
UNIFORM RANDOM NUMBERS 369

0 1

0 1 2 3 4 5 6

(a) Mapping from random numbers uniformly dis-
tributed between 0 and 1 to discrete random num-
bers.

1 2 3 4 5 6
0

200

400

600

800

1000

1200

face of die

nu
m

be
r

of
 r

ea
liz

at
io

n

(b) Statistics of the virtual die. Due to the finite
number of realizations, the probability is close but
not exactly uniform.

Figure 15.1: Virtual Die

generate the pseudo random numbers. A most popular method, known as linear congruential generator,
generates a sequence of random numbers Ii by a recursive equation

Ii+1 = a Ii + b mod c (15.4)

where a, b, and c are integer constants. Then, the random number ri = Ii/c is a pseudo random number in
the range of 0 < ri < 1. The most of the random generators supplied by computer systems are based on
this algorithm. In MATLAB, rand() generates random numbers between 0 and 1.

The quality of the random number depends on the choice of a, b, c. Note that total number of possible
random numbers are limited to c at the best. This type of pseudo random numbers are periodic and after a
certain iterations the same sequence comes back. The longest possible period is c. It has been shown that a
set of parameters a = 75 = 16807, b = 0, and c = 231 − 1 = 2147483647 provides excellent uniform random
numbers with the maximum periodicity 231 − 1.

The recursive equation (15.4) must start with a certain initial number I0 called ”seed”. If you do not
specify a seed, a fixed default seed is used and the same sequence of random numbers is obtained every
time. In order to avoid the use of the same random numbers, we must pick a different seed every time. For
example, you can use the current date and time to reset the seed. In MATLAB, rng(’shuffle’) does it.

EXAMPLE 15.1 A Virtual Die

We make a virtual die based on the congruential generator. The uniform random numbers between
0 and 1 is mapped to integer random numbers between 1 and 6. First, we generate a basic uniform
random number r and multiply 6 to it. If N − 1 < 6r ≤ N (N = 1, · · · , 6), then the die gives the value
N . For example, if the random number is r = 0.19, then, 6r = 1.14. This corresponds to 2 on the die.
Figure 15.1a illustrates the mapping from the uniform random number to the die. Program 15.1, we
roll the virtual die 6000 times. If the die is far, each face is realized 1000 times. The result is shown
in Fig. 15.1b. It appears to be fair except for the small fluctuation. This fluctuation is not due to the
low quality of the random number generator. Even if an ideal random numbers are used, there is still
fluctuation. The fluctuation disappears only when the number of samples is infinitely large.

370 RANDOM NUMBERS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 15.2: Monte Carlo method to evaluate the area inside a circle. The area inside the circle equals
4Nred/(Nblue +Nred) where the factor 4 is the area of the square.

EXAMPLE 15.2 Monte Carlo integration

Multidimensional integrals can be computationally demanding. There is a way to estimate them by
random sampling. The result may not be very accurate but gives a rough estimate and particularly
efficient for high dimensional integral. Here we evaluate the volume of a n-dimensional hypersphere of
radius 1. The sphere is inscribed in a hypercube of edge length 2. The volume of the hypercube is 2n.
Now, we generates many random points uniformly distributed in the hypercube. Then, we count the
number of points inside the hypersphere. The ratio of the population inside the sphere and the total
population of the points is roughly speaking in proportion to the volume of the sphere to the volume
of the cube. Since we know the volume of the cube, we can estimate the volume of the sphere from
the ratio. As the number of the points increases to infinity, the result approaches to the exact volume
Vn = πn/2/Γ(n/2 + 1) where Γ(·) is the gamma function.[1] Figure 15.2 illustrates the case for n = 2.
Generate a pair of standard uniform random numbers r1 and r2. Convert them to x and y coordinates
by

x = 2r1 − 1, y = 2r2 − 1 (15.5)

which are uniform random numbers between −1 and 1. If x2 +y2 < 1, then increment Nin by one. After
N random points, the volume of the sphere is estimated by Vsphere = Nin

N Vcube.
Program 15.2 evaluates the volume of the N -dimensional hypersphere using the Monte Carlo inte-

gration. Figure 15.3 shows that with 100000 sampling, we can evaluate the volume of two-dimensional
circle rather accurately and the volume of the six-dimensional sphere within ±5% of error. If we use a
standard integral method, the number of grid points increases as the power of N . On the other hand, the
number of sampling points necessary to get a reasonable estimate by the Monte Carlo method increases
slower than that. Therefore, the Monte Carlo method is advantageous for high dimensional integrals.

15.3 Non-uniform distributions

In the previous examples, we generated desired random numbers by stretching space or using two random
numbers to cover two-dimensional space. In either cases, the resulting new random numbers are distributed
uniformly. However, non-uniform distributions are common in physics. For example, the velocity of the
gas particles in thermal equilibrium is Gaussian distributed (Maxwell’s distribution). The chance you find

NON-UNIFORM DISTRIBUTIONS 371

0 1 2 3 4 5 6 7 8 9 10

x 104

2.9

3

3.1

3.2

3.3

3.4

of sampling

V
ol

um
e

MC
Exact
−5%
+5%

(a) 2D

0 1 2 3 4 5 6 7 8 9 10

x 104

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

of sampling

V
ol

um
e

MC
Exact
−5%
+5%

(b) 6D

Figure 15.3: Monte Carlo evaluation of the volume of hypersphere. As the number of sampling points
increases, the result approaches to the exact value.

a slow particle is higher than a fast particle. Since computer systems usually supply only uniform random
numbers, we need to transform it to a desired distribution.

Let X̂ a stochastic variable and its realization is a random number x with a distribution χ(x). We
introduce a new stochastic variable Ŷ = f(X̂). The realization of Ŷ is related to the realization of X̂
through the same function y = f(x). Then, the mathematical theorem tells that

ρ(y)|dy| = χ(x)|dx| (15.6)

and thus we have the distribution of y as

ρ(y) = χ(x)
∣∣∣∣dxdy

∣∣∣∣ = χ(x)
∣∣∣∣df−1(y)

dy

∣∣∣∣ . (15.7)

If x is uniformly distributed as

χ(x) =
{

1 0 < x < 1

0 otherwise
(15.8)

then we have
ρ(y) =

∣∣∣∣dxdy

∣∣∣∣ =
∣∣∣∣df−1(y)

dy

∣∣∣∣ (15.9)

By choosing an appropriate function y = f(x), we can construct a random number generate with a desired
distribution ρ(y). For example, when y = − ln(x), ρ(y) = e−y. Figure 15.4 shows the mapping from uniform
x between 0 and 1 to y exponentially distributed from 0 to ∞.

For multi-dimensional cases like Example 15.2, we consider a transformation yi = fi(x1, x2, · · ·). The
distribution for {yi} is given by

ρ(y1, y2, · · ·)dy1dy2 · · · = χ(x1, x2, · · ·)
∣∣∣∣∂(x1, x2, · · ·)
∂(y1, y2, · · ·)

∣∣∣∣ (15.10)

where |∂()/∂()| is the Jacobian determinant. For two-dimensional case,

ρ(y1, y2) = χ(x1, x2)

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ (15.11)

372 RANDOM NUMBERS

0 0.2 0.4 0.6 0.8 1
x

0

1

2

3

4

5

y

Figure 15.4: Mapping from random number x uniformly distributed between 0 and 1 to y exponentially
distributed from 0 to ∞. The transformation function is y = − ln(x).

15.4 Gaussian random number

Stochastic variables with a Gaussian distribution is defined by

ρ(x) = σ√
2π

e−x2/2σ2
(15.12)

and it has mean ⟨x⟩ = 0 and variance ⟨x2⟩ − ⟨x⟩2 = σ2. When σ2 = 1, it is called normal distribution.
The Gaussian distributed stochastic variables are ubiquitous particularly in statistical physics. For example,
many fluid particles collide with a Brownian particle during a short period of time. The force exerted on the
Brownian particle by the fluid particle is stochastic and Gaussian distributed.

There is a mathematical reason why the normal distribution is ubiquitous. Consider N independent
stochastic variables Xi, i = 1, · · · , N with an identical distribution. The mean and variance are given by
⟨Xi⟩ = µ and ⟨(Xi − µ)2⟩ = σ2. Then, the distribution of a stochastic variable defined by

SN = X1 +X2 + · · · +XN −Nµ√
Nσ2

= 1√
Nσ2

N∑
i=1

(Xi − µ) (15.13)

approaches a normal distribution as N → ∞. This is known as central limit theorem.[2] Note that the
distribution of Xi does not have to be Gaussian. As long as the mean and variance are well defined, the sum
of such non-Gaussian stochastic variables is Gaussian distributed.

Now, we want to generate random numbers drawn from the normal distribution. The normally distributed
random generator returns values close to 0 more often than larger values. One way is to utilize the central
limit theorem. Consider 12 random numbers Xi, i = 1, · · · , 12 uniformly distributed between 0 and 1. As
discussed in the previous section, Xi has mean µ = 1/2 and variance σ2 = 1/12. While N is not close to ∞,
the sum of the 12 random numbers,

S12 = X1 +X2 + · · · +X12 − 12µ√
12σ2

=
12∑

i=1
Xi − 6 (15.14)

GAUSSIAN RANDOM NUMBER 373

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

ρ(
x)

S

12

Exact

(a) The sum of 12 uniform random numbers

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

ρ(
x)

Box−Muller
Exact

(b) Box-Muller mnethod

Figure 15.5: Two generators of normally distributed random generator. The distribution is constructed from
100,000 realizations. The distribution of S12 is strictly zero for |x| > 6 and thus rare events are not included.
In principle, the Box-Muller method can generate rare random numbers. However, it is so rare that |x| > 6
is not realized with this 100,000 sampling.

is, roughly speaking, normally distributed. A main problem of this method is that the largest value it
can generate is only 6. The true normal distribution allows very large number up to infinity although the
probability to obtain such a large value is very small. The probability density at x = 6 is about 10−8. Only
one out of 100 million realizations hits that high value. Hence, it is not a significant deficiency for most
applications. If such rare events are not important, the sum of 12 uniform random numbers is a simple way
to generate the normal distribution. Figure 15.5a shows the distribution of S12 which matches well to the
true normal distribution.

If rare events need to be taken into account, use a mathematically rigorous transformation known as the
Box-Muller method. It turns out that the transformation of two uniformly distributed random numbers
x1 and x2 to the two Gaussian distributed random numbers y1 and y2 is more convenient. Consider the
transformations

y1 =
√

−2 ln x1 cos(2πx2) (15.15a)
y2 =

√
−2 ln x1 sin(2πx2) (15.15b)

and their inverse

x1 = exp−(y2
1+y2

2)/2 (15.16a)

x2 = 1
2π arctan y2

y1
(15.16b)

The corresponding distribution function for y1 and y2 is

ρ(y1, y2) =

∣∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣∣ = −
(

1√
2π

e−y2
1/2
)(

1√
2π

e−y2
2/2
)

(15.17)

This distribution indicates that y1 and y2 are independent and normally distributed random numbers.
Using two uniformly distributed random numbers x1 and x2, we generate two normally distributed random
numbers. Unlike, the sum of 12 random numbers, y1 and y2 are truly Gaussian distributed from −∞ to ∞.

374 RANDOM NUMBERS

B1 B2 B3 B4 B5 B6 B7 B8

x0 x1 x2 x3 x 4 x5 x6 x7 x8h

Figure 15.6: Generating histogram from continuous random numbers. Circles indicate the random numbers.
The number of the circles in a bin corresponds to the height of the bar above it.

EXAMPLE 15.3

Generate random numbers that are normally distributed. Program 15.3 implements the Box-Mullar
method. We check the distribution of random numbers by plotting a histogram. To construct a his-
togram, first we create bins by dividing the entire range into many small intervals. For eaxmple, one
bin corresponds to a segment between x and x+ h where h is the width of the bin. See Fig. 15.6. Now,
we generate a random number and check which bin the random number belongs to. After generating
sufficient number of random numbers, count the number of random numbers in each bin. That is the
height of the bar in the histogram. Figure 15.5b shows the distribution of random numbers generated
by the Box-Muller method. The width of the bins is very small in this plot and the plot looks like
continuous line, However. it is a histogram.

15.4.1 Exponential distributions

An exponential distribution with a rate parameter λ > 0 defined by

ρ(x) =
{
λe−λx x > 0

0 x < 0
(15.18)

and its mean and variance are µ = 1/λ and σ2 = 1/λ2.
The exponential distribution is also common in physics. For example, the energy of a system in a thermal

equilibrium is a stochastic variable and distributed exponentially as

ρ(E) = 1
Z

e−E/kBT (15.19)

where Z is a normalization constant. This distribution is known as the Boltzmann distribution.
The exponentially distributed random numbers can be obtained by a transformation y = − ln(x)/λ where

x is a uniformly distributed between 0 and 1.

15.4.2 Evaluation of Mean

To analyze stochastic systems, we often evaluate a mean of a physical quantity f(X̂) which is a function of
stochastic variable X̂. The analytic expression is defined by

⟨f⟩ =
∑

i

f(xi)Pi (15.20)

for a discrete system and
⟨f⟩ =

∫
f(x)ρ(x)dx (15.21)

APPLICATIONS IN PHYSICS 375

for a continuous system. We evaluate this summation or integral using the Monte Carlo method. The
procedure is very simple. Generate N random numbers ri, i = 1, · · · , N out of a desired distribution Pi or
ρ(x). The mean is simply

⟨f⟩ = lim
N→∞

1
N

N∑
i=1

f(ri) (15.22)

Of course, in practice, we use a finite number of sampling N . We need to make it sure that N is large enough
to get an accurate value.

EXAMPLE 15.4

Consider a stochastic variable X̂ of normal distribution. We evaluate the 2nd and 4th moments, ⟨x2⟩ and
⟨x4⟩, using the Monte Carlo method. It is known that ⟨x4⟩ = 3⟨x2⟩2. We will check if the Monte Carlo
simulation can get the same answer. Program 15.4 evaluates the moments using the Box-Muller method.
With N = 1000, the agreement is not bad but much better agreement is obtained with N = 1000000.

N= 1000000, V4/(V2)ˆ2 = 3.0009e+00
N= 1000, V4/(V2)ˆ2 = 2.9033e+00

15.5 Applications in Physics

15.5.1 Thermal Speed

Particles in a three-dimensional gas at temperature T has random velocity v and its probability distribution
of the velocity is given by the Maxwell’s distribution

ρ(v) =
√

m

2πkBT
e−mv2/2kBT (15.23)

where m is the mass of the particle and T and kB are temperature of the gas and the Boltzmann constant,
respectively. The mean velocity is clearly ⟨v⟩ = 0 since v and −v have the equal probability. On the other
hand, the mean speed does not vanish. The exact answer can obtained as

⟨|v|⟩ =
y

|v|ρ(v) dvx dvy dvz =
√

m

2πkBT

∫ ∞
0

∫ π

0

∫ 2π

0
v3e−mv2/2kBT dϕ sin θ dθ dv =

√
8kBT

πm
(15.24)

Now, we try to evaluate the mean speed of hydrogen molecules in the air using the random numbers.
Since the Maxwell’s distribution is Gaussian, we can use the normally distributed random numbers with
mean value µ = 0 and variance σ =

√
kBT

m . Here, as an exercise, we try to confirm Eq. (15.24) by the direct
Monte Carlo simulation.

The statistical analysis tells that the relative error of the finite sampling is about 1/
√
N . Therefore,

with N = 100000 sampling, we expect ∆v
⟨|v|⟩ ∼ 10−4. Program 15.5 generates normally distributed random

numbers vi and calculates the mean speed ⟨|v|⟩ = 1
N

∑N
i |vi|. The result shows the error less than 10−4 as

expected.

mean speed = 1.77558e+03 (exact=1.77566e+03)
relative error = 4.6397e-05

376 RANDOM NUMBERS

(a) Experiment

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

x

z

(b) Exponential Distribution

Figure 15.7: Snapshot of the sedimentation diffusion equilibrium

15.5.2 Sedimentation-diffusion equilibrium

A colloidal particle of mass m under the uniform gravity g does not fall down completely to the bottom
of the container. Random collisions with the fluid particles push the colloidal particle upward against the
gravity. The height of the particle from the bottom is stochastic and distributed as

ρ(z) = mg

kBT
e−mgz/kBT (15.25)

which is known as barometric formula.[3] The barometric formula is one of the example of the Boltzmann
distribution. Two hundred colloidal particles are placed in a fluid. Generate an image showing the location
of the colloidal particles.

Measure the height using the gravitational length ℓg = kBT/mg as unit, the distribution is simply

ρ(z) = e−z (15.26)

The horizontal positions of the particles are uniformly distributed whereas the vertical positions are expo-
nential. Program 15.6 generates a snapshot image of the sedimentation-diffusion equilibrium. The result is
shown in Fig. 15.7. The distribution of particles obtained by the Monte Carlo simulation resembles to the
experimental observation.

15.5.3 Surface Growth: Random Deposition Models

The current technology demands high quality of materials. Crystals grows by themselves but we want to
control the growth of the materials. The vapor deposition method and molecular beam epitaxy (MBE) allow
us to deposit atoms on top of the substrate in a controlled manner. We want to simulate such a surface
growth process in computer. A simplest model is the random deposition model.[4] (See Fig. 15.8a.) The
lateral position of the particles are randomly chosen. Particles either falls down to the substrate (particle 1
in Fig 15.8a) or stick to on top of the other particle (particle 2). It is interesting that even we choose the
lateral position of the particles by uniform random numbers, the resulting surface is not smooth at all. This
model generates a densely packed crystal but with large surface roughness.

In order to quantify the surface roughness, we first define the height of the surface as a stochastic variable.
We consider a one-dimensional substrate of the size L and deposit N particles on it. As particles are

APPLICATIONS IN PHYSICS 377

3
2

1

(a) Ballistic deposition model with or without over-
hang.

4 5

(b) Ballistic deposition model with surface relax-
ation.

Figure 15.8: A random deposition model with surface relaxation. The lateral position is randomly selected
and a particle is placed on the surface particle from the above. Then, it steps down to the local minimum.

deposited, the surface grows. However, the growth is not uniform. The height hi at the lateral position
xn, n = 1, · · · , L is random number drawn out of a certain probability distribution P (h;N), which we want
to find by computer simulation. We calculate the mean height and the second moment by

⟨h⟩ = 1
L

L∑
i=1

hi, ⟨h2⟩ = 1
L

L∑
i=1

h2
i , (15.27)

Rigorously speaking L should be infinitely large but in computer we use a large finite number. In order to
get a good statistics, we need a large surface area. Alternatively, we can simulate many copies of a smaller
surface and add them up for statistical calculation.

Now, we define the surface roughness as variance of the height

w =
√

⟨h2⟩ − ⟨h⟩2. (15.28)

For the simple random deposition model, we can calculate it analytically. The probability that the particle
hits a lateral position is p = 1/L. The probability distribution of the height h after N particles are deposited
is given by a binomial distribution

P (h;N) = N !
h!(N − h)!p

h(1 − p)N−h −−−−→
N→∞

1√
2πw2

e−(h−⟨h⟩)2/2w2
. (15.29)

The mean height is

⟨h⟩ =
N∑

h=1
hP (h;N) = Np = N

L
(15.30)

which grows linearly with N as expected. The surface roughness is

w =
√
Np(1 − p) =

√
N

L
(1 − 1/L) ≈

√
N

L
=
√

⟨h⟩. (15.31)

As the height of the surface grows, the roughness also grows but as the sqrt of the height.
Now we turn to the simulation. Here is the algorithm.

378 RANDOM NUMBERS

x
0 50 100 150 200

he
ig

ht

0

50

100

150

200

Mean height

height
60 80 100 120 140

P
(h

)

0

0.02

0.04

0.06

0.08

(a) Surface roughening. (Inset: Height distribution)

height
0 20 40 60 80 100

su
rf

ac
e

ro
ug

hn
es

s

0

2

4

6

8

10
simulation
theory

(b) Growth of surface roughness.

Figure 15.9: Surface growth with the ballistic deposition model without surface relaxation.

Algorithm 15.1 Ballistic deposition model without surface relaxation

1. Set the height of the surface y(x) to zero at all position x =, · · · , L.

2. Generate a random position x between 1 and L.

3. Deposit the particle at x. (Increment y(x) by one.

4. Repeat the deposition for N times.

5. Evaluate the mean height and the roughness.

Program 15.7 impliments this algorithm. Figures 15.9 show the results. The suraface size L = 200 and
the number of particles N = 100, 000 are used. The profile of the surface (Fig. 15.9a) shows that the surface
is not smooth at all. Some part is much higher and other part much lower than the average height. The
inset plots the distribution of height. The different between the higest and the lowest height is as big as 50,
a half of the mean height! Figure 15.9b plots the growth of the surface roughness as a function of the mean
height. The result of the simulation agrees with the theory (15.31). The simulation data is noisy because
the surface area L = 200 is not big enough to get a good statistics.

The above result is a bit unrealistic since the surface roughness is not so big in the real matrials. A
problem of the simple random deposition model is the surface roughness increases indefinitely, which never
happens in the real world. A reasonable modification to the simple random deposition is to include the effect
of the surface diffusion.[5] Once a particle is absorbed on to the surface, it can diffuse on the surface until it
find a more stable position. It is called surface relaxation. It can be model by a biased random walk. The
particle moves to a neighbor site lower than the present site. (See particle 4 in Fig. 15.8b.) If there are
multiple sites lower than the present site, one of them are picked at random. (See particle 5 in Fig. 15.8b.)
When the surface relaxation is taken into account, the roughness grows as w = ⟨h⟩β up to a certain value
where β is called the growth exponent. When the mean height reaches a crossover height hc, the roughness
does not grow any loner and stay the same.[5]

APPLICATIONS IN PHYSICS 379

x
0 50 100 150 200

he
ig

ht

0

20

40

60

80

100

120

140

160

180

200

Mean height height
95 100 105

P
(h

)

0

0.2

(a) Surface roughening.

height
0 20 40 60 80 100

su
rf

ac
e

ro
ug

hn
es

s

0

2

4

6

8

10
simulation
ballistic

(b) Growth of surface roughness.

Figure 15.10: Surface growth with the ballistic deposition model with surface relaxation.

The following algorithm adds the surface relaxation to the ballistic deposition model.

Algorithm 15.2 Ballistic deposition model with surface relaxation

1. Set the height of the surface y(x) to zero at all position x =, · · · , L.

2. Generate a random position x between 1 and L.

3. If y(x− 1) ≥ y(x) and y(x+ 1) ≥ y(x), then deposit it at x. Go to Step 7.

4. If y(x− 1) < y(x) and y(x+ 1) > y(x), then

If r < 0.5, then x = x− 1 (jump to the left).
Otherwise, x = x+ 1 (jump to the right).
Go back to Step 3.

5. ify(x− 1) > y(x), then x = x+ 1 (jump to the right). Go back to Step 3.

6. The last possibility is y(x+ 1) > y(x). Thus, x = x− 1 (jump to the left). Go back to
Step 3.

7. Repeat the deposition for N times.

8. Evaluate the mean height and the roughness.

Program 15.8 impliments the algorithm and simulate the surface growth with relaxation. The results are
plotted in Figures 15.10. The surface profile plotted in 15.10a indicates the the surface is much smoother
now. The height distribution in the inset shows that the difference between the highest and lowest is less
than 10. The growth of the surface roughness shown in Fig. ?? suggests that the roughness deos not grow
after initial growth. Threfor,e this model is more realistic than the simple ballistic deposition model.

Finally, we includes a possibility to form the overhang (particle 3 in Fig. 15.8a) in Program 15.9. No
surface relaxation is considered. Theresulting materials is highly porous. The profile of the surface plotted in

380 RANDOM NUMBERS

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

220

x

y

Figure 15.11: Growth of a surface based on a ballistic deposition model with possibility of overhang struc-
tures.

Fig. 15.11 shows many hollow regions. After N = 200, 000 particles is deposited, the surface height reached
nearly 200 which is twice as high as the previous growth models, indicating that almost a half of the space
is not filled. Note also that the size of the empty space varies widely. See Ref. [4] for the detailed discussion
of this growth pattern,

15.6 Problems

15.1 Using the random numbers, calculate the mean µ and variance σ2 of random numbers uniformly
distributed between 0 and 1. Compare results with the theoretical values.

15.2 Find ⟨|x|⟩normal by stochastic calculation and compare the result with the analytic solution.

PROBLEMS 381

MATLAB Source Codes

Program 15.1
%**
%* Example 15.1 *
%* filename: ch15pr01.m *
%* program listing number: 15.1 *
%* *
%* This program simulate a dice using a psueo random number *
%* generator. (random() in MATLAB is not used.) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2015. *
%**
clear all

% parapmeters for random number generators
a = int64(16807);
b = int64(0);
c = int64(2147483647);

% get a seed
x=int64(input('Seed='));

% generate uniform random numbers
N=6000;
for i=1:N

x = mod(a*x,c);
r(i)=double(x)/double(c);

end

% statistics of virtual die
P(1:6)=0;
for i=1:N

n=ceil(6*r(i));
P(n)=P(n)+1;

end

p=bar(P);
set(p,'facecolor',[0,0.75,0.75])
hold on
q=plot([0,7],[1000,1000],'--');
set(q,'color','red')
xlabel('face of die','fontsize',14)
ylabel('number of realization','fontsize',14)
hold off

Program 15.2
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: rand() in MATLAB *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *

382 RANDOM NUMBERS

%**
clear all
clc

% random points on a square
N=100000;
x=random('unif',-1.0,1.0,[1,N]);
y=random('unif',-1.0,1.0,[1,N]);

% points inside the circle
hit=0;
i=0;
for n=1:N

if x(n)ˆ2+y(n)ˆ2 < 1
hit=hit+1;

end
if mod(n,100)==0 % evaluate at every 100

i=i+1;
PI(i)=hit/n*4; % estimate of pi

end
end

p=plot([1:i]*100,PI);
hold on
q=plot([0, N], [pi,pi]);
set(q,'color','black')
xlabel('# of sampling','fontsize',14)
ylabel('V_2','fontsize',14)
axis([0 N pi*0.9 pi*1.1])
hold off

Program 15.3
%**
%* Example 15.3 *
%* filename: ch15pr03.m *
%* program listing number: 15.3 *
%* *
%* This program generates Gaussian distributed random numbers *
%* using the Box-Muller method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

N=10000000;
x = rand(N,2);
y(:,1) = sqrt(-2*log(x(:,1))).*cos(2*pi*x(:,2));
y(:,2) = sqrt(-2*log(x(:,1))).*sin(2*pi*x(:,2));
ymin=min(y(:));
ymax=max(y(:));
fprintf('the largest deviation=%f, %f\n',ymin,ymax)

h=histogram(y,201,'Normalization','pdf');
hold on
% true normal distribution
K=201;
xmin=floor(ymin);
xmax=ceil(ymax);
X=linspace(xmin,xmax,K);

PROBLEMS 383

F=exp(-X.ˆ2/2)/sqrt(2*pi);
p=plot(X,F);
set(p,'color','red','linewidth',2)
xlabel('x','fontsize',14)
ylabel('\rho(x)','fontsize',14)
legend('Box-Muller','Exact')
axis([xmin xmax 0.0 0.5])
hold off

Program 15.4
%**
%* Example 15.4 *
%* filename: ch15pr04.m *
%* program listing number: 15.4 *
%* *
%* This program evaluates 1st through 4th moments of normal *
%* distribution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

N=100000;

v=normrnd(0.0,1.0,[N,1]);

fprintf('order moment\n')
for i=1:4

m(i)=sum(v.ˆi)/N;
fprintf('%3d % 10.4e\n',i,m(i));

end
r=m(4)/m(2)ˆ2;
fprintf('\nm4/(m2)ˆ2 = %8.4d (exact=3)\n',r)

Program 15.5
%**
%* Section 15.5.1 *
%* filename: ch15pr05.m *
%* program listing number: 15.5 *
%* *
%* This program evaluate the mean speed of the gas particles *
%* in a thermal equilibrium. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% parameters
T=300.; % Temperature in K
k=1.380658e-23; % Boltzman constant in J/K
m=2*1.672623e-27; % H2 mass in kg

% Maxwell distribution
N=1000000;
s=sqrt(k*T/m);
v=normrnd(0.0,s,[N,3]); % 3 components (vx, vy, vz)

384 RANDOM NUMBERS

% speed
speed=sqrt(v(:,1).ˆ2+v(:,2).ˆ2+v(:,3).ˆ2);
% mean
mean=sum(speed)/N;
% theory
exact=2*s*sqrt(2/pi);
%error
error=abs(mean-exact)/exact;

fprintf('mean speed = %10.5e (exact=%10.5e)\n',mean,exact)
fprintf('relative error = %10.5e\n',error)

Program 15.6
%**
%* Section 15.5.2 *
%* filename: ch15pr06.m *
%* program listing number: 15.6 *
%* *
%* This program generates distribution of particles under gravity *
%* thermal diffusion. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all

N=1000; % number of particles

x=rand(N,1); %horizontal position = uniform
y=rand(N,1); % vertical position = exponential
z=-log(y);
zmax=max(z(:))+1;

subplot(1,2,1)
p=plot([-0.005 1.005],[-0.05,-0.05], [-0.005,-0.005],...

[-0.05,zmax],[1.005,1.005],[-0.05,zmax]);
set(p,'color','black','linewidth',2)
hold on
p=plot(x,z,'.');
set(p,'linewidth',2)
axis([-0.1 +1.1 -0.5 zmax])
xlabel('x','fontsize',14)
ylabel('z','fontsize',14)
hold off

subplot(1,2,2)
h=histogram(z,int32(2*zmax),'Normalization','pdf');
hold on
Z=linspace(0.0,zmax,201);
P=exp(-Z);
q=plot(Z,P,'--');
set(q,'linewidth',2,'color','red')
xlabel('z','fontsize',14)
ylabel('probability density','fontsize',14)
hold off

Program 15.7

PROBLEMS 385

%**
%* Section 15.5.3 *
%* filename: ch15pr07.m *
%* program listing number: 15.7 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all % clear all variables
close all % close alll figures

N=20000; % number of particles to be deposited
L=200; % surface area

y=zeros(L,1); % reset the height of the surface
x=ceil(rand(N,1)*L); % horizontal position of the particles

k=0;
for i=1:N

y(x(i))=y(x(i))+1; % ballistic growth

% record the evolution of the growth after every 10 particles is
% deposited
if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L; % mean height
w(k)=sqrt(sum((y-z(k)).ˆ2)/L); % roughness

end
end

% calculate the height distribution
n1=min(y); % lowest
n2=max(y); % heighest
h=zeros(n2-n1+1,1);
for i=1:L

n=y(i)-n1+1;
h(n)=h(n)+1;

end
h=h/sum(h);

% theoretical height distribution (Gaussian formula)
mu=real(N)/L;
sg=real(N)*(L-1)/Lˆ2;
g=zeros(n2-n1+1,1);
for n=n1:n2

g(n-n1+1) = exp(-(n-mu)ˆ2/(2*sg))/sqrt(2*pi*sg);
end

% Figure 1: profile of the surface
b=bar([1:L],y);
hold on
plot([0,L],[0,0]); % draw the base line
axis equal % fix the aspect ratio (needed for movie)
axis([0 L+1 0 N/L*2]) % fix the axis range
hold on
p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',1)
legend(p,'Mean height')

386 RANDOM NUMBERS

xlabel('x','fontsize',14)
ylabel('height','fontsize',14)
hold off

% Figure 2: Evolution of the surface roughness
figure
p=plot(z,w);
hold on
set(p,'linewidth',2)
q=plot(z,sqrt(z));
set(q,'color','red','linewidth',2)
xlabel('height','fontsize',14)
ylabel('surface roughness','fontsize',14)
legend('simulation','theory')
legend('location','northwest')
hold off

% Figure 3: Heifht distribution
figure
bar([n1:n2],h);
hold on
p=plot([n1:n2],g);
set(p,'color','red','linewidth',2);
xlabel('height','fontsize',14)
ylabel('P(h)','fontsize',14)
legend('simulation','theory')
legend('location','northeast')

Program 15.8
%**
%* Section 15.5.3 *
%* filename: ch15pr08.m *
%* program listing number: 15.8 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with surface relaxation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
clear all
close all;

% To show the real time growth, set true in th following line
movie = true;

N=20000;
L=200;

y=zeros(L,1);
x=floor(rand(N,1)*L); % random position

k=0;
for i=1:N

j0=mod(x(i),L)+1; % random deposition

% lateral diffusion
found = false;
while not(found)

PROBLEMS 387

j1=mod(j0-2,L)+1; % left neighbor
j2=mod(j0,L)+1; % right neighbor

if y(j0)<=y(j1) && y(j0)<=y(j2) % both sides are higher
y(j0)=y(j0)+1; % no diffusion
found = true;

elseif y(j0)> y(j1) && y(j0)>y(j2) % both sides are lower
if rand() > 0.5

j0=j1; % diffuse to the left
else

j0=j2; % diffuse to the right
end

elseif y(j0)<=y(j1) % left side is higher
j0=j2; % diffuse to the right

else % right side is higher
j0=j1; % diffuse to the eft

end
end

% record the evolution of the growth after every 10 particles is
% deposited if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L;
w(k)=sqrt(sum((y-z(k)).ˆ2)/L);

end

% calculate the height distribution
n1=min(y); % lowest
n2=max(y); % heighest
h=zeros(n2-n1+1,1);
for i=1:L

n=y(i)-n1+1;
h(n)=h(n)+1;

end
h=h/sum(h);

% Figure 1: profile of the surface
b=bar([1:L],y);
hold on
plot([0,L],[0,0]); % draw the base line
axis equal % fix the aspect ratio (needed for movie)
axis([0 L+1 0 N/L*2]) % fix the axis range
hold on
p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',1)
legend(p,'Mean height')
xlabel('x','fontsize',14)
ylabel('height','fontsize',14)
hold off

% Figure 2: Evolution of the surface roughness
figure
p=plot(z,w);
hold on
set(p,'linewidth',2)
q=plot(z,sqrt(z));
set(q,'color','red','linewidth',2)
xlabel('height','fontsize',14)
ylabel('surface roughness','fontsize',14)
legend('simulation','ballistic')

388 RANDOM NUMBERS

legend('location','northwest')
hold off

% Figure 3: Heifht distribution
figure
bar([n1:n2],h);
hold on
xlabel('height','fontsize',14)
ylabel('P(h)','fontsize',14)

Program 15.9
%**
%* Section 15.5.3 *
%* filename: ch15pr09.m *
%* program listing number: 15.9 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with overhangs. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2015. *
%**
clear all
close all

N=20000;
L=200;

% preparation for plotting
plot([0,L],[0,0]);
axis equal
axis([0 L+1 0 N/L*1.5])
hold on

y=zeros(L,1);
x=floor(rand(N,1)*L); % random position

k=0;
for i=1:N

j0=mod(x(i),L)+1;
j1=mod(x(i)-1,L)+1;
j2=mod(x(i)+1,L)+1;
if y(j0)<y(j1) || y(j0)<y(j2)

y(j0)=max(y(j1),y(j2)); % stick to the next site
else

y(j0)=y(j0)+1; % regular deposition
end

% draw the particle
pos = [j0-0.5 y(j0)-0.5 1. 1.];
rectangle('Position',pos,'Curvature',[1 1],'FaceColor','Blue')
drawnow

% record the evolution of the growth after every 10 particles is
% deposited.
if mod(i,10)==0

k=k+1;
z(k)=sum(y,1)/L;
w(k)=sqrt(sum((y-z(k)).ˆ2)/L);

end

PROBLEMS 389

end

p=plot([0,L],[z(k),z(k)]);
set(p,'color','red','linewidth',2)
legend(p,'Mean height')
hold off

Python Source Codes

Program 15.1
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.1 *
%* filename: ch15pr01.py *
%* program listing number: 16.1 *
%* *
%* This program simulate a dice using a psueo random number *
%* generator. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

parapmeters for random number generators
a=np.int64(16807)
b=np.int64(0)
c=np.int64(2147483647)

get a seed
x=np.int64(input('Seed='))

generate uniform random numbers
N=6000
r=np.zeros(N)
for i in range(0,N):

x=np.mod(a*x,c)
r[i]=np.float(x)/np.float(c)

statistics of virtual die
P=np.array([0,0,0,0,0,0])
D=np.array([1,2,3,4,5,6])
for i in range(0,N):

n=np.int(np.ceil(6.0*r[i]))-1
P[n]=P[n]+1;

plt.figure(figsize=(6,5))
plt.bar(D,P,0.9)
plt.plot([0.5,6.5],[N/6,N/6],'--r')
plt.xlabel('face of die',fontsize=14)
plt.ylabel('number of realization',fontsize=14)
plt.show()

390 RANDOM NUMBERS

Program 15.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: numpy random package *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

random points on a square
N=100000
x=np.random.uniform(-1.0,1.0,N)
y=np.random.uniform(-1.0,1.0,N)

points inside the circle
hit=0.0
M=np.int(N/100)
PI=np.zeros(M)
i=0
for n in range(0,N):

if x[n]**2+y[n]**2 < 1.0:
hit+=1.0

if n>0 and np.mod(n,100)==0: # evaluate at every 100
PI[i]=hit/n*4.0 # estimate of pi
i+=1

plt.figure(figsize=(6,5))
T=np.linspace(100,N,M)
plt.plot(T,PI)
plt.plot([0, N], [np.pi,np.pi],'--r')
plt.xlabel('# of sampling',fontsize=14)
plt.ylabel(r'π by Monte Carlo integration',fontsize=14)
plt.axis([0, N, np.pi*0.9, np.pi*1.1])
plt.show()

Program 15.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.2 *
%* filename: ch15pr02.m *
%* program listing number: 15.2 *
%* *
%* This program evaluate the value of pi using the Monte Carlo *
%* integeration of a circle. *
%* Uses: numpy random package *

PROBLEMS 391

%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

random points on a square
N=100000
x=np.random.uniform(-1.0,1.0,N)
y=np.random.uniform(-1.0,1.0,N)

points inside the circle
hit=0.0
M=np.int(N/100)
PI=np.zeros(M)
i=0
for n in range(0,N):

if x[n]**2+y[n]**2 < 1.0:
hit+=1.0

if n>0 and np.mod(n,100)==0: # evaluate at every 100
PI[i]=hit/n*4.0 # estimate of pi
i+=1

plt.figure(figsize=(6,5))
T=np.linspace(100,N,M)
plt.plot(T,PI)
plt.plot([0, N], [np.pi,np.pi],'--r')
plt.xlabel('# of sampling',fontsize=14)
plt.ylabel(r'π by Monte Carlo integration',fontsize=14)
plt.axis([0, N, np.pi*0.9, np.pi*1.1])
plt.show()

Program 15.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 15.4 *
%* filename: ch15pr04.m *
%* program listing number: 15.4 *
%* *
%* This program evaluates 1st through 4th moments of normal *
%* distribution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np

N=100000

v=np.random.normal(0.0,1.0,N)
m=np.zeros(4)
print('order ',' moment ')
for i in [1,2,3,4]:

m[i-1]=sum(v**i)/N

392 RANDOM NUMBERS

print('{0:3d} {1: 10.4e}'.format(i,m[i-1]))

r=m[3]/m[1]**2
print('\n m4/m2**2={0:8.4f} (exact=3)'.format(r))

Program 15.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.1 *
%* filename: ch15pr05.m *
%* program listing number: 15.5 *
%* *
%* This program evaluate the mean speed of the gas particles *
%* in a thermal equilibrium. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np

parameters
T=300. # Temperature in K
k=1.380658e-23 # Boltzman constant in J/K
m=2*1.672623e-27 # H2 mass in kg

velocity at Maxwell distribution
N=100000000
s=np.sqrt(k*T/m)
v=np.random.normal(0.0,s,[N,3]) # 3 components (vx, vy, vz)

speed
speed=np.sqrt(v[:,0]**2+v[:,1]**2+v[:,2]**2)
mean
mean=sum(speed)/N
#theory
exact=2*s*np.sqrt(2/np.pi)
error
error=np.abs(mean-exact)/exact

print('mean speed = {0:10.5e} (exact={1:10.5e})'.format(mean,exact))
print('relative error = {0:10.5}\n'.format(error))

Program 15.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.2 *
%* filename: ch15pr06.py *
%* program listing number: 16.6 *
%* *
%* This program generates distribution of particles under gravity *
%* thermal diffusion.
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *

PROBLEMS 393

%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=1000 # number of particles

horizontal position = uniform
x=np.random.rand(N)
vertical position = exponential
y=np.random.rand(N) # vertical position = exponential
z=-np.log(y)
zmax=np.max(z)+1.

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot([-0.05,-0.05],[-0.05, zmax],'-k',linewidth=2)
plt.plot([-0.05, 1.05],[-0.05,-0.05],'-k',linewidth=2)
plt.plot([1.05, 1.05],[-0.05, zmax],'-k',linewidth=2)
plt.plot(x,z,'.');
plt.axis([-0.1, +1.1, -0.5, zmax])
plt.xlabel('x',fontsize=14)
plt.ylabel('z',fontsize=14)
plt.subplot(1,2,2)
plt.hist(z,2*np.int(zmax),normed=1)
Z=np.linspace(0.0,zmax,201)
P=np.exp(-Z)
plt.plot(Z,P,'--r',linewidth=2)
plt.xlabel('z',fontsize=14)
plt.ylabel('probability density',fontsize=14)
plt.show()

Program 15.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *
%* filename: ch15pr07.m *
%* program listing number: 15.7 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=20000 # number of particles to be deposited
L=200 #surface area

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)

394 RANDOM NUMBERS

w=np.zeros(N)
k=0
for i in range(0,N):

y[x[i]]+=1 # ballistic growth

record the evolution of the growth after every 10 particles is deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

calculate the height distribution
n1=min(y) # lowest
n2=max(y) # heighest
Ny=n2-n1+1
n=np.linspace(n1,n2,Ny)
h=np.zeros(Ny,dtype=np.int)

for i in range(0,L):
j=y[i]-n1
h[j]+=1

normalization
h=h.astype(float)/sum(h)

theoretical height distribution (Gaussian formula)
m=np.float(N)/L
s=np.float(N*(L-1))/L**2
g=np.exp(-(n-m)**2/(2.*s))/np.sqrt(2*np.pi*s)

Figure 1: profile of the surface
plt.figure(figsize=(12,5))
X=np.linspace(1.0,L,L)
plt.bar(X,y,1.05,color='k')
plt.plot([0,L],[0,0],'-k',linewidth=4) # draw the base line
plt.plot([0,L],[z[k-1],z[k-1]],'--r',label='Mean height')
plt.xlabel('x',fontsize=14)
plt.ylabel('height',fontsize=14)
plt.show()

Figure 2: Evolution of the surface roughness
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(z[0:k],w[0:k],'-k',label='simulation')
plt.plot(z[0:k],np.sqrt(z[0:k]),'--r',label='theory')
plt.xlabel('height',fontsize=14)
plt.ylabel('surface roughness',fontsize=14)
plt.legend(loc=3)

Figure 3: Heifht distribution
plt.subplot(1,2,2)
plt.bar(n,h,1.05,color='k')
plt.plot(n,g,'--r')

plt.xlabel('height',fontsize=14)
plt.ylabel('P(h)',fontsize=14)
plt.legend(loc=1)
plt.show()

Program 15.8
#!/usr/bin/env python3

PROBLEMS 395

-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *
%* filename: ch15pr08.m *
%* program listing number: 15.8 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with surface relaxation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

N=20000
L=200

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)
w=np.zeros(N)
k=0
for i in range(0,N):

lateral diffusion
j0=x[i]
found = False
while not(found):

j1=np.mod(j0-1,L) # left neighbor
j2=np.mod(j0+1,L) # right neighbor

if y[j0]<=y[j1] and y[j0]<=y[j2]: # both sides are higher
y[j0]+=1 # no diffusion
found = True

elif y[j0]>y[j1] and y[j0]>y[j2]: # both sides are lower
if np.random.rand() > 0.5:

j0=j1 # diffuse to the left
else:

j0=j2 # diffuse to the right

elif y[j0]<=y[j1]: # left side is higher
j0=j2 # diffuse to the right

else: # right side is higher
j0=j1 # diffuse to the eft

record the evolution of the growth after every 10 particles is
deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

calculate the height distribution
n1=min(y) # lowest
n2=max(y) # heighest
Ny=n2-n1+1

396 RANDOM NUMBERS

n=np.linspace(n1,n2,Ny)
h=np.zeros(Ny,dtype=np.int)

for i in range(0,L):
j=y[i]-n1
h[j]+=1

normalization
h=h.astype(float)/sum(h)

Figure 1: profile of the surface
plt.figure(figsize=(12,5))
X=np.linspace(1.0,L,L)
plt.bar(X,y,1.05,color='k')
plt.plot([0,L],[0,0],'-k',linewidth=4) # draw the base line
plt.plot([0,L],[z[k-1],z[k-1]],'--r',label='Mean height')
plt.xlabel('x',fontsize=14)
plt.ylabel('height',fontsize=14)
plt.show()

Figure 2: Evolution of the surface roughness
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(z[0:k],w[0:k],'-k',label='simulation')
plt.plot(z[0:k],np.sqrt(z[0:k]),'--r',label='theory')
plt.xlabel('height',fontsize=14)
plt.ylabel('surface roughness',fontsize=14)
plt.legend(loc=3)

Figure 3: Heifht distribution
plt.subplot(1,2,2)
plt.bar(n,h,1.05,color='k')
plt.xlabel('height',fontsize=14)
plt.ylabel('P(h)',fontsize=14)
plt.show()

Program 15.9
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 15.5.3 *
%* filename: ch15pr09.m *
%* program listing number: 15.9 *
%* *
%* This program simulatesa the surface growth using ballistic *
%* deposit model with overhangs. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/26/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

movie=False # Set this to True to show real time growth (very slow)

N=20000
L=200
fig, ax=plt.subplots()

PROBLEMS 397

ax.set_xlim([0,L])
ax.set_ylim([0,N/L*3])

y=np.zeros(L,dtype=np.int) # reset the height of the surface
x=np.random.randint(0,L,size=N) # horizontal position of the particles

z=np.zeros(N)
w=np.zeros(N)
k=0
for i in range(0,N):

lateral diffusion
j0=x[i]
j1=np.mod(j0-1,L) # left neighbor
j2=np.mod(j0+1,L) # right neighbor
if y[j0]<y[j1] or y[j0]<y[j2]:

y[j0]=np.max((y[j1],y[j2])) # stick to the next site
else:

y[j0]+=1 # regular deposition

draw the particle
c=plt.Circle((j0,y[j0]), 0.5, color='b')
ax.add_artist(c)
if movie:

plt.pause(0.0001)

record the evolution of the growth after every 10 particles is
deposited
if np.mod(i,10)==0:

z[k]=sum(y.astype(float))/L # mean height
w[k]=np.sqrt(sum((y.astype(float)-z[k])**2)/L) # roughness
k+=1

ax.plot([0,L],[z[k-1],z[k-1]],'--r')
plt.show()

Bibliography

[1] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.
Section 6.14.

[2] N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. North Holland, 3rd edition, 2007.
Section I.7.

[3] Mário N. Berberan-Santos, EvenyN. Bodunov, and Lionello Pogliani. On the barometric formula. Amer-
ican Journal of Physics, 65:404–412, 1997.

[4] Albert-Laszlo Barabasi and Harry Eugene Stanley. Fractal Concepts in Surface Growth. Cambridge
University Press, 1995. Chapter 2.

[5] Albert-Laszlo Barabasi and Harry Eugene Stanley. Fractal Concepts in Surface Growth. Cambridge
University Press, 1995. Chapter 5.

398

CHAPTER 16

RANDOM WALKS

A drunkard leaves his favorite bar and walks to his home. After N steps, how far is he from the bar? This
is a basic question of random walk problems. An interesting mathematics such as Wiener process evolved
from this simple question and many important theories have been developed in many fields of science based
on the random walk model. In this chapter, we focus on discrete random walks where step size is finite and
fixed. Continuous random walk is discussed in Chapter 18.

16.1 One-dimensional Random Walk

A particle in a one-dimensional space jumps from one site to an adjacent site at random with a probability
pL = p to the right and pR = 1 − p to the left. See Fig. 16.1. The position of the particle is specified by
integer index assigned to the grid point. We assume p = 1

2 for now. Then, we have unbiased random walk
(pL = pR). Initially a particle is placed at x0. Where is the particle after N steps? There is no definite
answer to this question. The trajectory of the particle is not uniquely determined by the initial condition
since the direction of jump is probabilistic. Therefore, the position of the particle at time t is stochastic
variable X̂t defined with sample space x ∈ Z and probability distribution Pt(x). Here time, t = 0, 1, · · · , N
is just the number of jumps the particle made and thus discrete. The stochastic variable X̂t as a function
time t is a sequence of random variables {X̂0, X̂1, X̂2, · · · }, which is called stochastic process. For example,
if the particle was initially at x = 0, the possible outcome is {0}the probability is P0(x) = δx 0 where δm n is
a Kronecker’s delta. At t = 1, the particle is either at x = 1 or x = −1. Thus, the possible outcome is {±1}

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

399

400 RANDOM WALKS

x=0 1 2 3 4−1−2−3−4

PRPL

Figure 16.1: One-dimensional discrete random walk. The blue arrows indicate a realization of 6-steps
trajectory, RRLRRL

and the associate probability is

P1(x) =

1
2 for x = ±1

0 otherwise
. (16.1)

After the second jumps, the possible outcomes of X̂2 are now {−2, 0, 2} with the probability

P2(x) =

1
2 for x = 0
1
4 for x = ±2

0 otherwise

. (16.2)

This problem can be solved analytically for t = N . Suppose that the particle jumps to the right NR
times and to the left NL = N −NR. (Note that N = NR +NL.) For example, the blue arrows in Fig. 16.1
represents an trajectory of N = 6 steps of which NR = 4 steps to the right and NL = 2 to the left. The
final position x(NR, N) = (NR − NL) = 2. The probability to have this particular trajectory RRLRRL is(

1
2

)6
. However, several other trajectories have the same NR and NL, e.g., RRRRLL. Simple combinatorial

calculation tells that there are
W (NR, N) = N !

NR! (N −NR)! (16.3)

different ways to reach the same point. Noting that the final point is x = (NR − NL) = (2NR − N),
NR = 1

2 (N + x) and NL = 1
2 (N − x). Hence, the probability to find the particle at x after N steps is

Pn(x) = N !(
N + x

2

)
!
(
N − x

2

)
!

(
1
2

)N

. (16.4)

When N ± x is not an even integer, this result fails. This is because when N is even, the particle cannot
stop at any odd site and similarly when N is odd, no even site is reachable by the particle.

When N ≫ 1, the probability (16.4) becomes Gaussian∗

Pn(x) ≈ 1√
2πN

e−x2/2N . (16.5)

The mean position is ⟨Xn⟩ = 0 for any N . The variance increases as
〈
X2

n
〉

= N . This means that on average
the drunkard is still at the bar after a long walk!

∗A special care is needed to make x continuous since x/a is exclusively even or odd.

