
CHAPTER 13

PARTIAL DIFFERENTIAL EQUATIONS I: PARABOLIC
EQUATIONS

In Chapters 5-7, we determined functions of a single variable, such as velocity as a function of time, with
ordinary differential equations. However, many physical quantities depend on more than one variables.
For example, the particle density in the three-dimensional space depends on three coordinates x, y, and z.
Electric field E(x, t) is another example, which depend on space-time coordinates x and t, . Equations which
determine functions of multi-dimensional variables are known as partial differential equation (PDE). Perhaps,
you already encounter such equations in other physics courses. Diffusion equation, Maxwell equations, and
Schrödinger equation are all PDE.

PDE is both mathematically and computationally more challenging than ODE. One numerical method
that works well for one type of PDE may fail for another type of PDE. From mathematical point of view,
there are three different types of PDE for a second-order PDE with two-variable function F (x, y). Its general
form can be written as

a
∂2F

∂x2 + b
∂2F

∂x∂y
+ c

∂2F

∂y2 + d
∂F

∂x
+ e

∂F

∂y
+ fF + g = 0 (13.1)

where coefficients a through g are constant. The variables x and y are not necessarily indicating spacial
coordinates. One of them can be time. When b2 − 4ac = 0, the PDE is said to be parabolic. Similarly the
PDE is hyperbolic for b2 − 4ac > 0, and elliptic for b2 − 4ac < 0. Various numerical methods have been
developed but they are suitable usually only for one type of PDE and unfortunately there is no single method
that works for all three types.

Parabolic equations popular in physics are heat equation for temperature T (x, t)

∂

∂t
T (x, t) = κ

∂2

∂x2T (x, t) (13.2)
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and diffusion equation for particle density ρ(x, t)

∂

∂t
ρ(x, t) = D

∂2

∂x2 ρ(x, t). (13.3)

The thermal diffusion coefficient κ and particle diffusion constant D are both positive. Clearly these two
equations are mathematically identical. Letting y = t and b = c = d = f = g = 0 in Eq. (13.1), we obtain
these two equations. Since b2 − 4ac = 0, they are parabolic.

Schrödinger equation

iℏ
∂

∂t
ψ(x, t) = − ℏ2

2m
∂2

∂x2ψ(x, t) + V (x)ψ(x, t) (13.4)

is slightly different from the previous two equations (f ̸= 0 and e is pure imaginary) but it is another example
of parabolic PDE.

When ac < 0 and all other coefficients vanish, Eq. (13.1) becomes wave equation

∂2

∂t2
ϕ(x, t) = v2 ∂

2

∂x2ϕ(x, t) (13.5)

where v is the velocity of wave. In this expression a = v2 and c = −1 and thus it is an example of hyperbolic
equation.

If a = c = 1 (thus ac > 0), and all other coefficients vanish, Eq. (13.1) leads to Laplace’s equation

∂2

∂x2ϕ(x, y) + ∂2

∂y2ϕ(x, y) = 0 (13.6)

which is an example of elliptic PDE. The Laplace’s equation is one of the most important equations in
physics and appears in many fields of physics, including, electromagnetism, fluid dynamics, thermodynamics,
... When an inhomogeneous term is added to the Laplace equation, we have Poisson’s equation

∂2

∂x2ϕ(x, y) + ∂2

∂y2ϕ(x, y) = − 1
ϵ0
ρ(x, y) (13.7)

where ϕ(x, y) and ρ(x, y) are the electrostatic potential and the charge density, respectively. This equation
is also a family of elliptic PDE.

In the present chapter we focus on parabolic equations such as diffusion/heat equations and Sch́’odinfer
equations. In the next chapter, the wave equation is discussed as an example of hyperbolic equation. The
elliptic equation is investigated in the following chapter using Laplace’s/Poisson’s equations as example.

13.1 Diffusion Equation

To begin with, we look for a numerical method for a simple diffusion equation (??). While the development of
numerical algorithms is purely mathematical procedure, actually consideration of physical processes described
by the equation helps to find a good numerical approach. Let us consider a free diffusion of a particle. How
fast does the particle diffuses from x0 to another position x1? The mean square displacement

〈
(x1 − x0)2〉 is

known to be proportional to time, or more precisely
〈
(x1 − x0)2〉 = 2Dt where D is the diffusion constant.

This means that the typical time to travel over the distance L is given by

τ ≈ L2

2D. (13.8)

The important thing is that time scale of the process τ is related to the spacial scale L. Any numerical
method must be consistent with this physical condition.
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Figure 13.1: Three different types of boundary conditions for diffusion equations. (a) The particle is reflected
by the wall [Neumann boundary]. (b) The particle is perfectly absorbed on the wall [Dirichlet boundary].
(c) Some particles are reflected and others absorbed on the wall with a transition rate kon. The particles
on the wall can desorb with a transition rate koff. This situation can be dealt with the Robin boundary
condition.

Next we derive the diffusion equation. The Fick’s law tells that the flux of the particles is given by

j(x, t) = −D ∂

∂x
ρ(x, t) (13.9)

Substituting this flux into the continuity equation

∂

∂t
ρ(x, t) + ∂

∂x
j(x, t) = 0 (13.10)

we obtain the diffusion equation (??). The Fick’s law (13.9) is essential when we construct boundary
condition.

13.2 Boundary Conditions

The parabolic PDEs common in physics has the first order derivative with respect to time. Therefore, we
need only one boundary condition for time (initial condition)

f(x, t0) = g(x) (13.11)

where t0 is the starting time. The initial function g(x) must satisfy the boundary condition for x which we
discuss next.

The derivative with respect to the spacial coordinates is second order and thus we need two boundary
conditions. What happens on the boundary is not determined by the PDE itself. Separate physical processes
on the boundary determine the boundary conditions. There are many different types of boundary conditions
depending on the physical situations. Among them, four types of boundary conditions are common in
physics. We use the diffusion equation (13.3) as example.

When particles diffusing in a container reach the wall, four different kinds of boundary conditions are
commonly used in physics . In one case, particles which hit the wall are perfectly reflected back from the
wall. The particle flux going to the wall and the flux coming from the wall must be canceled out. Hence, the
net flux at the boundary must vanish.∗ When the particles are reflected back at x = a, j(a, t) = 0. Based

∗Vanishing flux does not mean that nothing is moving. It simply means that the number of particles moving to the left and to
the right is equal on average.
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on the Fick’s law (13.9), this condition implies that

j(x = a, t) = ∂

∂x
ρ(x, t)

∣∣∣∣
x=a

= 0 (13.12)

which is the reflective boundary condition (also known as no-flux condition). In mathematics, the boundary
condition given by the derivative is known as Neumann boundary condition. Note that the number of
particles conserves in this boundary condition.

In another scenario, the particles are absorbed on the wall and do not come back to the system. Since
the particles disappear at the boundary, the boundary condition is simply

ρ(a, t) = 0. (13.13)

This is the absorbing boundary condition. In mathematics, this is known as Dirichlet boundary condition.
The number of particles in the system decreases with this boundary condition.

The third possibility corresponds to the situation between the reflective and absorbing boundary condi-
tions. Th particles is partly absorbed with a certain rate kon. The particles absorbed on the wall desorbe
from the wall with a different rate koff. The particle flux at the boundary is now defined by

D
∂

∂x
ρ(x, t)

∣∣∣∣
x=a

= kon ρ(a, t) − koff σ(t) (13.14)

where σ(t) is the number density of the particle on the wall and it satisfies the following ODE

d
dtσ(t) = kon ρ(a, t) − koff σ(t). (13.15)

In mathematics, the boundary condition given by

αf(a, t) + β
∂

∂x
f(x, t)

∣∣∣∣
a

= g(t) (13.16)

is known as the Robin boundary condition.
We need the boundary condition at two different boundaries. We don’t have to use the same type of

boundary conditions. We can use one of the three types at one boundary and another type at the other
boundary. Sometime, this type of setting is called mixed boundary value problem.

Finally, we consider a system has ”no boundary”. Consider a field F (ρ, θ) on two-dimensional space
expressed with polar coordinates; i.e., radial coordinate ρ and angular coordinate θ. The radial coordinate
ρ is defined in [0,∞) and thus regular boundary conditions are usually specified at ρ = 0 and ∞. However,
the angular coordinate θ defined in [0, 2π) does not have a boundary since θ = 0 and θ = 2π correspond
to the same point on the space. Hence, we have F (ρ, 0) = F (ρ, 2π), ∀ρ. Instead of limiting θ in [0, 2π), we
often use θ ∈ R and require

F (ρ, θ + 2π) = F (ρ, θ), ∀θ ∈ R.

Then, F is a periodic function with respect to θ. This is a kind of ”boundary condition” called periodic
boundary condition.

There are other cases where the periodic boundary is used. For example, consider an infinitely extended
system filled with infinite number of particles. Since computers cannot deal with infinity, we limit the size
of the system. For example, we consider only the regions between x = −L/2 and x = L/2. However, there
is no wall at the boundary. A common trick is to use a periodic boundary condition. We assume that the
system of size L repeats infinitely many times by using the condition

F (x+ L) = F (x), ∀x (13.17)
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which is equivalent to the periodic boundary condition. We can consider a ring-like space. For two-
dimensional cases, we can have peridic boundary in both dimensions,

F (x+ L, y) = F (x, y) and F (x, y +M) = F (x, y) ∀x, y

where L and M are period in each direction. The space is a torus for this case.

13.3 Forward Time Centered Space method

Now, we solve simple diffusion equation (13.3) numerically. Other parabolic PDE can be solved in the same
way. Consider free diffusion of particles in a one-dimensional box of size L. The position coordinate x covers
the space from x = 0 to X = L. WThe particle density ρ(x, t) evolves in time from t = 0. We discretize
space and time as xi = i∆x, i = 0, · · · , N and tj = j∆t. The initial time is t0 = 0 and the boundary for
the space coordinate are x0 = 0 and xN = L. The function value at time tj and position xi are stored in an
array as

ρj
i ≡ ρ(xi, tj). (13.18)

Using finite difference methods (see Chapter 2),

∂

∂t
ρ(x, t) ≈ ρj+1

i − ρj
i

∆t (13.19a)

∂2

∂x2 ρ(x, t) ≈
ρj

i+1 + ρj
i−1 − 2ρj

i

∆x2 (13.19b)

Eq (13.3) becomes
ρj+1

i ≈ ρj
i + D∆t

∆x2

(
ρj

i+1 + ρj
i−1 − 2ρj

i

)
, i = 1, · · · , N − 1 (13.20)

If we knows the density at time tj , the density at the next time tj+1 is obtained by this recursive equation.
Note that i = 0 and i = N are not included in the evolution since they are fixed by boundary conditions.
This is one of the simplest method, known as forward time centered space (FTCS) method.

Next we set up the boundary conditions. The initial condition is given by

ρ0
i = g(xi). (13.21)

Using the Euler method, the reflective boundary condition (13.12) is given by

ρj
1 − ρj

0
∆x = 0 → ρj

0 = ρj
1 (13.22)

and similarly at the other boundary

ρj
N − ρj

N−1
∆x = 0 → ρj

N = ρj
N−1 (13.23)

Substituting the boundary conditions to Eq. (13.20), the function values at adjacent to the boundary evolves
by

ρj+1
1 = ρj

1 + D∆t
∆x2

(
ρj

2 − ρj
1

)
(13.24a)

ρj+1
N−1 = ρj

N−1 + D∆t
∆x2

(
ρj

N−2 − ρj
N−1

)
(13.24b)
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(a) Time evolution of the probability density.
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(b) Comparison with the exact distribution.

Figure 13.2: A solution to the diffusion equation with the Neumann boundary at x = ±10. The left panel
shows the time-evolution of the density at from t = 10 to t = 100, starting with an initial condition,
ρ(x, 0) = δ(x). The right panel shows the density at t = 20, which is in good agreement with the exact
solution.

The Dirichlet boundary is simply
ρj

0 = 0 ρj
N = 0 (13.25)

The evolution of the function values at adjacent to the boundary is explicitly given by

ρj+1
1 = ρj

1 + D∆t
∆x2

(
ρj

2 − 2ρj
1

)
(13.26a)

ρj+1
N−1 = ρj

N−1 + D∆t
∆x2

(
ρj

N−2 − 2ρj
N−1

)
(13.26b)

The finite difference method is accurate when δt and δx are sufficiently small. We tend to believe that
any smaller values generates more accurate results. However, we cannot chose ∆x and ∆t independently.
Numerically, it is clear that the factor D∆t

∆x2 in Eq. (13.20) must be smaller than 1. Actually, this limitation
is also clear from physics. Recall that the mean square displacement of the Brownian particles is proportional
to time, or more precisely ⟨x2⟩ = 2Dt, which suggest that the time a particle travels from xi won’t reach

xi+1 is about ∆x2

2D on average. The time step must be much smaller than that. Therefore, we require

∆t ≪ ∆x2

2D . (13.27)

EXAMPLE 13.1 Free Diffusion

Initially a particle is located at x = 0 and it freely diffuses at a diffusion rate D. We want to know how the
probability distribution p(x, t) changes in time. If N non-interacting particles diffuse, the particle density
is given by ρ(x, t) = Np(x, t). Dividing Eq. (13.3), it is easy to find that the probability density satisfies
the same diffusion equation (13.3). The difference is only their normalization,

∫ ∞
−∞

= ρ(x, t) dx = N for
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particle density and
∫ ∞
−∞

p(x, t) dx = 1 for the probability density. We assume that the space is infinitely

large and the particle diffuses freely for ever. Then, the boundary condition is lim|x|→∞ p(x, t) = 0.
An analytic solution is well-known:

ρ(x, t) = 1
2π

1√
2Dt

e−x2/4Dt. (13.28)

prog:diffusion First we define the computational boundary since the infinitely large space cannot be
used in the numerical method. We replace ±∞ with x = ±L as usual and use the Neumann boundary
condition ∂

∂x
ρ(x, t)

∣∣∣∣
±L

= 0, which implies that the particle will be reflected back if it ever reaches the

boundary. The initial condition is mathematically ρ(x, 0) = δ(x) which will be replaced with

p0
i =

{
1

∆x xi = 0
0 otherwise

,

which satisfies the normalization
∫ ∞
−∞

p(x, t) dx =
∑

i

pi∆x = 1.

Program 13.1 solves this problem and the results are plotted in Fig. 13.2. The agreement between the
numerical result and the exact solution is quite good at t = 0 (right panel). However, as time increases,
the particle hits the artificial boundary at L = 10 where the probability does not vanish. L must be
increased to see the correct tail.

13.4 Runge-Kutta time evolution

The forward time finite difference method used in the FTCS scheme is equivalent to the Euler method (see
Section 4.2.1), which is not accurate. We can improve the accuracy with respect to time evolution using the
2nd order Runge-Kutta method. For simple diffusion equation, we first use the Euler scheme with a half
time step

ρ
j+ 1

2
i = ρj

i + D∆t
2∆x2

(
ρj

i+1 + ρj
i−1 − 2ρj

i

)
. (13.29)

Then, the Runge-Kutta step is given by

ρj+1
i = ρj

i + D∆t
∆x2

(
ρ

j+ 1
2

i + ρ
j+ 1

2
i−1 − 2ρj+ 1

2
i

)
. (13.30)

This method is more accurate than the FTCS method.

13.5 Higher spatial dimensions

In the above, the particles diffuse along a line and thus the diffusion equation (13.3) has only two variables,
t and x. For a higher dimension, the diffusion equation becomes

∂

∂t
ρ(t, r) = ∇ · ρ(t, r) (13.31)

The extension of Eq. (13.20) to a higher dimensional space is straight forward. For a two-dimensional
space, we discretize the space by xi = i∆x and yj = j∆y. The density is denoted as ρk

i,j ≡ ρ(tk, xi, yj).
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Using the3-point finite difference approximation to the second order derivative for each direction, the discrete
version of Eq. (13.31) is given by

ρk+1
i,j ≈ ρk

i,j + D∆t
∆x2

(
ρk

i+1,j + ρk
i−1,j − 2ρk

i,j

)
+ D∆t

∆y2
(
ρk

i,j+1 + ρk
i,j−1 − 2ρk

i,j

)
(13.32)

13.6 Schrödinger Equations

The Schrödinger equation for a particle of mass m in a one-dimensional space is given by

iℏ
∂ψ(x, t)
∂t

= Hψ(x, t) (13.33)

where a typical form of the Hamiltonian is the sum of kinetic and potential energy operators:

H = − ℏ2

2m
∂2

∂x2 + V (x) (13.34)

A major difference from the diffusion equation is that the solution to this equation is inherently complex. It
is possible to write a set of partial differential equations separately for real and complex parts.

ℏ
∂

∂t
u(x, y) = Hw(x, t) (13.35a)

ℏ
∂

∂t
w(x, t) = −Hu(x, t) (13.35b)

where u(x, t) and w(x, t) are real and imaginary part of ψ(x, t), respectively. These partial differential
equations are coupled and must be solved simultaneously. By deferentiating both side with respect to time,
we can make two independent PDEs:

∂2

∂t2
u(x, t) = −

(
H

ℏ

)2
u(x, t) (13.36a)

∂2

∂t2
w(x, t) = −

(
H

ℏ

)2
w(x, t) (13.36b)

These are more complicated than the original equation since H2 involves fourth order derivative. We will
look for other methods.

The Schrödinger equation is linear and its solution can be formally written with a time evolution operator
as

ψ(x, t) = e−iH(t−t0)/ℏψ(x, t0). (13.37)

However, since an operator H is in the exponential function, the numerical evaluation of this solution is still
difficult. Introducing discrete time tn = t0 + n∆t, n = 0, · · · , N where ∆t is a small time step, the time
evolution can be expressed as a product of step operator

ψ(x, tN ) = e−iHN∆t/ℏ ψ(x, t0) =
(

e−iH∆t/ℏ
)N

ψ(x, t0) (13.38)

and a single time step as
ψ(x, tn + ∆t) = e−iH∆t/ℏ ψ(x, tn). (13.39)
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To evaluate the right hand side of this equation, we may expand the exponential function up to the order of
∆t. Then, the single step is

ψ(x, tn + ∆t) =
(

1 − i

ℏ
H∆

)
ψ(x, tn) (13.40)

which is equivalent to the Euler method for ODEs. This approach is not only inaccurate (order of ∆t) but
also does not conserve the norm of the wavefunction.

There are several numerical algorithms specifically suitable for the Schrödinger equation, which conserves
the norm and correct up to the order of ∆t2 (higher than the Euler method).

13.6.1 Crank-Nicolson method

Consider a half forward step from tn and a half backward step from tn+1,

ψ(x, tn + ∆t/2) = e−iH∆t/2ℏ ψ(x, tn) (13.41)
ψ(x, tn + ∆t/2) = eiH∆t/2ℏ ψ(x, tn + ∆t) (13.42)

and thus
eiH∆t/2ℏ ψ(x, tn+1) = e−iH∆t/2ℏ ψ(x, tn) (13.43)

which is still exact. Now, we expand the exponential function up to the order of ∆t and obtain(
1 + i

2ℏH∆t
)
ψ(x, tn + ∆t) =

(
1 − i

2ℏH∆t
)
ψ(x, tn). (13.44)

Unlike the previous expansion in Eq. (13.40), this expression is correct upto the order of ∆t2. Noting that
∥1 + i

2ℏH∆t∥ = ∥1 − i
2ℏH∆t∥, the norm conserves. Rearranging the equation

1
2

(
1 + i

2ℏH∆t
)

[ψ(x, tn + ∆t) + ψ(x, tn)] = ψ(x, tn). (13.45)

which is a linear equation
Aχ = ψ(x, tn) (13.46)

where A = 1
2
(
1 + i

2ℏH∆t
)

and χ = ψ(x, tn+1) + ψ(x, tn). We solve this equation for χ and the solution is
χ = A−1ψ(x, tn). Once χ is obtained, the wavefunction at next time is given by

ψ(x, tn + ∆t) = χ− ψ(x, tn) (13.47)

To solve Eq. (13.46), as usual we discretize the space by xj = x0 + jh, j = 0, · · · ,M . We discussed a
discrete version of the Hamiltonian in CHap 6 which is given as a matrix

H
.=



ℏ2

mh2 + Ũ1 − ℏ2

2mh2 0 0 0 0 · · ·

− ℏ2

2mh2
ℏ2

mh2 + U2 − ℏ2

2mh2 0 0 0 · · ·

0 − ℏ2

2mh2
ℏ2

mh2 + U3 − ℏ2

2mh2 0 0 · · ·
...

...
...

...
...

... · · ·

0 0 0 · · · − ℏ2

2mh2
ℏ2

mh2 + UM−1 − ℏ2

2mh2

0 0 0 0 · · · − ℏ2

2mh2
ℏ2

mh2 + UM


(13.48)
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Figure 13.3: Quantum tunneling through the square potential barrier. The left panel shows the probability
density of the initial wave packet moving toward the potential barrier. The right panel shows the probability
density after the collision with the potential barrier. A broad peak in the right side of the potential barrier
indicates that the fraction of the packet tunnels through the barrier.

and the matrix A is a tridiagonal matrix with the matrix elements

Ai i = 1
2

[
1 + i∆t

2ℏ

(
ℏ2

2m · 2
h2 + Ui

)]
(13.49a)

Ai i+1 = − i∆t
4ℏ · ℏ2

2m · 1
h2 (13.49b)

Ai i−1 = Ai i+1 (13.49c)

where Ui = U(xi). Now, ψ(x, tn) is a column vector with the component ψi(tn) = ψ(xi, tn). Then, we can
solve Eq. (13.46) by the Gaussian elimination/backsubstitution method or other methods discussed in Chap
7.

13.7 Applications in Physics

13.7.1 Quantum Tunneling

A quantum particle can tunnel through a potential barrier. Consider a quantum particle of mass m colliding
with a square potential barrier

U(x) =


0 x < 0

U0 0 < x < L

0 L < x

(13.50)

Th corresponding Schrödinger equation is

iℏ
∂

∂t
ψ(x, t) = − ℏ2

2m
∂2

∂x2ψ(x, t) + U(x)ψ(x, t). (13.51)
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Before writing a program, we will simplify the mathematical expression by introducing normalizing energy,
time and wave number as Ẽ = E/U0, t̃ = t/(ℏ/U0) and k̃ = k/

√
2mU0/ℏ2. Accordingly, distance is measured

in x̃ = x/
√

ℏ2/2mU0. For simplicity, we omit the tilde in the normalized expression

i
∂

∂t
ψ(x, t) = − ∂2

∂x2ψ(x, t) + U(x)ψ(x, t) (13.52)

where the normalized potential has the height 1 and width L measured in the unit of
√

ℏ2/2mU0.
The initial wavefunction is a Gaussian packet

ψ(x, 0) =
√

a√
π

e−(x−x0)2/2a2
eikx (13.53)

where x0 and a are the initial position and width of the packet. The wave number k is determined by the
speed v of the packet as k = mv/ℏ. The transmission probability is determined by

T = lim
t→∞

∫ ∞
L

|ψ(x, t)|2dx (13.54)

and the reflection probability by

R = lim
t→∞

∫ 0

−∞
|ψ(x, t)|2dx (13.55)

Program 13.2 computes the time evolution of wavefunction using the Crank-Nicolson method and computes
the transmission/reflection probabilities. Figure 13.3 shows the initial and final probability densities. A
smaller peak is seen in the right side of the potential barrier, indicating that a fraction o the packet tunnels
through the potential barrier. The transmission probability is 0.15.

13.7.2 Pattern Formation

The first chemical model to show oscillations and traveling waves was proposed by Prigogine and Lefever[1]
in 1968. The model is called the ”Brusselator” because it was discovered in the city of Brussels. The
Brusselator system is the following sequence of reaction:

A −→ X (13.56a)
B +X −→ Y +D (13.56b)

2X + Y −→ 3X (13.56c)
X −→ E (13.56d)

where the species A and B are sources whose concentration are kept constant, and D and E are products
which are extracted from the system at a constant rate. The species X and Y are intermediate products.
It is important to note that both X and Y are produced and consumed during the sequence of reactions in
such a way that X produces Y and Y produces X.

When the reaction takes place in a well stirred container, the concentration of chemicals are uniform and
does not depend on the position. We have studied such a case in Section 4.4.1. If the system is no stirred,
the chemicals are not well mixed and the concentration becomes position-dependent. The diffusion becomes
the main mechanism of the mixing of the chemicals. Then, the dynamics of the reaction is described by a
pair of reaction-diffusion equations:

∂

∂t
u(r, t) = Du∇2u(r, t) + a− (b+ 1)u(r, t) + u2(r, t)w(r, t) (13.57a)

∂

∂t
w(r, t) = Dw∇2w(r, t) + b u(r, t) − u2(r, t)w(r, t) (13.57b)
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(a) Initial distribution (b) t = 20 (c) t = 100

(d) Steady state concentration of X (e) Steady state concentration of Y

Figure 13.4: Time evolution of pattern formation. Initially, the chemicals are randomly distributed. As time
goes, a pattern begins to appear. By t = 100, a two dimensional crystal like structure is formed. However,
the pattern does not have a precise periodicity or symmetry yet. At t = 2000, the system reaches a steady
state. The spot size is now identical and they form a hexagonal close-packing structure. Parameter values
are a = 2.5, b = 5.0, Du = 0.2, and Dw = 1.6. Periodic boundary condition with L = 20 is used. The
discretization parameters are h = 1, and ∆t = 0.125 × 10−2.
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where u(r, t) and w(r, t) are the concentration of chemicals X and Y , and Du and Dw are their diffusion
constants, respectively. The parameters a and b remain constant both in space and time as before (see
Section 4.4.1).

The reaction-diffusion equations (13.57) has many different types of solution depending parameter values,
initial conditions and boundary conditions, for examples, pattern formation, traveling wave, and spiral waves.

Equations (13.57) are essentially the diffusion equation with additional terms. Discretizing he time
and space, we denote the two function as uk

i,j = u(tk, xi, yj) and wk
i,j = w(tk, xi, yj). Similarly to the

2-dimensional diffusion equation (??), the discrete version of the diffusion-reaction equations are

uk+1
i,j ≈ ρk

i,j + Du∆t
∆x2

(
uk

i+1,j + uk
i−1,j − 2uk

i,j

)
+ Du∆t

∆y2
(
uk

i,j+1 + uk
i,j−1 − 2uk

i,j

)
+a− (b+ 1)uk

i,j + (uk
i,j)2wk

i,j (13.58a)

wk+1
i,j ≈ wk

i,j + Dw∆t
∆x2

(
wk

i+1,j + wk
i−1,j − 2wk

i,j

)
+ Du∆t

∆y2
(
wk

i,j+1 + wk
i,j−1 − 2wk

i,j

)
+buk

i,j − (uk
i,j)2wk

i,j (13.58b)

Program 13.3 implements Eq. (13.7.2), with periodic boundary conditions in both directions.
We assume that the space is isotropic (h = ∆x = ∆y). Initially, both u and w take independent random

values between 0 and 1 at each point. Figure 13.4 shows the time evolution of the concentration of X.
Initially (Fig. 13.4a) no simple pattern is seen but by time t = 20 (Fig. 13.4b) the high concentration
regions is formed. At t = 100 (Fig. 13.4c), many circular spots with nearly the same radius are distributed
with nearly equal distance between them. The spots size is not exactly the same and they are not exactly
aligned, it is clear that the spots are not randomly placed. The reaction-diffusion system is organizing itself
and forming a distinct order. Figures 13.4d and 13.4e show the final steady state. Each spot has the same
size and they form hexagonal close packed structure like a two-dimensional crystal.

The patterns depend on the boundary conditions. In the present example, the close-packing is formed due
to the periodical boundary condition. Other types of boundary conditions generates different patters. It is
also known that the same reaction-diffusion equation can generate spiral waves with appropriate boundary
conditions and initial conditions.
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Program Lists

Program 13.1
%**************************************************************************
%* Example 13.1 *
%* filename: ch13pr01.m *
%* program listing number: 13.1 *
%* *
%* This program solves a diffusion equation using the forward time *
%* centered space method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**************************************************************************
close all;
clear all;
% parameters
D=0.1; % diffusion constant
N=201; % number of grids
N1=(N-1)/2;
dx=0.1; % spacial step
R = 0.1; % D*dt/dxˆ2
dt=dxˆ2/D *R; % time step

x=(-N1:N1)*dx; % spatial coordinates

M=10; % number of sample point.
tmax=10000; % total time steps
MS=tmax/M;

rho0=zeros(N,1); % initial density profile
rho0(N1+1)=1.0/dx;

% allocate arrays
rho1=zeros(N,1);
rho=zeros(N,M);
t=zeros(M,1);

k=0;
for j=1:tmax

rho1(1)=(1-R)*rho0(1)+R*rho0(2); % left boundary
rho1(N)=(1-R)*rho0(N)+R*rho0(N-1); % right boundary
for i=2:N-1

rho1(i)=rho0(i)*(1-2*R)+R*(rho0(i+1)+rho0(i-1));
end
rho0=rho1;
if mod(j,MS)==0 % record the results

k=k+1;
t(k)=j*dt;
rho(:,k)=rho0(:);

end
end

figure(1)
surf(t,(-N1:N1),rho)

figure(2)
for i=1:M

plot(x,rho(:,i))
hold on

end
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hold off

figure(3)
f=1/sqrt(2*pi)*1/sqrt(2*D*t(2))*exp(-x.ˆ2/(4*D*t(2))); % exact
plot(x,rho(:,2),'o',x,f)
legend('FTCS method','Exact')

Program 13.2

%**************************************************************************
%* Example 13.2 *
%* filename: ch13pr02.m *
%* program listing number: 13.2 *
%* *
%* This program calculates quantum tunneling by solving a Shrodinger *
%* equation. The Crank-Nicolson method is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**************************************************************************

clear all
close all

% system parameters
E=0.9;
k=sqrt(2*E);
a=5.0;
dt=0.1;

% control parameters
L=100;
h=0.05*min(a,2*pi/k);
N=2*round(L/h)+1;

% initial condition
x0=-L+5*a;
for j=1:N;

x(j)=(j-(N+1)/2)*h;
psi(j,1)=exp(-(x(j)-x0)ˆ2/(2*aˆ2))*exp(i*k*x(j));

end
c=sum(abs(psi).ˆ2)*h;
psi=psi/sqrt(c);

% construct matrix
A=zeros(N,N);
A(1,1)=complex(1,dt/hˆ2/2)/2;
A(1,2)=-i*dt/hˆ2/8;
for n=2:N-1

A(n,n)=A(1,1);
A(n,n-1)=A(1,2);
A(n,n+1)=A(1,2);

end
A(N,N)=A(1,1);
A(N,N-1)=A(1,2);

% add potential barrier
V=complex(0,dt/4);
for n=(N+1)/2:(N+1)/2+5/h;

A(n,n)=A(n,n)+V;
end
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% solve Schrodinger equation.
for I=1:1000

chi = A\psi;
psi = chi - psi;
rho = abs(psi).ˆ2;
p=plot(x,rho);
set(p,'linewidth',2);
hold on
r=plot([0,0],[0,0.12],[5,5],[0,0.12],[0,5],[0.12,0.12]);
set(r,'color','black');
axis([-L L 0 0.12]);
xlabel('$x$','interpreter','latex','fontsize',16)

ylabel('$|\psi(x)|ˆ2$','interpreter','latex','fontsize',16)
hold off; drawnow;
end

% check the normalization
c=sum(abs(psi).ˆ2)*h;
fprintf('Final Norm=%.6f\n',c)

% compute transmission/reflection probability
T=sum(abs(psi((N+1)/2+int32(5/h):N-1).ˆ2))*h;
R=sum(abs(psi(1:(N-1)/2).ˆ2))*h;
fprintf('Transmission Probability=%.6f\n',T)
fprintf('Reflection Probability=%.6f\n',R)

Program 13.3

%**************************************************************************
%* Example 13.5.2 *
%* filename: ch13pr03.m *
%* program listing number: 13.3 *
%* *
%* This program solves a coupled reaction-diffusion systems based on *
%* the Brusselator model. The parameters are chosen to form spots. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/15/2014. *
%**************************************************************************
clear all
close all

% system parameters
a=2.5; b=5; % parameters for spots
Du=0.2; % diffusion constant for u
Dw=1.6; % duiffusion constant for w
L=20.0; % the size of the system (periodic boundary condition.

% control parameters
NL=100; % number of grid points
dx=L/NL; % step length
Du=Du/dxˆ2;
Dw=Dw/dxˆ2;
T=100; % total time (takes a long time to reach the final patttern)
dt=0.1/max(Du,Dw); % time step
NT=int32(T/dt);

% initial condition
u0=rand(NL,NL);
w0=rand(NL,NL);
pcolor(u0); axis equal tight; shading interp; drawnow;
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laplace_u=zeros(NL,NL);
laplace_w=zeros(NL,NL);

for k=1:NT
t=(k-1)*dt;
% Laplacian with periodic boundary
laplace_u = circshift(u0,1,1)+circshift(u0,-1,1) ...

+ circshift(u0,1,2)+circshift(u0,-1,2) - 4*u0;
laplace_w = circshift(w0,1,1)+circshift(w0,-1,1) ...

+ circshift(w0,1,2)+circshift(w0,-1,2) - 4*w0;
% Euler step
fu=a-(b+1)*u0+u0.ˆ2.*w0+Du*laplace_u;
fw=b*u0-u0.ˆ2.*w0+Dw*laplace_w;
u1=u0+fu*dt/2;
w1=w0+fw*dt/2;

% Laplacian at the mid time.
laplace_u = circshift(u1,1,1)+circshift(u1,-1,1) ...

+ circshift(u1,1,2)+circshift(u1,-1,2) - 4*u1;
laplace_w = circshift(w1,1,1)+circshift(w1,-1,1) ...

+ circshift(w1,1,2)+circshift(w1,-1,2) - 4*w1;

% Runge-Kutta step
fu=a-(b+1)*u1+u1.ˆ2.*w1+Du*laplace_u;
fw=b*u1-u1.ˆ2.*w1+Dw*laplace_w;
u0=u0+fu*dt;
w0=w0+fw*dt;

pcolor(u0); axis equal tight; shading interp; drawnow;
end
colorbar

figure(2)
pcolor(w0); axis equal tight; shading interp; drawnow;
colorbar
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