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Jacobi Method

We now develop a numerical method for solving Laplace’s equation. To begin,
let’s go back for a moment to the diffusion equation (Section 6.2). Consider the
Fourier equation for the two-dimensional diffusion of temperature,
oT (z,y,t) . &°T + 8T
ot B 0z? = Oy?
where & is the thermal diffusion coefficient. We know from physical intuition
that given any initial temperature profile plus stationary boundary conditions,
the solution will relax to some steady state, call it Ts(z,y). In other words,

(8.16)

lim T(z,,1) = Ti(z,y) (817)

When the temperature profile is at the steady state, then it does not change in
time, that is, T/t = 0. This means that the steady state obeys the equation

0T, 8°T,
522 T By 0 (8.18)

Does this look familiar? Of course, this is just Laplace’s equation.

The idea is that the solution of Laplace’s equation is just the solution of
the diffusion equation in the limit ¢ — co. Algorithms based on this physical
principal are called relazation methods. We already know how to solve the

diffusion equation using the FTCS scheme. We start from the two-dimensional
diffusion equation

0%(z,y,t) _ (0°® N 9
ot TP\ 6z2 T ay?

The value of the constant u is unimportant because it drops out later. Using
the FTCS scheme in two dimensions,

(8.19)

r
o =el + LT{eh.+ e, 200
T
/l'T n n

+ h_g{q)i’j+l + @7 — 297} (8.20)
where ®7; = ®(z4,y),tn), i = (i — Dhe, y; = (j — 1)hy, and ¢, = (n - 7.
Remember that we are solving an electrostatics problem, so the potential doesn’t
actually depend on time. We introduce an artificial time dependence only to
assist in the construction of the algorithm. A better way to interpret 7, is
to call it the nth guess for the potential with (8.20) serving as a formula for

improving this guess.
In Section 6.2 we saw that the FTCS scheme can be numerically unstable. In

one-dimensional systems the scheme is stable if ur/h? < %; for two-dimensional
systems the scheme is stable if
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(see Exercise 9.5). To simplify the analysis, we take hy = hy = h so the
.1 . 2 1
dition for stability is pr/h* < 7- '
consince we are only interested in the steady state sc;lutlon (n— oo)., we ;v;r(;;
to use the largest possible time step. Setting pur/h? = 1/4, Equation (8.
becomes
22
ot = }l{é?—i—l,_j + @0+ B + 00 (8.22)

3
Notice that the diffusion constant, g, has drqpped out and that the <I>.i gutregrrr;i
cancel out on the right-hand side. This equation ha,s‘a. gO(;ld 5ar1(:n'tage,  frst
i heme is called the Jacobi methoa. It 1S €asy tO S
example of a relaxation sc . o sy 10
i the value of the potential at a p
that the method involves replacing _ - 1 i saiver
t neighbors. This result may be g
the average value of the four neares - thouglit &
i i - theorem for electrostatic potential.
discrete version of the mean value ; . , tial.
icsmarsel Equation (8.22) is used only for interior points and not when (¢, ]) is a
)

boundary point.

Gauss-Seidel and Simultaneous Overrelaxation

A simple modification of the Jacobi method improves its rate of cqnvsfgerr}(:.
Suppose that we use the updated values of ®;; as they become available. 'The

iteration equation is then
¢ ={®%; T 4 + @ + @7t 23
?]‘1 }1{ - 1,j ?—11,;' ?,j+1 ?, 1} (8-23)

The idea is that the updated values of ® at two of the nea‘res}:i neighb:;s ha\;eil ?ii
hem. With this modification the me
been computed, so why not use t . : :
}": a(g}l,le; the Gar;ss-S’eidel method. Besides accelerating the convel;lgenc;:, (;::51—}11
1Gamss—Seidel we do not need to simultaneously store both the ®" an
trices, a significant savings in memory. .
e \r?\ll'e c’an siggniﬁcantly improve our algorithm by overcorre:ctlng the v.aluet }c:f
& at each iteration of the Gauss-Seidel method. This is achieved by using the

iteration equation
- i+ e M 8.24
‘I’?}H =(1-w)i;+ Z{@?H,j +@75 i t @771} (8-24)

where the constant w is called the(g\éeg)elaxation parameter. This method is
] aneous overrelazation . '
callgrdh:ﬁ;ﬁ to using SOR effectively is to select a good value for a()i Ij:lt;;::; :il(l)it
using w = 1 is equivalent to Gauss-Seidel. Forw <1 wehhzvg un S:;ble Theré
and the convergence is slowed. For w > 2 thfe SOR metho 131::; ab in fhere
is an ideal value for w between 1 and 2 that gives the t?est acce .t o
geometries this optimal value is known. For example, in an Ny X N, rectang

grid,

2 , 8.25
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Table 8.1: Outline of program relax,
Jacobi, Gauss-Seidel, or SOR method

which solves Laplace’s equation using the

¢ Initialize parameters (L, h, etc.).
e Select w, the over-relaxation factor (SOR only).

* Set initial guess as first term in separation of variables solution, (8.15).
e Loop until desired fractional change per iteration is obtained.

— Compute new estimate for ® using:
* Jacobi method (8.22) or;
* Gauss-Seidel method (8.23) or;

* Simultaneous over-relaxation (SOR) method (8.24).
— Check if fractional change is small enough to halt the iteration.
* Plot final estimate of ®(z,y) as contour and surface plots.

¢ Plot the fractional change versus iteration.

See pages 268 and 271 for program listings.

where

1 T T
r= 3 (cos A + cos Fy) (8.26)

If N, = Ny, = N (square geometry), this simplifies to

2
1 +sin(n/N) (8.27)

Wopt =

with wopy & 1.939 for N = 100. In real-life problems the optimal value for w is
obtained by empirical trial and error. Sophisticated programs will automatically
adjust w according to how well the solution is converging.

A program, called relax, that solves Laplace’s equation using the Jacobi,
Gauss-Seidel, or SOR method, is outlined in Table 8.1. Relaxation algorithms
require an initial guess to start the iteration process and the relax program
uses the first term in the separation of variables solution (8.15). Sometimes the
efficiency of the algorithm is greatly influenced by the accuracy of this initia]
guess. The best way to appreciate this point is to run the program using a poor

initial guess (e.g., ® = 0 in the interior).
The potential, as computed by the relax program, is illustrated in Figure 8.2

by a contour map and a mesh figure. Notice that we have no Gibbs’ phenomenon
(compare with the separation of variables solution, Figure 8.1).
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tential from relax using the SOR
i 8.2: Contour and mesh plots of the po _ !
2§$§d. Grid size is N = 50 and w = 1.8 (wopt ~ 1.88). Compare with the
separation of variables solution, Figure 8.1.

Poisson Equation

The methods developed so far are easy to generalize to solve the Poisson equa-
tion. In MKS units,

Poay) | FUBY _ Ly, (®29)
0x? 6y2 €0
where p(z,y) is the charge density and ¢g is the permittivity of free space. In
discretized form, we have

1
h12 {®ip1,; + Bi1y — 2%is} + m {®ier + Bijj—1 — 2245} pas (
T

Using the analysis presented earlier, we construct the Jacobi relaxation scheme
for the Poisson equation as

L2, . 8.30
ort! = i { RE L SRR L A S ah p;,g} (8.30)

= es
where to simplify the formulation we take hg = hy = h. T}‘le o;:hei1 (ti\fvt(i)os:};ir?he
considered in this section may also be generalized by the simple addi

charge density term.

EXERCISES

1. Write a program to evaluate the potential ®(z,y) numerically, as give; by(f)qua:;?:;
: i con
i &g = 1 and graph your solution by mesh an
8.15), on a 50 x 50 grid. Take %o . = o
(lots)(see Figure 8.1). Plot your results using terms through n= 11, %71, and 5
I}; timate how many terms in the infinite sum are needed to obtain about 1% accuracy
s

in the solution. [Computer]
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2. (a) Find the solution to the more general boundary vhlue problem,

S(xz=0,y) = & z=Ls,y) = &
(z,y=0) = & ¥z, y=1L;) = &,
where ®;,..., P4 are constants. [Pencil] (b) Write a program to graph your solution

by mesh and contour plots. Graph the potential for ; = ®3 =1, &, = &, = 0, and
for & =Py =1, &3 =3, =0. [Computer]

3. (a) Find the solution to the three-dimensional cubic boundary value problem, [75,
Problem 2.13]

@(.’L‘ = 0, Y, z) = @(m — L’ Y, z) - 0
®(e,y=0,2) = ¥(z,y=L2) = o0
@(.’L’, y,ZZO) = <I>(:I:,y,z=L) = &

using separation of variables. [Pencil] (b) Write a program to graph your solution
for a given height 2. Produce mesh and contour plots of &(z,y,z) for z = L/4 and
L/2. [Computer] (c) Write a three-dimensional version of the relax program to solve
this problem by relaxation. Produce mesh and contour plots of ®(z,y,2) for z = L/4
and L/2; compare with your results from part (b).

4. A major issue with relaxation methods is their computational speed. (a) Run the
relax program using the Jacobi method for different-sized systems (N, = N, = 10
to 50). Graph the number of iterations performed versus system size. Fit the data to
a power law and approximate the exponent. (b) Repeat part (a) using a bad initial
guess. Set the potential initially to zero everywhere in the interior. (c) Using SOR,
repeat parts (a) and (b). Compare the Jacobi and SOR methods (use the optimum
value for w). [Computer]

5. Formulate the Jacobi method without assuming that h,; = h,. Modify the relax
program to implement this modification. Keep L. = L, and the boundary conditions,
Equation (8.7), and try grids of 32 x 32, 64 x 16, and 16 x 64. Do you find any
significant differences? [Computer]

6. The relax program uses a good initial guess for the potential ®(x,y). To illustrate
its importance, run the program with a variety of initial guesses, including some poor
ones (e.g., ® = 0 in the interior). Also try an initial guess that uses the first few
terms of the separation of variables solution (8.15). Compare and comment on your
results. [Computer]

7. Modify the relax program to plot the electric field, E = ~V&. In MATLAB,
the functions gradient (which computes the gradient) and quiver (which produces a
field plot; see Figure 8.8) are available. Plot the electric field for the potential shown
in Figure 8.2. Try both proportional and equal-length field arrows. [MATLAB]

8. Write a program that uses the SOR method to simulate a Faraday cage (Figure 8.3).
Use a square geometry with N, = N, = 60. Set the left and right walls to & = 0
and @ = 100, respectively. Fix the potential at the top and bottom walls but have it
vary linearly across the system. (a) The Faraday cage is represented by the following
eight points: (4, j) = (20, 20), (30, 20), (40, 20), (20, 30), (20, 40), (30, 40), (40, 30), and
(40,40). The potential at these points is fixed at zero. Plot the potential ®; 39 versus
i (i.e., a horizontal cross section through the center), both with and without the cage.
(b) Try a cage that has only the four corner points (20, 20), (20, 40), (40, 20), (40, 40),
and compare with the results from part (a). (c) Try a cage that has only the four

(40,40)

o o ©°
o] o]
0O o0 O

(20,20)

Figure 8.3: Faraday cage.
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Figure 8.4: Geometries and boundary conditions for Laplace equation.
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(a). [Computer] | .
Write a program that uses the SOR method to solve the electrostatics pro -
9£1 n‘]f Figure 8.4. For each box, the thin lines indicate a boundarycwheret ]e
i 4. dica "
i o(:‘:r?tial is fixed at zero; a thick line indicates the potential is fixed at one. [Compu
P ;

10. (a) Write a program that solves the two-dimensional Poisson equation in a square
. (a

e Dirichlet boundary conditions ® = 0 at the boundary. Map the po-

geometry with th with the potential for a

i the system. Compare
i ngle charge at the center of . ! . .
o ree gace Remember that in two dimensions this charge is a line charge and

e o gram to use periodic boundary

i i . (b) Modify your pro
t a point charge (see Figure 8.5). ( ram to t
Zgngigons. Compare with the results from part (a). (Hint: Think.) [Computer]




