
CHAPTER 16

RANDOM WALKS

A drunkard leaves his favorite bar and walks to his home. After N steps, how far is he from the bar? This
is a basic question of random walk problems. An interesting mathematics such as Wiener process evolved
from this simple question and many important theories have been developed in many fields of science based
on the random walk model. In this chapter, we focus on discrete random walks where step size is finite and
fixed. Continuous random walk is discussed in Chapter 18.

16.1 One-dimensional Random Walk

A particle in a one-dimensional space jumps from one site to an adjacent site at random with a probability
pL = p to the right and pR = 1 − p to the left. See Fig. 16.1. The position of the particle is specified by
integer index assigned to the grid point. We assume p = 1

2 for now. Then, we have unbiased random walk
(pL = pR). Initially a particle is placed at x0. Where is the particle after N steps? There is no definite
answer to this question. The trajectory of the particle is not uniquely determined by the initial condition
since the direction of jump is probabilistic. Therefore, the position of the particle at time t is stochastic
variable X̂t defined with sample space x ∈ Z and probability distribution Pt(x). Here time, t = 0, 1, · · · , N
is just the number of jumps the particle made and thus discrete. The stochastic variable X̂t as a function
time t is a sequence of random variables {X̂0, X̂1, X̂2, · · · }, which is called stochastic process. For example,
if the particle was initially at x = 0, the possible outcome is {0}the probability is P0(x) = δx 0 where δm n is
a Kronecker’s delta. At t = 1, the particle is either at x = 1 or x = −1. Thus, the possible outcome is {±1}

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

399

400 RANDOM WALKS

x=0 1 2 3 4−1−2−3−4

PRPL

Figure 16.1: One-dimensional discrete random walk. The blue arrows indicate a realization of 6-steps
trajectory, RRLRRL

and the associate probability is

P1(x) =


1
2 for x = ±1

0 otherwise
. (16.1)

After the second jumps, the possible outcomes of X̂2 are now {−2, 0, 2} with the probability

P2(x) =


1
2 for x = 0
1
4 for x = ±2

0 otherwise

. (16.2)

This problem can be solved analytically for t = N . Suppose that the particle jumps to the right NR
times and to the left NL = N −NR. (Note that N = NR +NL.) For example, the blue arrows in Fig. 16.1
represents an trajectory of N = 6 steps of which NR = 4 steps to the right and NL = 2 to the left. The
final position x(NR, N) = (NR − NL) = 2. The probability to have this particular trajectory RRLRRL is(

1
2

)6
. However, several other trajectories have the same NR and NL, e.g., RRRRLL. Simple combinatorial

calculation tells that there are
W (NR, N) = N !

NR! (N −NR)! (16.3)

different ways to reach the same point. Noting that the final point is x = (NR − NL) = (2NR − N),
NR = 1

2 (N + x) and NL = 1
2 (N − x). Hence, the probability to find the particle at x after N steps is

Pn(x) = N !(
N + x

2

)
!
(
N − x

2

)
!

(
1
2

)N

. (16.4)

When N ± x is not an even integer, this result fails. This is because when N is even, the particle cannot
stop at any odd site and similarly when N is odd, no even site is reachable by the particle.

When N ≫ 1, the probability (16.4) becomes Gaussian∗

Pn(x) ≈ 1√
2πN

e−x2/2N . (16.5)

The mean position is ⟨Xn⟩ = 0 for any N . The variance increases as
〈
X2

n
〉

= N . This means that on average
the drunkard is still at the bar after a long walk!

∗A special care is needed to make x continuous since x/a is exclusively even or odd.

PERSISTENT RANDOM WALK 401

steps
0 500 1000

x

-40

-20

0

20

40

7
+<
-<

x
-200 0 200

;
(x

)
Figure 16.2: Monte Carlo simulation of discrete random walk. 100000 trajectories are used to get the
statistics. Left: The solid and dashed red lines show the mean trajectory and the deviation from the mean.
Thin solid lines are individual trajectories. Right: The distribution at step N = 1000. It fits exactly to the
Gaussian distribution (red line) with variance σ2 = N .

EXAMPLE 16.1

While analytic results of statistical quantities are available for this simple random walk, we often want
to see what the individual trajectories look like. Program 18.1 simulates simple one-dimensional random
walk. The particle is initially at x = 0. The direction of jump is determined by a standard uniform
random number between 0 and 1. If the random number is less than 0.5, the particle jumps to the left
and otherwise to the right. Repeating it many times, we obtain a trajectory of the particle. If another
particle starts from the same place, its trajectory is different from the first one since the direction of
jump is random. In order to evaluate statistical quantities, we need to calculate many trajectories. The
program calculates 100000 trajectories. The mean and variance of the position are computed at each
time. Figure 16.2 shows a few individual trajectories, the mean and the square root of variance. While
the mean value remains zero for all time, the individual trajectories do not stay close to the origin and
they cover wide area around the origin. However, roughly speaking, most trajectories stay inside the
square root of the variance. The distribution of the particles at t = N matches well to the Gaussian
distribution.

16.2 Persistent Random Walk

In some random walks, the particles carry inertia such that the jump probability depends on the previous
jump. The particles tend to jump in the same direction as the previous jump but not always. Such random
walk is called persistent random walk. To simulate it, we introduce a state dependent jump probability.
The particle jumps in the same direction as previous jump with the probability p > 1/2 and the change
the jump direction with the probability q = 1 − p. This probability does not create a preferred direction.
Therefore, the mean position remains zero. However, the variance deviates from that of the normal random
walk. Analytical calculation shows that the variance is σ2 = p

qN . The particle distribution of the persistent

402 RANDOM WALKS

steps
0 500 1000

<
2

0

500

1000

1500

2000

2500

3000

x
-200 0 200

;
(x

)

persistent RW
regular RW

<2 (persistent)

<2 (regular)

7

Figure 16.3: Simulation of persistent random walk. 100000 trajectories are sampled with a persistent jump
probability p = 0.75. The left panel shows that the mean position remains zero but the variance grows faster
than that of the normal random walk. The right panel shows the distribution of the particles. The red line
indicates the distribution of the normal random walk (Gaussian).

random walk is expected to be wider. We can also use p < 1/2. In this cases, the particles tends to jump in
the opposite direction to the previous jump (” Fickle Random Walk”).

EXAMPLE 16.2

Program 16.2 simulates persistent random walk with p = 0.75. According to the theory, σ2 = 3N for
this case. Figure 16.3 illustrates that. The σ2 = 3N in comparison to σ2 = N for the normal random
walk. Try other values of p, you will find that σ2 = Np/q. Even you can go the other side p/q < 1 so
that the particles tends to change the direction more often than the normal random walk.

16.3 Multi-dimensional Random Walk

For d-dimensional space, we consider d-dimensional cubic lattice. The random walker jumps to one of the 2d
nearest sites at random. If there is no bias, the probability to jump to a particular site is p = 1/2d. For the
two-dimensional space, there are four possible jumps, east (E), west (W), north (N), and south (S) . Hence,
p = 1/4. The final position is

x = (Ne −Nw), y = (Nn −Ns) (16.6)

and the probability to reach that position after N step is

Pn(x, y) = N !
NE!NW!NN!NS!

(
1
4

)N

, NR +NL +NU +ND = N (16.7)

. The mean position remains at the origin (⟨x⟩ = ⟨y⟩ = 0). The mean square displacement at N steps is〈
r2〉 =

〈
x2 + y2〉 =

〈
x2〉+

〈
y2〉 = Nx +Ny = N (16.8)

APPLICATIONS IN PHYSICS 403

x
-40 -20 0 20 40

y

-40

-30

-20

-10

0

10

20

30

40 trajectory 1
trajectory 2
<

(a) Two independent trajectories (blue and green
lines) of two-dimensional discrete random walk (N =
1000 steps). The red line indicates the circle of ra-
dius σ(N). On average, the random walkers spend
most of time inside the circle.

x
-100 -50 0 50 100

y

-100

-50

0

50

100

(b) The distribution of the particles after 1000 steps.
2000 particles are shown. The particle density is high
inside the red circle. Many of them are still very close
to the starting point.

Figure 16.4: Simulation of two-dimensional discrete random walk. Statistics is taken over 100000 trajectories.

where Nx and Ny are the number of steps in x and y direction. Although Nx and Ny vary but at the mean
square displacement only depends on N .

EXAMPLE 16.3

Program 18.2 simulates the two-dimensional random walk with 100,000 particles. All particles are
initially at the origin of the coordinates. Each particle takes a different trajectories from others. Tw
independent trajectories are plotted in Fig. 16.4a. The radius of the red circle indicates r, the square
root of the mean square displacement (16.8). The final position of the particles are shown in Fig. 16.4b.
It is clear that the particle density is higher in the circle.

16.4 Applications in Physics

16.4.1 Diffusion Limited Aggregates

Consider mineral ions in solution. They diffuse randomly and when they hit a surface they stick to it. (See
Fig. 16.5.) Then, the surface grows as more ions arrive. However, the ions do not fill the space densely as
it grows. The ballistic deposition model discussed in the previous chapter is an exmple. Here we discuss
another example, the electrodeposition of ions onto a seed particle. A cluster grown from a copper sulfate
solution in an electrodeposition cell is shown in Fig 16.6a. This type of growth, known as diffusion limited
aggregates (DLA), forms a distinct shape with a fractional dimension.[1] It turns out that this kind of growth
patterns have been observed in other cases such as dendrites grown on a rock. (See next section.)

A mathematical model was developed by Witten and Sander in 1981[2] based on random walk. A seed
particle is placed at the origin of the coordinates. Then, a particle is released from a point far from the

404 RANDOM WALKS

Diffusion LimitedBallistic

Figure 16.5: Two deposition models: In the ballistic deposition model, the particles do not diffuse. The
lateral position is randomly selected and stick to the first particle in a cluster. In the diffusion limited
model, on the other hand, the particles diffuse laterally as well as vertically. They stick to the first particle
they hit. Due to the random walk, they can attached to the cluster at any location.

seed. The particle moves randomly and eventually hits the seed. Then, it sticks to the seed and forms
a cluster. A second particle is released from a different point again far from the seed. It also travels at
random. Eventually it hits one of the particles in the cluster and sticks to it. By repeating this procedure
the cluster grows. As the cluster grows, it becomes harder to reach the empty space near the center of the
cluster by random walk and thus the empty space remains as the cluster gets bigger. The resulting object
in the two-dimensional space is a fractal with a fractional dimension 1 < D < 2 where the fractal dimension
is determined by the total mass of the object M within a radius R

M ∝ RD (16.9)

If the whole space inside the circle of radius R is filled with particles or the empty regions are uniformly
distributed, then D = 2. Figure 16.6 indicates that the structure is tree-like. There are many different sizes
of branches and empty spaces. Zooming in, we see a similar structure. It is hard to tell if we zoomed in or
not. Such a kind of structures is said to be self-similar and an important property of a fractal.

Here we simulate the DLA using discrete random walk. The two-dimensional space is represented by a
square grid. The particles jump from one site to one of nearest sites at random with equal probability. The
following algorithm is used in Program 16.6. The resulting aggregate is shown in Fig. 16.6b, which resembles
to the cluster generated by the electrodeposition in Fig. 16.6.

Algorithm 16.1 Two-dimensional Diffusion Limited Aggregates
1. Place a seed particle at the origin (0,0).
2. Set an initial radius R of the circle where the particles are released. (R = 5 was used.)
3. Set an exterior radius Rmax. (Rmax = 3R is used. The exterior wall moves out as the cluster

gets bigger.)
4. Select a point on a circle at random and release a particle from it.
5. Let the particle undergoes random walk.
6. If the particle reaches Rmax, it is lost to the outer wall. Start over again from step 3.
7. If one of the four nearest neighbor sites is occupied by another particle, it is now a part of the

cluster and does not move any longer.
8. Evaluate the radius from the center. If it is bigger than R, replace R with it.
9. Repeat the process from step 2. with a new particle .

APPLICATIONS IN PHYSICS 405

(a) Electrodeposition of copper ions (Experiment)

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

x

y

(b) Simulation of DLA. The cluster is formed with
20000 particles.

Figure 16.6: Diffusion limited aggregates (DLA)

16.4.2 Dendrites

Another example of the diffusion limited growth is dendrites. Only the difference is the boundary condition.
The particles are released from a certain height and diffuse through a medium. Due to gravity, it falls down
on average but very slowly. So, the vertical motion can be simulated by a biased random walk. On the
other hand, their lateral motion is an unbiased random walk. The particles stick to either the base line or
the clusters growing from the base line. Manganese dendrites grown on a lime stone is shown in Fig. 16.7a.
The dendrite is also a fractal object. The detailed analysis of experimental data is given in Ref. [3].

The algorithm implemented in Program 16.5 is given here. The result is plotted in Fig 16.7b. It looks
very similar to the actual dendrites formed on a rock.

Algorithm 16.2 Diffusion Limited Growth of Dendrites
1. Set an initial height H where the particles are released. The value of H will change as the

height of the dendrites increases. (H = 5 was used.)
2. Select a lateral position x0 at random and release a particle from (x0,H).
3. Let the particle undergoes random walk, slightly biased in the vertical direction.
4. If the particle reaches the base line at y = 0, it stick to the base.
5. If one of the four nearest neighbor sites is occupied by another particle, it is now a part of the

cluster and does not move any longer.
6. Evaluate the height of the tallest dendrite ymax and let H = ymax + 5.
7. Repeat the process from step 2. with a new particle .

406 RANDOM WALKS

(a) Manganese dendrites on a limestone.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

x

h

(b) Simulation of dendrite growth. The dendrites are
formed with 10000 particles.

Figure 16.7: Dendrite Crystals

16.4.3 Parrondo Paradox

Suppose that you play games at a Casino. Except for a few very lucky people, most of us lose and the Casino
wins. In 1996, Juan Parrondo discovered an interesting paradox which states

There exist pairs of games, each with a higher probability of losing than winning, for which it is
possible to construct a winning strategy by playing the games alternately.
Algorithm ?? is based on the original games invented by Parrondo.[4]

Algorithm 16.3 Parrondo Game

1. Winning a game earns us $1 and losing requires us to surrender $1. Let C(t) be your
capital at time t. It follows that C(t+ 1) = C(t) ± 1 after each play.

2. In Game A, we toss a biased coin, Coin 1, with probability of winning P1 = (1/2) − ϵ.
If ϵ > 0, this is clearly a losing game in the long run.

3. In Game B, we first determine if our capital is a multiple of 3. If it is, we toss a biased
coin, Coin 2, with probability of winning P2 = (1/10) − ϵ. If it is not, we toss another
biased coin, Coin 3, with probability of winning P3 = (3/4) − ϵ.

When ϵ = 0, both Game A and B are fair and on average you neither lose or gain. Game A is a simple
biased random walk. The Game B is similar to the persistent random walk since the jump probability
depends on the additional degree of freedom. Th idea behind this game came from a flashing ratchet model
of biological molecular motors.[5, 6] However, if ϵ > 0, there is bias in each Game in favor of the Casino. In
Program 16.6, the Parrondo game is implemented. Figure 16.8 shows capital gain for three different cases.
If you play Game A or Game B alone, you lose your money on average. However, you gain if both games
are played in the order of AABBAABBAABB · · · .

PROBLEMS 407

number of plays
0 20 40 60 80 100

G
ai

n

-1.5

-1

-0.5

0

0.5

1

1.5

2
Game A alone
Game B alone
Games A & B

Figure 16.8: Simulation of Parrondo Game. 50000 people played Games in a Casino. When they play only
Game A, on average people lose their money. Similarly, only Game B is played, again on average people lose
their money. Now they play Game A for several times and switch to Game B. After playing Game B for
several times switch back to Game A. Then, repeat this many times. You always win!

16.5 Problems

16.1 The skewness and the kurtosis are defined by

γ1 =
〈
(x− µ)3〉
σ3 , β2 =

〈
(x− µ)4〉
σ4 , (16.10)

respectively, where µ = ⟨x⟩ and σ2 =
〈
(x− µ)2〉. The Gaussian distribution is uniquely determined by

the mean and variance. Higher order cumulants are all expressed with the mean and the variance. For
example,γ1 = 0 and β2 = 3. Now, consider simple one-dimensional discrete random walk. All particles
are initially at x = 0. Find the distribution of particles after N = 1000 steps. Then, evaluate skewness
and kurtosis. Compare them with the exact values. In order to get a reasonable agreement, you need
to have a large number of particles.

16.2 Consider two-dimensional random walks discussed in Example 16.3. Find the time (number of steps)
when the random walkers reach the circle of radius r = 30 for the first time. The time is also a stochastic
variable which has a certain probability distribution. Find the distribution and find the expectation
value of the time, which is known as first passage time.

16.3 Is the Parrondo paradox still valid when Games A or B is randomly chosen at every play with equal
probability? Modify Program 16.6 and check if you still win.

16.4 Find the fractal dimension D in Eq. (16.9) for the two-dimensional diffusion limited aggregates.

408 RANDOM WALKS

MATLAB Source Codes

Program 16.1
%**
%* Exercise 16.1 *
%* filename: ch16pr01.m *
%* program listing number: 16.1 *
%* *
%* This program simulates the one-dimensional descrete random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/03/2017. *
%**
clear all

N=1000; % max time (number of steps)
M=100000; % number of particles

x=zeros(M,N); % reset the trajectories

% trajectory calculation
for i=1:N-1

x(:,i+1)=x(:,i)+randi(2,[M,1])*2-3;
end

% stattistics
mu=sum(x,1)/M; % mean
sigma=sqrt(sum(x.ˆ2,1)/M); %variance
t=[1:N];

subplot(1,2,1)
p=plot(t,mu,t,sigma,'--',t,-sigma,'--');
set(p(1),'color','red','linewidth',2)
set(p(2:3),'color','black','linewidth',2)
legend('\mu','+\sigma','-\sigma')
legend('location','northwest')
hold on
p=plot(t,x(1,:),t,x(2,:),t,x(3,:));
set(p(1),'color','blue');
set(p(2),'color','green');
set(p(3),'color',[0,0.75,0.75]);
axis([0 N -40 40])
xlabel('steps','fontsize',14)
ylabel('x','fontsize',14)
hold off

subplot(1,2,2)
rho=x(:,N);
h=histogram(rho,51,'Normalization','pdf');
hold on
X=h.BinEdges;
Y=1./sqrt(2*pi*N)*exp(-X.ˆ2/(2.*N));
p=plot(X,Y);
set(p,'color','red','linewidth',2);
xlabel('x')
ylabel(texlabel('rho(x)'))
hold off

Program 16.2
%**

PROBLEMS 409

%* Exercise 16.2 *
%* filename: ch16pr02.m *
%* program listing number: 16.2 *
%* *
%* This program simulates the one-dimensional persistent random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all;

% parameters
p=0.75; % persistent jump probability
M=100000; % number of particles
N=1000; % number of steps

% initial states
x=zeros(M,1);
mu=zeros(N,1);
sigma2=zeros(N,1);
mu(1)=0.;
sigma2(1)=0.;

d=randi(2,[M,1])*2-3; %unbiased initial jump
x=x+d;
mu(2)=sum(x)/M; % mean
sigma2(2)=sum(x.ˆ2)/M-mu(2)ˆ2; %variance

for i=3:N
r=rand(M,1);
k=r>p; % direction is reversed.
d(k)=-d(k);
x=x+sign(d); % jump
mu(i)=sum(x)/M; % mean
sigma2(i)=sum(x.ˆ2)/M-mu(i)ˆ2; %variance

end

subplot(1,2,1)
p=plot([1:N],mu,[1:N],sigma2);
set(p(1),'linewidth',2,'color','blue')
set(p(2),'linewidth',2,'color','red')
hold on
p=plot([1:N],[1:N],'--');
set(p,'color','black')
legend('\mu','\sigmaˆ2','\sigmaˆ2 (Normal RW)')
legend('location','northwest')
xlabel('steps')
ylabel('moments')
hold off

subplot(1,2,2)
h=histogram(x,51,'Normalization','pdf');
y=h.BinEdges;
g=1.0/sqrt(2*pi*N)*exp(-y.ˆ2/(2.0*N));
hold on
r=plot(y,g);
set(r,'color','red')
xlabel('x')
ylabel('probability density')
legend('persistent RW','normal RW')
hold off

410 RANDOM WALKS

Program 16.3

%**
%* Exercise 16.3 *
%* filename: ch16pr03.m *
%* program listing number: 16.3 *
%* *
%* This program simulates the two-dimensional random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

M=100000; % number of Brownian particles

N=1000; % number of steps

x=zeros(M,1); % initial position
y=zeros(M,1);
u=zeros(N,2);
w=zeros(N,2);
s=zeros(N);

for i=2:N
g=randi([1,4],[M,1]); % pick one of four directions to jump

x(g==1)=x(g==1)+1;
x(g==2)=x(g==2)-1;
y(g==3)=y(g==3)+1;
y(g==4)=y(g==4)-1;

% record two sample trajectories
u(i,1)=x(1);
w(i,1)=y(1);
u(i,2)=x(2);
w(i,2)=y(2);

% mean square displacenent
s(i)=sum(x.ˆ2+y.ˆ2)/M;

end

plot(u(:,1),w(:,1),u(:,2),w(:,2));
hold on
R=sqrt(s(N));
viscircles([0,0],R,'Color','r');
axis equal

L=R*1.5;
axis([-L L -L L])
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off

figure
plot(x(1:2000),y(1:2000),'.');
axis equal; % fix the aspect ratio (needed for movie)
axis([-100 100 -100 100]); % fiz the axis range
hold on
viscircles([0,0],R,'Color','r');
xlabel('x','fontsize',14)

PROBLEMS 411

ylabel('y','fontsize',14)
hold off

Program 16.4
%**
%* Section 16.4.1 *
%* filename: ch16pr04.m *
%* program listing number: 16.4 *
%* *
%* This program simulates the two-dimensional diffusion limited *
%* aggregates. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

% number of particles
N=20000;

L=601; % size of the square space
L0=301; % center of the square

% set array size
x=zeros(N,1);
y=zeros(N,1);
A=zeros(L,L);

R=5; % inner circle
R_max=3*R; % outer circle

% seed particle
A(L0,L0)=1;
x(1)=L0;
y(1)=L0;
viscircles([x(1),y(1)],0.5,'Color','r');
axis equal
hold on

for n=2:N
% random point on the inner circle
theta=rand(1)*2*pi;
x(n)=round(R*cos(theta))+L0;
y(n)=round(R*sin(theta))+L0;

% diffusion
found=false;
while not(found)

p=rand(1);
if p<1/4

x(n)=x(n)+1;
elseif p<1/2

x(n)=x(n)-1;
elseif p<3/4

y(n)=y(n)+1;
else

y(n)=y(n)-1;
end
r=sqrt((x(n)-L0)ˆ2+(y(n)-L0)ˆ2);
if r>R_max % out of bound - restart

412 RANDOM WALKS

theta=rand(1)*2*pi;
x(n)=round(R*cos(theta))+L0;
y(n)=round(R*sin(theta))+L0;

elseif r<R
% hit the cluster?
if A(x(n)+1,y(n))+A(x(n)-1,y(n))...
+A(x(n),y(n)+1)+A(x(n),y(n)-1)>0
found=true;
A(x(n),y(n))=1;
viscircles([x(n),y(n)],0.5,'Color','r');
drawnow
R = max(R, r+5); % adjust inner circle radius
R_max = 3*R; % adjust outer circle radius
if R>L0

xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off
error('Out of Range')

end
end

end
end

end

Program 16.5
%**
%* Section 16.4.2 *
%* filename: ch16pr05.m *
%* program listing number: 16.5 *
%* *
%* This program simulates the growth of dendrite. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

% size of the systrem
N=5000;
Lx=100;
Ly=100;

% initial setting
x=zeros(N,1);
y=zeros(N,1);
A=zeros(Lx,2*Ly);
A(:,1)=1;
H=5;
ymax=5;

% bias in y direction
e=0.01;

% initial plots
p=plot([0,Lx-1],[0.5,0.5]);
set(p,'linewidth',2,'color','black')
axis equal
axis([0 Lx 0 100])
hold on

PROBLEMS 413

% random position
x=floor(rand(N,1)*Lx);

% deposition process
for n=1:N

y(n)=H; % diffusion starts from here

found=false;

% diffues in 2D space until it sticks to another.
while not(found)

p=rand(1);
if p<1/4

x(n)=mod(x(n)+1,Lx);
elseif p<1/2

x(n)=mod(x(n)-1,Lx);
elseif p<3/4-e

y(n)=y(n)+1;
if y(n)>3*H % if it went to high, start over.

y(n)=H;
end

else
y(n)=y(n)-1;

end

if y(n)<H
i1=mod(x(n)-1,Lx)+1;
i2=mod(x(n)+1,Lx)+1;
if A(i1,y(n)+1)+A(i2,y(n)+1)...
+A(x(n)+1,y(n)+2)+A(x(n)+1,y(n))>0
found=true;
A(x(n)+1,y(n)+1)=1;
viscircles([x(n)+1,y(n)+1],0.5,'Color','b');
drawnow
ymax=max(y(n),ymax); % adjust the stating height
H=5+ymax;
if ymax>Ly-1

axis([0 Lx 0 ymax*1.1])
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
hold off
error('Out of Range')

end
end

end
end

end

Program 16.6
%**
%* Section 16.4.3 *
%* filename: ch16pr06.m *
%* program listing number: 16.6 *
%* *
%* This program simulates the Parrondo game. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
clear all
close all

414 RANDOM WALKS

% control parameters
e=0.005;
pA=1/2-e;
qA=1-pA;
pB=3/4-e;
qB=1-pB;
pC=1/10-e;
qC=1-pC;
N=50000;
M=100;

% Game A
x=zeros(N,1);
y=zeros(M+1,1);
for i=1:M

r=rand(N,1);
x(r<pA)=x(r<pA)+1;
x(r>=pA)=x(r>=pA)-1;
y(i+1)=sum(x)/N;

end

p=plot([0:M],y);
set(p,'linewidth',2)
hold on

% Game B
x=zeros(N,1);
p=zeros(N,1);
for i=1:M

r=rand(N,1);
p(:)=pB;
k=find(mod(x,3)==0);
p(k)=pC;
x(r<p)=x(r<p)+1;
x(r>=p)=x(r>=p)-1;
y(i+1)=sum(x,1)/N;

end
p=plot([0:M],y);
set(p,'linewidth',2,'color',[0, 0.75,0.75])
hold on

% Game A and B
x=zeros(N,1);
p=zeros(N,1);
for i=1:M

r=rand(N,1);
if mod(i,4)<2

p(:)=pA;
else

p(:)=pB;
k=find(mod(x,3)==0);
p(k)=pC;

end
x(r<p)=x(r<p)+1;
x(r>=p)=x(r>=p)-1;
y(i+1)=sum(x,1)/N;

end
p=plot([0:M],y);
set(p,'linewidth',2,'color','red')
legend('Game A alone','Game B alone', 'Games A & B')

PROBLEMS 415

legend('location','northwest')
xlabel('# of plays','fontsize',14)
ylabel('Gain','fontsize',14)
hold off

Python Source Codes

Program 16.1
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 16.1 *
%* filename: ch16pr01.py *
%* program listing number: 16.1 *
%* *
%* This program simulates the one-dimensional descrete random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=1000 # max time (number of steps)
M=100000 # number of particles

x=np.zeros((M,N+1)) # reset the trajectories

trajectory calculation
for i in range(0,N):

x[:,i+1]=x[:,i]+np.random.choice([-1,1],M) # random step

stattistics
mu=np.sum(x,axis=0)/M # mean
sigma=np.sqrt(np.sum(x**2,axis=0)/M)-mu**2 #variance
t=np.linspace(0,N,N+1)

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,mu,'-r',label=r'μ')
plt.plot(t, sigma,'--k',label=r'$+\sigma$')
plt.plot(t,-sigma,'--k',label=r'$-\sigma$')
plt.plot(t,x[0,:],'-b')
plt.plot(t,x[1,:],'-g')
plt.plot(t,x[2,:],'-c')
plt.axis([0, N, -40, 40])
plt.xlabel('steps',fontsize=14)
plt.ylabel('x',fontsize=14)
plt.legend(loc=3)

plt.subplot(1,2,2)
rho=x[:,N]
n, X, Y = plt.hist(rho,51,normed=True,label='simulation')
Y=1.0/np.sqrt(2*np.pi*N)*np.exp(-X**2/(2.*N))

416 RANDOM WALKS

dX=X[2]-X[1]
plt.plot(X,Y,'-r',label='theory')
plt.xlabel('x')
plt.ylabel(r'$\rho(x)$')
plt.legend(loc=1)
plt.show()

Program 16.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 16.2 *
%* filename: ch16pr02.m *
%* program listing number: 16.2 *
%* *
%* This program simulates the one-dimensional persistent random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 03/04/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

parameters
p=0.75 # persistent jump probability
M=100000 # number of particles
N=1000 # number of steps

mu=np.zeros(N+1)
sigma2=np.zeros(N+1)
t=np.linspace(0,N,N+1)

initial states
x=np.zeros(M) # reset the trajectories
mu[0]=0.
sigma2[0]=0.

d=np.random.choice([-1,1],M)
x=x+d # unbiased initial jump
mu[1]=np.sum(x)/M # mean
sigma2[1]=np.sum(x**2)/M-mu[1]**2 #variance

for i in range(1,N+1):
r=np.random.rand(M)
k=r>p # direction is reversed.
d[k]=-d[k]
x=x+np.sign(d) # jump
mu[i]=np.sum(x)/M; # mean
sigma2[i]=np.sum(x**2)/M # ariance

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(t,mu,'-b',label=r'μ',linewidth=2)
plt.plot(t,sigma2,'-r',label=r'$\sigmaˆ2$',linewidth=2)
plt.plot(t,t,'--k',label='$\sigmaˆ2$ (Normal RW)')
plt.legend(loc=2)
plt.xlabel('steps')
plt.ylabel('moments')

PROBLEMS 417

plt.subplot(1,2,2)
n, X, Y = plt.hist(x,51,normed=True,label='persistent RW')
dX=X[2]-X[1]
Z=1.0/np.sqrt(2.0*np.pi*N)*np.exp(-X**2/(2.0*N))
plt.plot(X,Z,'-r',label='normal RW')
plt.xlabel('x')
plt.ylabel('probability distribution')
plt.legend(loc=1)
plt.show()

Program 16.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Exercise 17.3 *
%* filename: ch17pr03.m *
%* program listing number: 17.3 *
%* *
%* This program simulates the two-dimensional random walk. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

M=100000 # number of particles
N=1000 # number of steps

x=np.zeros(M) # initial position
y=np.zeros(M)

u=np.zeros((N+1,2))
w=np.zeros((N+1,2))
s=np.zeros(N+1)

for i in range(1,N+1):

g=np.random.random_integers(1,4,M) # pick one of four directions to jump

jump
The following expression is easy to write but slow in execution
x[g==1]+=1
x[g==2]+=-1
y[g==3]+=1
y[g==4]+=-1

record two sample trajectories
u[i,0]=x[0]
w[i,0]=y[0]
u[i,1]=x[1]
w[i,1]=y[1]

mean square displacenent
s[i]=sum(x**2+y**2)/M

fig1, ax=plt.subplots(figsize=(6,6))

418 RANDOM WALKS

plt.plot(u[:,0],w[:,0],'-b')
plt.plot(u[:,1],w[:,1],'-g')
R=np.sqrt(s[N])
c=plt.Circle((0, 0), R, color='r',fill=False)
ax.add_artist(c)
ax.axis('equal')
L=R*1.5
ax.axis([-L, L, -L, L])
plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.legend(loc=1)

fig2, bx=plt.subplots(figsize=(6,6))

plt.plot(x[0:2000],y[0:2000],'.')
c=plt.Circle((0, 0), R, color='r',fill=False,linewidth=2)
bx.add_artist(c)
bx.axis('equal')
bx.axis([-100, 100, -100, 100])

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)

plt.show()

Program 16.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
#**
#* Section 16.4.1 *
#* filename: ch16pr04.py *
#* program listing number: 16.4 *
#* *
#* This program simulates the two-dimensional diffusion limited *
#* aggregates. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 03/04/2017. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

anim=True

number of particles
N=10000

L=601 # size of the square space
L0=np.int(L/2) # center of the square

set array size
x=np.zeros(N,dtype=np.int)
y=np.zeros(N,dtype=np.int)
A=np.zeros((L,L),dtype=np.int)

R=5. # inner circle
R_max=3.*R # outer circle

PROBLEMS 419

seed particle
A[L0,L0]=1
x[0]=L0
y[0]=L0

plt.ion()
fig, ax = plt.subplots(figsize=(8,8))
ax.set_xlim([L0-100,L0+100])
ax.set_ylim([L0-100,L0+100])

c=plt.Circle((x[0],y[0]), 0.5, color='b')
ax.add_artist(c)

for n in range(1,N):
random point on the inner circle
theta=np.random.rand(1)*2.0*np.pi
x[n]=np.int(R*np.cos(theta))+L0
y[n]=np.int(R*np.sin(theta))+L0

diffusion
found=False
while not(found):

p=np.random.rand(1)
if p<1./4.:

x[n]+=1
elif p<1./2.:

x[n]+=-1
elif p<3./4.:

y[n]+=1
else:

y[n]+=-1

r=np.sqrt(np.float((x[n]-L0)**2+(y[n]-L0)**2))
if r>R_max: # out of bound - restart

theta=np.random.rand(1)*2.0*np.pi
x[n]=np.int(R*np.cos(theta))+L0
y[n]=np.int(R*np.sin(theta))+L0

elif r<R:
hit the cluster?
if A[x[n]+1,y[n]]+A[x[n]-1,y[n]]+A[x[n],y[n]+1]+A[x[n],y[n]-1]>0:

found=True
A[x[n],y[n]]=1
c=plt.Circle((x[n],y[n]), 0.5, color='b',fill=False)
ax.add_artist(c)
if anim:

plt.pause(0.0001)
if R<r+5:

R=r+5. # adjust inner circle radius
R_max = 3*R # adjust outer circle radius
if R>L0:

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()
exit('Out of Range')

Program 16.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""

420 RANDOM WALKS

#**
#* Section 17.4.2 *
#* filename: ch17pr05.m *
#* program listing number: 17.5 *
#* *
#* This program simulates the growth of dendrite. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 02/15/2014. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

anim=True

size of the systrem
N=5000
Lx=100
Ly=100

plt.ion()
fig, ax = plt.subplots(figsize=(6,6))
plt.axis('equal')
ax.set_xlim([0,Lx])
ax.set_ylim([0,Ly])

initial setting
x=np.random.random_integers(0,Lx-1,N) # horizontal position (uniform random)
y=np.zeros(N,dtype=np.int)
A=np.zeros((Lx,2*Ly),dtype=np.int)
A[:,0]=1
H=5
ymax=5

bias in y direction
e=0.01

initial plots
plt.plot([0,Lx-1],[0.5,0.5],'-k',linewidth=2)

deposition process
for n in range(0,N):

y[n]=H # diffusion starts from here

found=False

diffues in 2D space until it sticks to another.
while not(found):

p=np.random.rand(1)
if p<1./4.:

x[n]=np.mod(x[n]+1,Lx) # periodic boundary
elif p<1./2.:

x[n]=np.mod(x[n]-1,Lx) # periodic boundary
elif p<3./4.-e:

y[n]=y[n]+1
if y[n]>3*H: # if it went to high, start over.

y[n]=H
else:

y[n]=y[n]-1

PROBLEMS 421

if y[n]<H:
i1=np.mod(x[n]-1,Lx)
i2=np.mod(x[n]+1,Lx)
if A[i1,y[n]]+A[i2,y[n]]+A[x[n],y[n]+1]+A[x[n],y[n]-1]>0:

found=True
A[x[n],y[n]]=1
c=plt.Circle((x[n],y[n]), 0.5, color='b',fill=False)
ax.add_artist(c)
if anim:

plt.pause(0.0001)

ymax=np.max([y[n],ymax]) # adjust the stating height
H=5+ymax
if ymax>Ly-1:

plt.xlabel('x',fontsize=14)
plt.ylabel('y',fontsize=14)
plt.show()
exit('Out of Range')

Program 16.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
#**
#* Section 16.4.3 *
#* filename: ch16pr06.py *
#* program listing number: 16.6 *
#* *
#* This program simulates the Parrondo game. *
#* *
#* Programed by Ryoichi Kawai for Computational Physics Course. *
#* Last modification: 03/04/2017. *
#**
"""
import numpy as np
import matplotlib.pyplot as plt

control parameters
e=0.005
pA=1./2.-e
qA=1.-pA
pB=3./4.-e
qB=1.-pB
pC=1./10.-e
qC=1.-pC
N=50000
M=100

Game A
x=np.zeros(N)
y=np.zeros(M+1)
t=np.linspace(0,M,M+1)
for i in range(1,M+1):

r=np.random.rand(N)
x[r<pA]=x[r<pA]+1
x[r>=pA]=x[r>=pA]-1
y[i]=x.sum()/N

plt.figure(figsize=(6,5))
plt.plot(t,y,'-b',label='Game A alone',linewidth=2)

422 RANDOM WALKS

Game B
x=np.zeros(N)
p=np.zeros(N)

for i in range(1,M+1):
r=np.random.rand(N)
p[:]=pB
k=np.mod(x,3)==0
p[k]=pC
x[r<p]=x[r<p]+1
x[r>=p]=x[r>=p]-1
y[i]=x.sum()/N

plt.plot(t,y,'-g',label='Game B alone',linewidth=2)

Alternating Game A and B
x=np.zeros(N)
p=np.zeros(N)

for i in range(1,M+1):
r=np.random.rand(N)
if np.mod(i,4)<2:

p[:]=pA
else:

p[:]=pB
k=np.mod(x,3)==0
p[k]=pC

x[r<p]=x[r<p]+1
x[r>=p]=x[r>=p]-1
y[i]=x.sum()/N

plt.plot(t,y,'-r',label='Game A & B',linewidth=2)

plt.legend(loc=2)
plt.xlabel('# of plays',fontsize=14)
plt.ylabel('Gain',fontsize=14)
plt.show()

Bibliography

[1] Jens Feder. Fractals. Plenum, 1988. Chapter 3.

[2] Jr. Witten, T. A. and L. M. Sander. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical
Review Letters, 1981.

[3] M. Matsushita, Y. Hayakawa, and Y. Sawada. Fractal structure and cluster statistics of zinc-metal trees
de- posited on a line electrode. Physical Review A, 32:3814(R), 1985.

[4] G. P. Harmer and D. Abbott. Game theory: Losing strategies can win by parrondo’s paradox. Nature,
402:864, 1999.

[5] R. Dean Astumian. Making molecules into motors. Scientific American, 285(1):57, July 2001.

[6] R. Dean Astumian and Peter Hänggi. Brownian motors. Physics Today, pages 33–39, November 2002.

423

