition probability from state i to j. The absolute value of the transition probability is
not necessary to satisfy the detailed balance. We need to know only the relative transition probability. So,
we use a simple one

pj→i = 1, pi→j = e−β(Ej−Ei) (17.6)

for Ej > Ei. For the other case Ei < Ej . We simply swap i and j. Based on this idea, the following algorithm
sample the microscopic states satisfying the detailed balance and thus the Boltzmann distribution.

Algorithm 17.1 Metropolis Algorithm
1. Pick an initial state ψ1 at random. Starting i = 1, repeat the following procedure.
2. Pick a candidate state ψc at random. We consider the jump from ψi to ψc.
3. Evaluate energy difference ∆E = Ec − Ei.
4. If ∆E ≤ 0, then the transition is accepted. Let ψi+1 = ψc. Increment i and go to step 2.
5. If ∆E > 0, generate a uniform random number r between 0 and 1.
6. If e−β∆E > r, then the transition is accepted. Let ψi+1 = ψc. Increment i and go to step 2.
7. Otherwise, the transition is rejected. Discard the candidate state and start over from Step 2.

After N iterations, we have a set of sample {ψ1, · · · , ψN } which is consistent with the Boltzmann
distribution. This algorithm is known as the Metropolis method.

EXAMPLE 17.1

Maxwell Velocity Distribution

Consider a one-dimensional ideal gas in a thermal equilibrium at temperature kBT . The velocity of the
gas particles (mass=m) is distributed in the Maxwell distribution

ρ(v) = m√
2πkBT

e−mv2/2kBT . (17.7)

It can be obtained from the Boltzmann distribution with E = 1
2mv

2. We can can sample the velocity
directly using the normally distributed random number discussed in Chapter 14. Here, we try to get
the Maxwell velocity distribution using the Metropolis method. In Program 17.1 the velocity is sampled
using the Metropolis algorithm. The jump of the velocity ∆v is chosen at random between −0.5 and 0.5.
100000 velocities are sampled and compared with the exact Maxwell distribution. Since the velocity is a
continuous variable, the probability distribution is expressed in a histogram. The result is shown in Fig.
17.1. The Metropolis method successfully obtained the Maxwell distribution. The small discrepancy is
due to the finite sampling. A better result can be obtained if a larger number of samples are generated.

428 METROPOLIS METHOD

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Metropolis
Exact

Figure 17.1: Velocity distribution generated by the Metoropolis method. The red line plots the Maxwell
distribution.

17.2 Applications in Physics

17.2.1 Ferromagnetic Phase Transition: 2D Ising Model

We are familiar with a permanent magnet and we know that it is made of iron or some other transition
metals. The permanent magnet has non-zero magnetization, known as spontaneous magnetization, even in
the absence of external magnetic field. However, the spontaneous magnetization vanishes above a critical
temperature (named as he Curie temperature). This phase transition was explained by a simple model. It
turns out that the model can explain many other phase transitions such as binary alloys and even neural
networks. The model is called the Ising model named after Ernest Ising.

Here we consider the Ising model in two-dimensional square lattices. The magnetization is caused by
the electron spins. In the Ising model, a spin degree of freedom simply takes one of two states denoted by
σ = ±1 corresponding to spin “up” and “down”. The spins interact among themselves but only those at the
nearest neighbor sites. The energy of the system is defined as

H = −J
∑
⟨λ,λ′⟩

σλσλ′ (17.8)

where λ denotes a lattice point and ⟨λ, λ′⟩ represents a possible nearest neighbor pair. J is a coupling
constant and positive for ferromagnetic materials. For example, the four pairs in the left panel of Fig 17.2
has energy −4J and another four pairs in the right panel has 0 energy. When all spins are in the same
direction, that is σλ = 1,∀λ or σλ = −1,∀λ, the energy per spin is −2J , which is the lowest. Hence, when
T = 0, the spins are all aligned.

A microscopic state is uniquely specified by a spin configuration Si = {σ1, σ2, · · · , σL}, i = 1, · · · , 2L

where L is the number of spins in the system. For example, S1 = {1, 1, 1, 1, · · · , 1}, S2 = {−1, 1, 1, · · · , 1}
and so on. For each configuration, the corresponding energy of the state is denoted as Ei. The magnetic
moment for the configuration Si is given by

Mi =
∑

λ

σλ. (17.9)

APPLICATIONS IN PHYSICS 429

The macroscopic quantities are the thermal average of the corresponding microscopic values. The energy
of the system is

⟨E⟩ =
∑

i

Ei e−βEi/Z (17.10)

and the magnetization
⟨M⟩ =

∑
i

Mi e−βEi/Z. (17.11)

Another interesting quantity is heat capacity

⟨C⟩ = kBβ
2(⟨E2⟩ − ⟨E⟩2). (17.12)

We are interested in how these quantities vary as temperature changes.
Analytic theory was difficult except for one-dimensional Ising system. Onsagar was able to solve the

two-dimensional system. The system shows spontaneous magnetization below a critical temperature kbTc
J

=
2.269 and the magnetization vanishes above the critical temperature. As temperature increases to the critical
temperature, the magnetization per spin vanishes as

⟨M⟩
N

∝ (Tc − T)1/8 (17.13)

and the heat capacity diverges at the critical temperature as

⟨C⟩
N

∝ ln
(
|T − Tc|−1) (17.14)

No analytical solution is known for three dimension or above.
Now we investigate this tough and yet very important problems using the power of computers. Since each

spin has two different states, there are 2L different microscopic states, which is a very large number. Even
for a small lattice such as 10 by 10, the number of states are 2100 ≈ 1030. It is difficult to calculate the
summations in Eqs. (17.10) – (17.12) even numerically. Therefore, we evaluate the mean values by random
sampling. Instead of taking into account all possible microscopic states exhaustively, we just consider a
fraction of it, say 106 configurations. It turns out that the results is surprisingly reasonable and capture
most of important aspects of the spontaneous magnetization.

Now, we replace Eqs. (17.10) – (17.12) with

⟨E⟩ =
∑
i∈S

Ei/N (17.15)

⟨M⟩ =
∑
i∈S

Mi/N (17.16)

⟨C⟩ =
∑
i∈S

Ci/N (17.17)

where S is a set of samples as defined earlier and N is the number of configurations in S. We use the
Metropolis algorithm to obtain S.

430 METROPOLIS METHOD

Figure 17.2: Examples of coupling energy. Left: Each f the four pairs has energy −J and thus the total
energy is −4J . Right: Two pairs have energy −J each and the other two pairs have +J each. Therefore,
the total energy is zero.

Algorithm 17.2 Monte Calro Simulation of Ising Model

1. Define a 2-dimensional lattice of L by L. Then, K = L2. Denote the spin at the lattice point
(i, j) as σi,j .

2. Set an initial configuration. Any configuration is OK. For example, set +1 or −1 for each σi,j

at random.
3. Pick a candidate spin σi,j at random. We consider flipping the spin (change the sign.)
4. Evaluate energy difference ∆E due to the flipping.

∆E = 2si,j [si−1,j + si+1,j + si,j−1 + si,j+1] (17.18)

5. If ∆E ≤ 0, then the transition is accepted. Let σi,j = −σi,j . step 9.
6. If ∆E > 0, generate a uniform random number r between 0 and 1.
7. If e−β∆E > r, then the transition is accepted. Let σi,j = −σi,j . step 9.
8. Otherwise, the transition is rejected. Discard the candidate state and start over from Step 3.
9. Evaluate energy and magnetization. Record them so that statistical average can be taken at

a later time.
10. Go to Step 3 and repeat the procedure until sufficient sampling is done.

Program 17.2 simulates the magnetization of two-dimensional Ising system isng this algorithm. The
results for 40 × 40 are shown in Figs. 17.5 –17.4. The system size is still too small to get a good agreements
with theory but the important features of the critical phenomena are realized well.

17.2.2 Percolation

The microscopic states of the two-dimensional Ising model shown in Fig. 17.3 show interesting geometric
structures, i.e., the distribution of cluster sizes. One interesting question is if the two opposite ends of the
system is connected by a single cluster. In other words, can we travel from one edge to the opposite edge
by stepping only on one color? For the Ising system, when temperature is sufficiently low, one color is
dominated and two opposing edges are connected by a single cluster. On the other hand, when temperature
is high enough, both colors are distributed evenly and the cluster size becomes smaller. Above a certain
temperature, no single cluster touches the both ends. This phenomena is known as site percolation.[6] The
percolation problem was originally investigated for percolation of fluids through rock. However, it has been

APPLICATIONS IN PHYSICS 431

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(a) T=2.0

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(b) T=2.32

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

40

(c) T=3.0

Figure 17.3: Snapshot of the microscopic states. Blue sites indicate spin-up and yellow spin-down. When
temperature is well below the critical temperature (a), one color dominates. This sample happens to be
dominated by yeallow but states dominated by blue also happens with the equal probability. Well above
the critical temperature (c), blue and yellow are scatted evenly. Although a large clusters are sill seen, they
should disappear as temperature goes up further. Near the critical temperature (b), blue and yellow are
equally likely but each color forms a large cluster. along with many smaller clusters.

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=−0.91095

(a) T=2.0

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=−0.91095

(b) T=2.32

1 2 3 4 5 6 7 8 9 10

x 105

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

steps

m
ag

ne
tiz

at
io

n

m(t)
mean=0.025275

(c) T=3.0

Figure 17.4: Sampling of magnetization. The horizontal axis indicates the individual sample. When temper-
ature is well below the critical temperature (a), all sampled state have similar large negative magnetization.
The flusctuation is rather small. Well above the critical temperature (c), all sampled state have small mag-
netization close to zero. The fluctuation is bigger than that of (a) due to higher temperature. Near the
critical temperature (b), each sample has quite different value of the magnetization. The fluctuation of (b)
is even larger than that of the higher temperature state (c).

432 METROPOLIS METHOD

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

M
ag

ne
tiz

at
io

n

0 0.5 1 1.5 2 2.5 3
0

1

2

3

H
ea

t C
ap

ac
ity

0 0.5 1 1.5 2 2.5 3
−2.5

−2

−1.5

−1

−0.5

k
B
 T/J

E
ne

rg
y

Figure 17.5: Monte Carlo Simulation of Ising model. The dashed line indicates the theoretical prediction of
the critical temperature. The top panel shows the spontaneous magnetization below a critical temperature
around T = 2.4. The heat capacity has a sharp peak at the critical temperature as shown in the middle
panel. On the other hand, the energy plotted in the bottom panel does not show any dramatic change across
the transition points.

APPLICATIONS IN PHYSICS 433

0 5 10 15 20 25 30
0

5

10

15

20

25

30

(a) No percolation (p = 0.50)
0 10 20 30

0

5

10

15

20

25

30

(b) Vertically Percolated (p = 0.58)

Figure 17.6: Realization of clusters on the 32×32 lattice. No percolation is observed for p = 0.50. Increasing
the probability to p = 0.58, a large cluster (red) shows percolation in the horizontal direction.

used for the investigation of many different systems including porous media, granular materials, the Internet,
epidemics, biological evolution, to name a few.

Now, we investigate the two-dimensional percolation by computer simulation. First, we set a rule to
construct a state. Consider a N by N square lattice. We will place particles on the lattice at random. The
probability that a particle is found at each lattice site is p. When p = 1, then every site is occupied by a
particle.If p = 0, then there is no particle on any site. Form 1 > p > 0, some sites are occupied and other are
not. Many different configurations are possible for a given p. Therefore, this system is stochastic. To create
a single configuration, generate a standard uniform random number 1 > r > 0 for each lattice site. If p > r,
then the site is occupied. Figure 17.6 shows a realization for a 32x32 lattice with p = 0.5 and p = 0.58.

If two adjacent sites are both occupied, then the two particles make a bond. A cluster consists of all
particles connected together. For example, red particles in Fig. 17.6b forms a single large cluster. There are
many clusters of different sizes. The large cluster in Fig. 17.6b connects the left and right edges. Therefore,
this particular configuration is percolated horizontally. On theohter hand, the top and bottom edges are not
connected by any cluster. Hence, there is no vertical percolation. In Fig. 17.6a, there seems no cluster large
enough to establish percolation. But it is not see that. Actually, identifying clusters is not a trivial task for
computers. An efficient method was developed by Hoshen and Kopelman[7]. Even fast algorithm has been
developed more recently by Newman and Ziff[8]. The following algorithm is based on Hoshen and Kopelman
method.

We inspect each site from the bottom left corner along the column. In Fig. 17.7a, the blue particles are
already inspected and a cluster label is assigned to each cluster. In this particular example, four clusters
have been identified up to the red particle. Now we if it is a part of a previously known cluster or a new
cluster. We don’t have to worry about the grey particles at this point. We just inspect if the red particle is
in contact with any known cluster. To do so, we need to check if two neighbor sites, one in the immediate
left and the other down below. There are five different possibilities. If neither site is occupied (Fig. 17.7b),
the red particle is not in contact with any previous cluster. It is a new cluster and we assign a new label to
it. It must be mentioned here that the assigned label is just temporary label since as the new cluster grows,
it may coalesce to another cluster. If the red particle in in contact with one known cluster (Figs. 17.7c,
17.7d and 17.7e), then assign the label of the cluster to the red particle.

434 METROPOLIS METHOD

(a) Cluster Labeling Order

(b) (c) (d) (e) (f)

Figure 17.7: Hoshen-Kopelman cluster labeling scheme. (a) Inspect each site from the bottom left corner
along each column. Supposed that all sites upto the red one is already inspected and a label is assigned to
each cluster. In this example, there are four clusters labeled 1 through 4. Now we inspect if the red site is a
part of the previously known cluster. There are four five possibilities shown in (b) – (f).

The last possibility is that the red particle is simultaneously in contact with two particles with different
labels. (Fig. 17.7f) This is the most difficult case. Now the clusters labeled by n and m coalesce to one
cluster. We could simply assign a smaller label, say m, to the red particle. A problem is that we need to
replace all n with m. That is a time consuming task since we have to find all particles with label n. There
is a cleaver way to avoid the reassignment. We just record the relation that the label n is equivalent to the
label m. Such a mapping can be recorded in a one-dimensional array. For example, if the array name is
remap, then remap(3)=2 indicates that the label 3 is the same as 2. If more than two labels are assigned
to a single clusters, the map is chained like

6 → remap(6)=4 → remap(4)=2 → remap(2)=2

where apparent labels 6, 4, and 2 are all belong to the same cluster. The chain of mapping ends when
remap(n)=n is reached. We use the smallest label, 2 in this example, as the true label of the cluster.
Whenever we need the label of the particle at (i,j), we first find the apparent label stored in a two-dimensional
array label(i,j). Then, we look for the true label by following the chain of mpping In the case Fig. 17.7f,
n and m are the apparent label. Suppose that m′ and n′ are the true labels obtained by found through the
chain of mapping. If n′ > m′, then assign m′ to the red particle. Since the red particle and the cluster n′
must be mapped to the same label, we set remap(n′) = m′. Now the label n′ is mapped to the same label
as the red particle and thus they are in the same cluster. After this, the chain is one step longer.

APPLICATIONS IN PHYSICS 435

Algorithm 17.3 Cluster Labeling
1. Prepare N by N array label for apparent labels and fill it with 0.
2. Prepare a on-dimensional array remap of size N2. This is used to store mapping from an

apparent label to a true label.
3. Set a counter new=0.
4. Start with i=1 and j=1, repeat the following procedure along column until i=j=N.
5. Check if the sites (i-1,j) and (i,j-1) is occupied.
6. If label(i-1,j)=0 and label(i,j-1)=0, create a new cluster by new=new+1;

label(i,j)=new; remap(new)=new. Go to next site.
7. If label(i-1,j)>0 and label(i,j-1)=0, join to the existing cluster by

label(i,j)=label(i-1,j). Go to next site.
8. If label(i-1,j)=0 and label(i,j-1)>0, join to the existing cluster by

label(i,j)=label(i,j-1). Go to next site.
9. label(i-1,j)=label(i,j-1)>0, joint to the existing cluster by

label(i,j)=label(i-1,j). Go to next site.
10. Otherwise, find the true labels m’ and n’ by following the chain of map. Find the small-

er/larger of the two true labels. nmin=min(m’,n’) and nmax=(m’,n’). Coalesce the two
clusters into one by label(i,j)=nmin and remap(nmax)=nmin. Go to next site.

436 METROPOLIS METHOD

MATLAB Source Codes

Program 17.1

%**
%* Exercise 17.1 *
%* filename: ch17pr01.m *
%* program listing number: 17.1 *
%* *
%* This program finds the velocity distribution of one-dimensional *
%* ideal gas using Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/11/2017. *
%**
clear all
close all

N0=10000; % number of thermalization steps
N=200000; % number of samples
kT=1.0; % Temperature times Boltzmann constant
m=1.0; % mass
dv=0.1; % maximum jump in velocity

v0=sqrt(kT/m); % thermal speed
v(1)=2.0*v0*(rand(1)-0.5); % initial velocity (radom between -0.5 and _0.5)

for i=1:N+N0-1
found = false;
while not(found)

u = v(i) + dv*(2*rand(1)-1); % candidate
dE = m/2*(uˆ2-v(i)ˆ2); % energy change
if exp(-dE/kT)>rand(1) % accept or reject

v(i+1)=u;
found = true;

end
end

end

K=41;
h=histogram(v(N0+1:N+N0),K,'Normalization','pdf');
hold on
w=linspace(h.BinLimits(1),h.BinLimits(2),101);
y=1/sqrt(2*pi*kT/m) * exp(-m*w.ˆ2/(2*kT));
% theoretical distribution (Maxwell)
p=plot(w,y);
set(p,'color','red','linewidth',2);
legend(p,'Maxwell');
hold on
legend('show')
axis([-4 4 0 0.5])
hold off

Program 17.2

%**
%* Exercise 17.2 *
%* filename: ch17pr02.m *
%* program listing number: 17.2 *
%* *
%* This program simulates two-dimensional Ising model using *
%* the Metropolis algorithm. *

APPLICATIONS IN PHYSICS 437

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
clear all
close all

rng('shuffle')

% control parameters
L=32; % number of spins in one direction
LL=L*L; % total number of spins
N0=20000; % thermalization steps
N=1000000; % number of Metropolis steps.
NS=N/1000; % number of samples.

% temperature
T=2.0;
beta = 1/T;

% Define arrays
kmax=int32(N/NS);
m=zeros([kmax,1]);
sigma2=zeros([kmax,1]);
E=zeros([kmax,1]);

% animation switch
movie=false;

if T>2.0
s = int32(1-2*randi([0,1],[L,L])); % Random (for high temperature)

else
s = int32(ones([L,L])); % Uniform (for low temperature)

end

% animation initial configuration
if movie

figure
axis([0 L+1 0 L+1])
axis equal;
hold on
for i=1:L

for j=1:L
if s(i,j)>0

color='blue';
else

color='yellow';
end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color);

end
end
drawnow;

end

% Begin Metropolis simulation
k=0;
for n=1:N+N0

% pick a site at random
i=randi([1,L]);
j=randi([1,L]);

438 METROPOLIS METHOD

% Evaluation of energy change
i1=i+1; if i1>L; i1=1; end;
i2=i-1; if i2<1; i2=L; end;
j1=j+1; if j1>L; j1=1; end;
j2=j-1; if j2<1; j2=L; end;
s4 = s(i1,j)+s(i2,j)+s(i,j1)+s(i,j2);
dE = 2.0*double(s4*s(i,j));

% Metropolis algorithm
if exp(-beta*dE)> rand(1)

s(i,j)=-s(i,j);
if movie

if s(i,j)>0
color='blue';

else
color='yellow';

end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color);
drawnow;

end
end

% measurement
if n>N0 && mod(n,NS)==0

k=k+1;
m(k) = sum(s(:))/LL; % mean magnetization
sigma2(k) = sum(s(:).ˆ2)/LL-m(k)ˆ2; % variance
% total energy
h=0;
for j=1:L-1

for i=1:L-1
h=h+s(i,j)*(s(i+1,j)+s(i,j+1));

end
end
for i=1:L

h=h+s(i,L)*s(i,1)+s(L,i)*s(1,i);
end
E(k)=-h;

end

end

% draw the final configuration
if not(movie)

figure
axis([0 L+1 0 L+1])
axis equal;
hold on
for i=1:L

for j=1:L
if s(i,j)>0

color='blue';
else

color='yellow';
end
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor',color)

end
end

hold off
drawnow;

APPLICATIONS IN PHYSICS 439

end

% magnetization
subplot(1,2,1)
plot([1:k]*NS,m(1:k))
hold on
mu=sum(m(1:k))/k;
p=plot([NS, k*NS],[mu, mu]);
set(p,'color','red')
axis([0 N -1.1 1.1])
mx=num2str(mu,5);
legend('m(t)',['mean=' mx])
legend('location','southeast')
xlabel('steps')
ylabel('magnetization')
hold off

% energy
subplot(1,2,2)
Eavg=sum(E)/k;
C=(sum(E.ˆ2)/k-Eavgˆ2)/Tˆ2/LL;
p=plot([1:k]*NS,E(1:k)/LL);
hold on
p=plot([NS, k*NS],[Eavg/LL, Eavg/LL]);
set(p,'color','red')
axis([0 N -4 0])
mx=num2str(Eavg/LL,5);
legend('E(t)',['mean=' mx])
xlabel('steps')
ylabel('Energy/spin')
hold off

% statistics
fprintf('<m>=%.5f\n',mu)
fprintf('<E>=%.5f\n',Eavg/LL)
fprintf('<C>=%.5f\n',C)

Program 17.3

%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates two-dimensional percolation. *
%* Hoshen and Kopelman algorithm is used for cluster labeling. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
close all

N=32;
% p=0.59 is close to the transition point
p=0.4;

% Graphics setting
plot([0,N+1,N+1,0,0],[0,0,N+1,N+1,0]);
axis equal
axis([0 N+1 0 N+1])
hold on

440 METROPOLIS METHOD

% place atoms at random
r=rand(N,N);
lattice = r < p;

% draw clusters
for i=1:N

for j=1:N
if lattice(i,j)

rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor','b');
drawnow

end
end

end
hold on

% Labeling: 1st pass (Making initial labels and map)

label=zeros(N,N); % allocate array
remap=zeros(N*N);

new=0;
for j=1:N

for i=1:N

i1 = i-1;
j1 = j-1;

if lattice(i,j)>0
if i1 > 0

left=label(i1,j); % neighbor (left).
else

left=0; % outside the box.
end
if j1 > 0

down=label(i,j1); % neighbor (down).
else

down=0; % outside the box.
end

if down==0 && left==0 % if both are unocupied
new=new+1; % create a new cluster.
label(i,j) = new;
remap(new)=new;

elseif down*left>0 % both are occupied.

if down==left % if they are the same cluster.
label(i,j)=left; % join to the cluster.

else % connecting two different clusters.
found = false;
while not(found)

if remap(left)==left
found = true;

else
left=remap(left);

end
end
found = false;
while not(found)

APPLICATIONS IN PHYSICS 441

if remap(down)==down
found = true;

else
down=remap(down);

end
end

if left==down % they are again the same
label(i,j)=left;

else
nmax=max(left,down);
nmin=min(left,down);
label(i,j)=nmin; % coalesce two clusters
remap(nmax)=nmin; % add to the chain

end
end

elseif down>0 % only down neighbor is occupied
label(i,j) = down; % join to the neighbor

else % only the left neighbor is occupied
label(i,j) = left; % join to the neighbor

end
end

end
end
% Labeling: 2nd pass (Collapse the label in the same cluster)

nmax = max(label(:));
for i=nmax:-1:1

label(label==i)=remap(i);
end

% Labeling: 3rd pass (Make the label continuous)
% This procedure is not essential.

j=0;
for i=1:nmax

if remap(i)==i
j=j+1;
label(label==i) = j;

end
end

% Identify the percolation
nmax = max(label(:));
size = zeros(nmax,1);
maxsize=0;
largest=1;
fprintf('Cluster Size Percolation\n')
for i=1:nmax

percx = any(label(1,:)==i)*any(label(N,:)==i) >0;
percy = any(label(:,1)==i)*any(label(:,N)==i) >0;
size(i)= sum(label(:)==i);
if size(i) > maxsize

largest = i;
maxsize = size(i);

end
if percx || percy

perc='YES';

442 METROPOLIS METHOD

else
perc=' NO';

end
fprintf('%5d: %6d, %s\n', i, size(i), perc)

end

fprintf('%d %d\n', largest, size(largest))

for i=1:N
for j=1:N

if label(i,j) == largest
rectangle('Position',[i,j,1,1],'Curvature',[1 1],'FaceColor','r');
drawnow

end
end

end
figure

h=histogram(size,20);

▲▲▲

Python Source Codes

Program 17.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.1 *
%* filename: ch17pr01.m *
%* program listing number: 17.1 *
%* *
%* This program finds the velocity ditribution of one-dimensional *
%* ideal gas using Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/11/2017. *
%**
"""

import numpy as np
import matplotlib.pyplot as plt

N0=10000 # number of thermalization steps
N=200000; # number of samples
kT=3.0 # Temperature times Boltzmann constant
m=5.0 # mass of particle

v=np.zeros(N+N0)
dv=0.1 # maximum jump in velocity
v0=np.sqrt(kT/m) # thermal speed
initial velocity (uniform random beteen -v0 and +v0)
v[0]=2.*v0*(np.random.rand(1)-0.5)

for i in range(0,N+N0-1):

APPLICATIONS IN PHYSICS 443

found = False
while not(found):

u = v[i] + dv*(2.0*np.random.rand(1)-1.0) # candidate
dE = m/2.0*(u**2-v[i]**2) # energy change
if np.exp(-dE/kT)>np.random.rand(1): # Metropolis condition

v[i+1]=u # accept change ()
found = True

theoretical distribution (Maxwell)
K=41
plt.close()
plt.figure(figsize=(6,5))
n, bins, patches = plt.hist(v[N0:N0+N],K,normed=1,label='Monte Carlo')
w=np.linspace(bins[0],bins[-1],101)
y=1.0/np.sqrt(2.*np.pi*kT/m) * np.exp(-m*w**2/(2.*kT))
plt.plot(w,y,'-r',label='Maxwell')
plt.legend(loc=1)
plt.xlabel('v')
plt.ylabel('p(v)')
plt.show()

▲▲▲

Program 17.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.2 *
%* filename: ch17pr02.py *
%* program listing number: 17.2 *
%* *
%* This program simulates two-dimensional Ising model using *
%* the Metropolis algorithm. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

ease all previous figures
plt.close('all')

control parameters
L=32 # number of spins in one direction
LL=L*L # total number of spins
N0=20000 # thermalization steps
N=100000 # number of Metropolis steps.
NS=N/1000 # number of samples.

Define arrays
kmax=np.int(N/NS)
m=np.zeros(kmax)
sigma2=np.zeros(kmax)
E=np.zeros(kmax)

Show animation if True
movie=False

444 METROPOLIS METHOD

temperature
T=2.0
beta = 1.0/T

Initial configuration
if T>2.0:

Random (for high temperature)
s=np.random.choice([1,-1],[L,L])

else:
Uniform (for low temperature)
s=np.ones((L,L),dtype=np.int)

Show initial configuration
if movie:

plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, L), ylim=(-1, L))
for j in range(0,L):

for i in range(0,L):
if s[i,j]==1:

color='b'
else:

color='y'
circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)

plt.pause(0.0001)

Begin Metropolis simulation
k=0
for n in range(0,N+N0):

pick a site at random
i=np.random.randint(0,L)
j=np.random.randint(0,L)

Evaluation of energy change
i1=np.mod(i+1,L)
i2=np.mod(i-1,L)
j1=np.mod(j+1,L)
j2=np.mod(j-1,L)
ss = s[i1,j]+s[i2,j]+s[i,j1]+s[i,j2]
dE = 2*ss*s[i,j]

Flip spin based on Metropolis algorithm
if np.exp(-beta*dE)> np.random.rand(1):

s[i,j]=-s[i,j]

Show new configuration
if movie:

if s[i,j]==1:
color='b'

else:
color='y'

circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)
plt.pause(0.0001)

Evaluate statistical quantities
if n>N0 and np.mod(n,NS)==0:

mean and variance
m[k] = np.real(s.sum())/LL

APPLICATIONS IN PHYSICS 445

sigma2[k] = (s**2).sum()/LL-m[k]**2

total nergy
h=0
for j in range(0,L-1):

for i in range(0,L-1):
h=h+s[i,j]*(s[i+1,j]+s[i,j+1])

for i in range(0,L):
h=h+s[i,L-1]*s[i,0]+s[L-1,i]*s[0,i]

E[k]=-h

k+=1

plot magnetization
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
t=np.linspace(0,k-1,k)*NS
plt.plot(t,m[0:k],'-b',label='m(t)')

mu=sum(m[1:k])/k
plt.plot([0, N],[mu, mu],'--r',label='mean')
plt.xlim([0,N])
plt.ylim([-1.1,1.1])
plt.legend(loc=4)
plt.xlabel('steps')
plt.ylabel('magnetization')

plot energy
plt.subplot(1,2,2)
Eavg=sum(E[0:k])/k
C=(sum(E[0:k]**2)/k-Eavg**2)/T**2/LL
plt.plot(t,E[0:k]/LL,label='energy');
plt.plot([0,N],[Eavg/LL, Eavg/LL],'--r',label='mean')
plt.xlim([0,N])
plt.ylim([-4,0])
plt.xlabel('steps')
plt.ylabel('Energy/spin')
plt.show()

Show the final configulation
if not(movie):

plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, L), ylim=(-1, L))
for j in range(0,L):

for i in range(0,L):
if s[i,j]==1:

color='b'
else:

color='y'
circle=plt.Circle((i,j),0.5,fc=color)
plt.gca().add_patch(circle)

plt.show()

statistics
print('<m>={0:8.5f}'.format(mu))
print('<E>={0:8.5f}'.format(Eavg/LL))
print('<C>={0:8.5f}'.format(C))

▲▲▲

Program 17.3

446 METROPOLIS METHOD

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates two-dimensional percolation. *
%* Hoshen and Kopelman algorithm is used for cluster labeling. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/17/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

ease all previous figures
plt.close('all')

N=32
p=0.59 is close to the transition point
p=0.59

Graphics setting
plt.figure(figsize=(6,6))
plt.axis('equal')
plt.axes(xlim=(-1, N), ylim=(-1, N))

place atoms at random
r=np.random.rand(N,N)
lattice = r < p

draw clusters
for i in range(0,N):

for j in range(0,N):
if lattice[i,j]:

circle=plt.Circle((i,j),0.5,fc='b')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Labeling: 1st pass (Making initial labels and map)
label=np.zeros([N,N],dtype=np.int) # allocate array
remap=np.zeros(N*N,dtype=np.int)

new=0
for j in range(0,N):

for i in range(0,N):

i1 = i-1
j1 = j-1

if lattice[i,j]>0:
if i1 < 0:

left=0 # outside the box
else:

left=label[i1,j] # left neighbor

if j1 < 0:
down=0 # outside the box.

APPLICATIONS IN PHYSICS 447

else:
down=label[i,j1] # down neighbor

if down==0 and left==0: # if both are unocupied
new=new+1 # create a new cluster.
label[i,j]=new
remap[new]=new

elif down*left>0: # both are occupied.

if down==left: # if they belong to the same cluster.
label[i,j]=left # join to the cluster.

else: # connecting two different clusters.
found = False
while not(found):

if remap[left]==left:
found = True

else:
left=remap[left]

found = False
while not(found):

if remap[down]==down:
found = True

else:
down=remap[down]

if left==down: # they again belong to the same
label[i,j]=left

else:
nmax=np.max([left,down])
nmin=np.min([left,down])
label[i,j]=nmin # coalesce two clusters
remap[nmax]=nmin # add to the chain

elif down>0: # only down neighbor is occupied
label[i,j] = down # join to the neighbor

else: # only the left neighbor is occupied
label[i,j] = left # join to the neighbor

Labeling: 2nd pass (Collapse the label in the same cluster)

nmax = np.max(label)
for i in range(nmax,0,-1):

label[label==i]=remap[i]

Labeling: 3rd pass (Make the label continuous)
This procedure is not essential.
j=0
for i in range(1,nmax+1):

if remap[i]==i:
j=j+1
label[label==i] = j

Find cluster size and find percolation
nmax = np.max(label)
size = np.zeros(nmax+1,dtype=np.int)
maxsize=0
largest=1

448 METROPOLIS METHOD

print('Cluster Size Percolation')
for i in range(1,nmax+1):

percx = any(label[0,:]==i)*any(label[N-1,:]==i) >0
percy = any(label[:,0]==i)*any(label[:,N-1]==i) >0
size[i]= (label==i).sum()
if size[i] > maxsize:

largest = i
maxsize = size[i]

if percx or percy:
perc='YES'

else:
perc=' NO'

print('{0:5d}: {1:5d}, {2:s}'.format(i, size[i], perc))

Show the largest cluster
for i in range(0,N):

for j in range(0,N):
if label[i,j] == largest:

circle=plt.Circle((i,j),0.5,fc='r')
plt.gca().add_patch(circle)
plt.pause(0.0001)

Plot size distribution
plt.figure(figsize=(6,5))
plt.hist(size,maxsize)
plt.show()

▲▲▲

Bibliography

[1] David Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, 1987.

[2] Frederick Reif. Fundamentals of Statistical and Thermal Physics. Waveland Pr Inc, 2008.

[3] David P. Landau and Kurt Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge
University Press, 4th edition, 2014.

[4] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[5] Frederick Reif. Fundamentals of Statistical and Thermal Physics. Waveland Pr Inc, 2008. Section 9.5.

[6] Dietrich Stauffer and Ammon Aharony. Introduction To Percolation Theory. Taylor & Francis, 2nd
edition, 1994.

[7] J. Hoshen and R. Kopelman. Percolation and cluster distribution. i. cluster multiple labeling technique
and critical concentration algorithm. Physical Review B: Condensed Matter and Materials Physics,
14:3438–3445, Oct 1976.

[8] M. E. J. Newman and R. M. Ziff. Fast monte carlo algorithm for site or bond percolation. Physical
Review E: Statistical, Nonlinear, and Soft Matter Physics, 64:016706, Jun 2001.

449

