
CHAPTER 12

DATA FITTING

In many numerical methods, we evaluate a function f(x) at a set of sampling points xi, i = 0, · · · , N . We
have been using the set of function values Fi = f(xi) as a discrete expression of the function. Now, we
consider the opposite operation. Suppose that we are given a data set (xi, Fi), i = 0, · · · , N . Can we find
the original function f(x)? Strictly speaking, that is not possible. Since the data set provides only a limited
information, there is no way to define a unique function. Many different functions can generate the same
data set. Nevertheless, we want to find a function with the help of additional conditions. This is the data
fitting problem.

The fitting methods depend on what you want to learn from the data. There are two major different
classes of problems. In one class, we want to know the function value between the data points. What is
the value of f(x) at x between xi and xi+1? This is the interpolation problem. In some cases, we also
want to know the derivative of the function. Of course we have no way to know it exactly. Therefore, we
have to assume various properties of the function. The minimum requirement is that the function must be
continuous. In addition, the continuity of f ′(x), and f ′′(x) can be optionally required. In most cases, our
focus is on the small region and we don’t need to find f(x) for the wide range of x. Piece-wise polynomials
are good enough to fill the gap between data points. Such methods are called spline. Usually, this kind of
problems assume that the data points are exact and thus all data points must be exactly on the fitted curve.
On the other hand, the function f(x) not necessary corresponds to a theoretical prediction based on physics.
We just want to express the discrete data sets with a continuous function so that we can find the function
values between the data points.

The second kind of problem is quite different. We know the type of function f(x) predicted by a theory
or by a conjecture, say, a Gaussian function. We want to compare the prediction with the data set obtained
by an experiment. However, the function often contains parameters whose values are unknown. For the

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

313

314 DATA FITTING

Gaussian function, the mean and variance are the parameters. If the theory is correct, we should be able
to determine the parameter values by fitting the parameter values to the experimental data. Unlike the
previous problems, the data set is usually noisy and erroneous. It is not necessary to fit the function exactly
to the data. Furthermore, the number of parameters are much smaller than the size of the data set. It is
not possible to satisfy all conditions by adjusting a few parameters. Therefore, the “fitness” is not uniquely
defined. In statistics, this kind of analysis is called regression. In general this is an optimization problem.

In this chapter we discuss the two classes of the problems, spline and least square fitting. More advanced
optimization methods will be used in Chapter 18.

12.1 Spline

Consider a data set (xi, Fi), i = 0, · · · , N . We expect that these data are sampled from an continuous
function f(x). However, we have no knowledge of the function. We want to find the function so that we can
see the function values between data points. However, there is no way to determine the function uniquely
since we have only a finite number of the data. There are infinitely many functions which match to the data.
Therefore, we need further assumptions. We consider two different approaches. In one approach, we assume
that f(x) is a polynomial of order N . This single function covers the whole region x ∈ [x0, xN]. We will
discuss this approach later. The other approach uses a different function for each segment. For the segment
x ∈ [xi, xi+1], we introduce a function fi(x). Usually, information given in the data set is not enough to
determine the function and some additional conditions are needed for this approach.

12.1.1 Linear Spline

We begin with the simplest spline. This method is not very useful in practice but leads us to a better
method. For simplicity, we introduce a new variable

t = x− xi

hi
, t ∈ [0, 1] (12.1)

where the gap distance between xi and xi+1 is denoted as hi = xi+1 − xi. When x varies from xi to xi+1, t
changes from 0 to 1.

Between two adjacent points xi and xi+1, we assume that the function takes a linear form

fi(t) = ait+ bi . (12.2)

The function must agree with the data points and thus

fi(0) = Fi, fi(1) = Fi+1 (12.3)

which is the mandatory condition. These two conditions are sufficient to determine the parameters ai and
bi. No other conditions are needed. We immediately find ai = Fi+1 − Fi and bi = Fi and thus the function
is.

fi(t) = (1 − t)Fi + tFi+1 (12.4)
which interpolates the function values between the two data points.

The present scheme simply connects data points by straight lines as we do when we plot a data. A major
draw back of this method is that the function is not smooth at every data point. (See Example) The required
condition (12.3) guarantees that the function is continuous but its derivative is not necessarily continuous.
WE could impose additional condition such that the derivative is continuous at the data points. However,
the parameters ai and bi in the linear interpolation (12.2) are already uniquely determined by the condition
(12.3. There is no room to impose additional conditions. Therefore, higher order polynomials must be used
if we need a smooth function,

SPLINE 315

Table 12.1: Data for polynomial fitting

x 0 1 2 3 4 5

F 0.0000 0.6889 0.6095 0.0774 -0.3401 -0.3528

x 6 7 8 9 10

F -0.0842 0.1620 0.1997 0.0681 -0.0736

EXAMPLE 12.1

A data set is given in Table 12.1. We will interpolate between these data points by linear functions.
Program ?? uses Eq. (12.4) to fill the gap between the data points. The result is shown in Fig. 12.1a.
Although all data points are exactly connected, the curve is not smooth at the data points. The data
(Table 12.1) is actually sampled from sin(x)e−x/5, which is the dashed line in Fig. 12.1a. The large
difference between the linear spline and the original function is seen hear the maxima and minima of the
function. A high order method is needed to improve it.

12.1.2 Cubic Spline

In order to make it sure that the function is smooth, we require that the first and second order derivatives are
continuous. A function fi(t) interpolates between the two points xi and xi+1. In addition to the mandatory
conditions (12.3), we impose

f ′i−1(1) = f ′i(0), f ′i(1) = f ′i+1(0) (12.5)
f ′′i−1(1) = f ′′i (0), f ′′i (1) = f ′′i+1(0) (12.6)

where the single and double prime indicate the first and second order derivatives, respectively. These four
additional conditions allows two more parameters in fi(t). (Note that these conditions are shared by the
neighboring segments and thus only two additional degrees of freedom are allowed.) Therefore, fi(t) must
be a cubic function of t.

Detailed derivation is given in Appendix. Here we show the final result. The following function satisfied
three conditions (12.3), (12.5) and (12.6).

fi(t) = h2
i

6 t(t+ 1)(t− 1)Qi − h2
i

6 t(t− 1)(t− 2)Qi+1 + (1 − t)Fi + tFi+1, i = 0, · · · , N − 1 (12.7)

where Q0 = QN = 0 and remaining Qi is the solution of linear equation

d1 h1 0 · · · 0

h1 d2 h2 0

0 h2 d3
.

... hN-2

0 0 · · · hN-2 dN-1





Q1

Q2
...

QN-2

QN-1


=



G1

G2
...

GN-2

GN-1


(12.8)

where di = 1
2(hi + hi−1) and Gi = 3

(
Fi+1 − Fi

hi
− Fi − Fi−1

hi−1

)
. The matrix in Eq (12.8) is tridiagonal,

which makes it relatively easy to solve the equation for a large data set. This is one reason cubic spline is
popular.

316 DATA FITTING

x
0 2 4 6 8 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Spline
Data
Original

(a) Linear spline: The linear interpolation is contin-
uous but it is not smooth at every data point. In
particular, it looks bad near the extrema.

x
0 2 4 6 8 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Cubic Spline
Data
Original

(b) Cubic spline: The curve is now smooth.

Figure 12.1: Linear and cubic spline of the data given in Exampel 12.1. The dashed curve is the original
function from which the data set was generated.

EXAMPLE 12.2

We fits the data in Example 12.1 using cubic spline. Program 12.1 solves the linear equation (12.8) and
constructs the cubic functions (12.7). The result is shown in Fig. 12.1b. The curve is now smooth and
looks more natural than the linear spline.

12.1.3 Vandermonde matrix

Since we are given N + 1 data, we can, in principle, determine N + 1 unknown parameters. Thus we can
interpolate the data with a polynomial of degree N ,

f(x) = a0 + a1x+ a2x
2 + · · · aNx

N . (12.9)
The fitting rule is simply f(xi) = Fi, , ∀i. Substituting the data points to this equation, we have a set of
equations that the coefficients ai must satisfy,

Fi = a0 + a1xi + a2x
2
i + · · · + aNx

N , i = 0, · · · , N (12.10)
which can be written in a matrix form Xa = f where

X =


1 x0 x2

0 · · · xN
0

1 x1 x2
1 · · · xN

1
...

1 xN-1 x2
N-1 · · · xN

N

 , a =


a0

a1
...

aN

 , f =


F0

f1
...

FN

 . (12.11)

Then the solution is a = X−1f . The matrix X is called the Vandermonde matrix.
In general the Vandermonde matrix is not a nice matrix to solve due to round-off errors which grows as N

increases. In addition, unlike the tridiagonal matrix for the cubic spline method, the Vandermonde matrix
is not a sparse matrix and it takes longer time to solve Eq. (12.11).

SPLINE 317

x
0 1 2 3 4 5 6 7 8 9 10

f(
x)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Data
Vandermonde fit
Original

Figure 12.2: Polynomial Fitting of random data given in Table 12.1. The open circles show the original data
and the line plots the interpolation by the polynomial obtained by the Vandermonde matrix.

EXAMPLE 12.3 Vandermode matrix

We fit the data in Table 12.1 again. This time we fit the data to a polynomials of degree 10 using the
Vandermonde method. Program 12.2 implements the above method and the result is plotted in Fig.
12.2. The fitted curve looks more natural than the cubic spline (Fig. 12.1b). It is essentially identical
to the original function from which the data set was genrated.

The following code executes the above method. The result is plotted in Fig. 12.2. The curve passes
through the given data points precisely as it should. However, the interpolation is reasonable only
between x = 3 and x = 7. Suspicious dips can be seen between x = 0 and x = 1 and also between x = 9
and x = 10. Off course, we cannot tell that those are false. Simply we don’t have sufficient data to
interpolate near the boundaries. However, those dips violate our underlying assumption. Therefore, we
conclude that the interpolation is good only in the central region. In this example, the Vandermonde
matrix is able to fit the data very well.

12.1.4 Lagrange Polynomial

There is another way to determine the coefficients of the polynomial. Expanding the function near the
sampling point,

Fi = f(xi) = f(x) + (x− xi)f ′(x) + 1
2(x− xi)2f ′′(x) + · · · , i = 0, · · · , N (12.12)

Since there is N + 1 equations, we can solve them for f(x), f ′(x), ..., f (N)(x). For example if N = 1, we
have two equations upto the first order derivatives

F0 = f(x) + (x− x0)f ′(x) (12.13a)
F1 = f(x) + (x− x1)f ′(x) (12.13b)

318 DATA FITTING

Solving these equations for f(x), we just get Eq. (12.4). For N = 2, we include the second order derivatives
and the equations to solve is given by

F0 = f(x) + (x− x1)f ′(x) + 1
2(x− x1)2f ′′(x) (12.14a)

F1 = f(x) + (x− x2)f ′(x) + 1
2(x− x2)2f ′′(x) (12.14b)

F2 = f(x) + (x− x3)f ′(x) + 1
2(x− x3)2f ′′(x) (12.14c)

and the solution is

f(x) = (x− x2)(x− x3)
(x1 − x2)(x1 − x3)F0 + (x− x1)(x− x3)

(x2 − x1)(x2 − x3)F1 + (x− x1)(x− x2)
(x3 − x1)(x3 − x2)F2 (12.15)

which is equivalent to the quadratic fitting.
The solution for general N is known as Lagrange polynomials

f(x) =
N∑

n=0
ℓn(x)Fn (12.16)

where Lagrange basis polynomials are defined by

ℓn(x) =
N∏

m=0,m ̸=n

x− xm

xn − xm
(12.17)

= (x− x1)
(xn − x1) · (x− x2)

(xn − x2) · · · (x− xn−1)
(xn − xn−1) · (x− xn+1)

(xn − xn+1) · · · (x− xN−1)
(xn − xN−1) . (12.18)

This method does not have to invert the matrix and thus numerically stable. However, you have to evaluate
the product for each x.

The results of the Lagrange polynomial interpolation is identical to those obtained from the Vandermonde
matrix method. As we saw in the previous section, fitting all data to a high degree of polynomial is not a
good way to interpolate. Use a several point, say 5 points, from xj−2 to xj+2. Then, the result is reasonable
near xj .

EXAMPLE 12.4

We solve the same problem as Example 12.3 using the Lagrange polynomial method. Program 12.3 fits
the polynomial to the data. Although the algorithm is different, this method must agree with the result
of the Vandermonde method. Indeed, the program produces the plot identical to Fig. 12.2.

12.2 Least Square Fitting

12.2.1 General Theory

Consider a data set (xi, Fi), i = 0, · · · , N measured at sampling points xi. The data Fi is supposed to be
a measured value of a known function f(xi). However, the measurement is noisy and the data carries error
bars σi. That means Fi − σi ≲ f(xi) ≲ Fi + σi. Now, we want to determine the original function f(x)

LEAST SQUARE FITTING 319

from the data set as accurate as possible. Unlike the interpolation problem, f(xi) = Fi is not a required
condition (not a fitting rule) since there is uncertainty in the data set. Furthermore, the size of the data set
N is usually much bigger than the number of adjustable parameters M . Then, it is not possible to satisfy
the condition f(xi) = Fi, ∀i.

Now, we need to find a rule of “fitness”. Look at Fig. 12.3, humans can tell which line fits the data point
better. We need to quantify the degree of “better”. A commonly used method is the least square fit. We try
to fit a target function f(x; λ) to the data by adjusting a set of parameters λ = {λ1, · · · , λM }. Although we
don’t require f(xi; λ) = Fi, we certainly want f(xi; λ) as close to Fi as possible. We measure the deviation
of the target function from the data point by

∆i(λ) = f(xi; λ) − Fi. (12.19)

and defined the overall deviation by

∆2(λ) =
N−1∑
i=0

∆2
i (λ). (12.20)

As mentioned above, it is not possible to make ∆i vanish for all i and thus ∆2 cannot be zero. Now, our
goal is to find parameter values which minimize the deviation (12.20). This is the fitting rule. In optimization
theory, functions to be optimized is called cost function (or loss function, objective function,). Equation
(12.20) is one example of the cost function.

The cost function (12.20) treats the every data equally. However, the data with larger error bars are less
reliable than other data. It is a good idea to discriminate such data. (Do not ignore them completely. They
still contain some useful information.) A common cost function that takes into account the error bars is the
χ2 function defined by

χ2(λ) =
N−1∑
i=0

[
∆i(λ)
σi

]2
. (12.21)

∆2(λ) is a special case of χ2(λ) where σi = 1,∀i.
To find the minimum of χ2, we calculate its gradient with respect to λ and set it to zero,

∂χ2

∂λi
= 2

N−1∑
i=0

∂f(xi; λ)
∂λj

∆i(λ)
σ2

i

= 0 (12.22)

or in matrix form
∇χ2 = Jb = 0 (12.23)

where the Jacobian matrix is defined by

J =

 Jij = 1
σi

∂f(xi; λ)
∂λj

 , b =


∆0/σ0

...

∆N−1/σN−1

 (12.24)

Since b ̸= 0, Eq. (12.23) indicates that J is a singular matrix when χ2 is at the minimum. This makes
the least square fitting numerically tough. Note that there is no this kind of problems for the interpolation
problems because b = 0 is the solution and J does not have to be singular. (This does not mean that the
Vandermonde matrix is nice. Actually, it is also ill-conditioned.)

320 DATA FITTING

Table 12.2: Data set for Example 12.5.

x 0 1 2 3 4 5 6 7 8 9 10

F 0.1 0.90 1.7 3.4 4.5 4.7 6.2 7.6 7.85 9.03 9.6

12.2.2 Linear Regression

Fitting the data to a straight line known as linear regression is a common task in analyzing experimental
data. The straight line has two parameters

f(x; λ) = λ1 + λ2x (12.25)

In the Lagrange polynomial interpolation, we needed only two data points to determine the parameters.
However, the size of the experimental data can be very large. The χ2 function for this target function is

χ2(λ) =
N∑

i=0

[
Fi − λ1 − λ2xi

σi

]2
(12.26)

and at the extremum

∂χ2

∂λ1
= −2

N∑
i=0

Fi − λ1 − λ2xi

σ2
i

= 2
[(∑ 1

σ2
i

)
λ1 +

(∑ xi

σ2
i

)
λ2 −

(∑ Fi

σ2
i

)]
= 0 (12.27a)

∂χ2

∂λ2
= −2

N∑
i=0

xi(Fi − λ1 − λ2xi)
σ2

i

= 2
[(∑ xi

σ2
i

)
λ1 +

(∑ x2
i

σ2
i

)
λ2 −

(∑ xiFi

σ2
i

)]
= 0 (12.27b)

and the solution is

λ1 =

(∑ Fi

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)(∑ xiFi

σ2
i

)
(∑ 1

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)2 (12.28a)

λ2 =

(∑ 1
σ2

i

)(∑ xiFi

σ2
i

)
−
(∑ xi

σ2
i

)(∑ Fi

σ2
i

)
(∑ 1

σ2
i

)(∑ x2
i

σ2
i

)
−
(∑ xi

σ2
i

)2 (12.28b)

EXAMPLE 12.5

We fit the data given in Table 12.2 with a straight line using the linear regression method. Progrm 12.4
determines the coefficients (12.28). Since no error bar is given, σi = 1 is assumed (no discrimination).
Figure 12.3 plots the resulting curve which is fitted well to the data.

LEAST SQUARE FITTING 321

x
0 2 4 6 8 10

f(
x)

0

2

4

6

8

10

Figure 12.3: Linear regression: The solid line is obtained by the linear regression formula (12.28) with σi = 1.
Despite that the data is noisy, the fitted line represents the data set very well.

12.2.3 General Linear Least Square Fitting

It is straight forward to extend the linear regression method and fit the data with a linear combination of
basis functions ui(x)

f(x) =
M∑

k=1
λkuk(x). (12.29)

To minimize the χ2 function, we calculate

∂χ2

∂λj
= ∂

∂λj

N∑
i=0

1
σ2

i

[
M∑

k=1
λkuk(xi) − f̄i

]2

= 2
N∑

i=0

uj(xi)
σ2

i

[
M∑

k=1
λkuk(xi) − Fi

]
= 0 (12.30)

and thus
N∑

i=0

M∑
k=1

uj(xi)uk(xi)
σ2

i

λk =
N∑

i=0

uj(xi)Fi

σ2
i

(12.31)

or writing it in a matrix form
JtJλ = Jtb (12.32)

where

J =

 Jij = uj(xi)
σi

 , λ =


λ1
...

λM

 , b =


F0/σ0

...

FN/σN

 (12.33)

Note that the matrix J is N by M and not necessarily a square matrix. In most cases, N ≫ M . Noting that
JtJ is a square matrix, Eq. (12.32) can be solved by Gaussian elimination or other methods in Chapter XX.

If ui(x) = xi, then J is the Vandermonde matrix. When N = M , it is exactly the same as the polynomial
interpolation and χ2 = 0.

322 DATA FITTING

Table 12.3: Data set for Example 12.5.

x -4.85 -3.99 -3.10 -2.10 -0.83 -0.004 0.94 1.95 2.84 4.18 4.89

f̄ -47.9 -35.0 -20.5 -12.5 -1.46 1.71 -0.14 -8.09 -12.9 -37.7 -46.5

σ 2.2 1.8 1.2 1.8 2.9 1.7 1.2 1.5 1.3 2.2 1.7

x
-6 -4 -2 0 2 4 6

f(
x)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

data
fitted curve

Figure 12.4: Least square fitting of the data set in Table 12.3 with a quadratic function. THe error bar is
large where the data is close to zero. The χ2 function allows those points to stay off the curve but not too
far.

EXAMPLE 12.6

Using the least square fitting method, we fit the data given in Table 12.3 with a quadratic curve. Using
the basis functions u1(x) = 1, u2(x) = x, and u3(x) = x2, the target function is quadratic. Program
12.5 implements the above method and the result is plotted in Fig. 12.4. At the data points where the
error bar is small, the fitted curve is almost right on the data points. The data points with large error
bar are off the curve but most of them are within the errorbars.

12.2.4 Nonlinear Least Square Fitting: Gauss-Newton method

So far, the target functions are linear with the fitting parameters. The least square fitting can be used even
for nonlinear functions. An iterative method is commonly used. Starting with an initial guess λ(0), we repeat
the following procedure until the χ2 does not change significantly, First, we expand the target function with
respect to λ around the current value of λ(n) and keep only the first order terms:

f(xi; λ) = f(xi; λ(n)) +
M∑

j=1

∂f(xi; λ)
∂λj

∣∣∣∣
λ(n)

(λj − λ
(n)
j) = f(xi; λ(n)) +

M∑
i=1

J
(n)
ij (λj − λ

(n)
j) (12.34)

where the Jacobian matrix is defined by

J
(n)
ij = ∂f(xi; λ)

∂λj

∣∣∣∣
λ(n)

(12.35)

LEAST SQUARE FITTING 323

Now the target function is approximated by a linear function with respect to λ. Therefore, we can use the
method discussed in Sec XX. The residual vector is given by

∆i = f(xi; λ) − Fi = f(xi; λ(n)) +
M∑

j=1
J

(n)
ij (λj − λ

(n)
j) − Fi (12.36)

and the corresponding χ2 function is

χ2(λ) =
N∑

i=0

(
∆i

σi

)2
=

N∑
i=1

1
σi

f(xi; λ(n)) +
M∑

j=1
J

(n)
ij (λj − λ

(n)
j) − f̄i

2

(12.37)

We minimize this chi2 with respect to λ by setting the gradient to zero:

∂χ2

∂λk
= 2

N∑
i=0

J
(n)
ik

f(xi; λ(n)) +
M∑

j=1
J

(n)
ij (λj − λ

(n)
j) − Fi


= 2

 N∑
i=0

M∑
j=1

J
(n)
ik J

(n)
ij (λj − λ

(n)
j) −

N∑
i=0

J
(n)
ik

{
Fi − f(xi; λ(n))

} = 0 (12.38)

Since this equation is linear with respect to λ, we can find a new λ(n+1) by solving it. Writing the equation
in matrix form (

J (n)
)t
J (n)(λ(n+1) − λ(n)) =

(
J (n)

)t
b (12.39)

the solution is
λ(n+1) = λ(n) +

[(
J (n)

)t
J (n)

]−1 (
J (n)

)t
b (12.40)

where b is a vector whose element is bi = f(xi; λ(n)) − f̄i. Repeat the above process until you reach the
minimum of χ2. This method is called the Gauss-Newton algorithm.

The condition to stop the iteration can be ∥λ(n+1) − λ(n)∥ < tolerance. However, there is a big problem.
Recall that J (n) becomes singular as χ2 is minimized. As the iteration proceeds, at certain point, J (n)

becomes nearly singular and Gaussian elimination fails to find a correct solution. Then, ∥λ(n+1) − λ(n)∥
starts erroneously increases. We must stop the iteration before it happens. Usually, the solution is good
enough just before the Gaussian elimination fail. In Section 12.3.2, we measure χ2 and if it goes up the
iteration is terminated.

The nonlinear least square fitting encounters many other difficulties. First of all, Eq. (12.23) can have
many solutions, corresponding to local minimums of the χ2 function. The above method is not guaranteed
to find the global minimum (best fit). Some solutions are not the best fit but still reasonable. Others are
not close to the the data set at all. Unfortunately, there is no numerical method that guarantees the global
minimum. In Chapter 18 we will discuss stochastic method that have a higher chance to find the global
minimum. Secondly, the above method often diverges because the step size is too large. Instead of Eq.
(12.40), update λ by the following equation

λ(n+1) = λ(n) + α

[(
J (n)

)t
J (n)

]−1 (
J (n)

)t
b (12.41)

with a sufficiently small value of α > 0. In Section 12.3.2, we fit a Lorentzian distribution to a noisy data
using the nonlinear least square fitting..

324 DATA FITTING

Table 12.4: Reaction rate k as a function of absolute temperature T . The reaction rate is in an arbitrary
unit. The bottom two rows show log k as a function pf β = 1/kbT .

T 200 220 240 260 280 300 320 340 360 380 400

k 0.471 0.515 0.576 0.639 0.734 0.742 0.833 0.830 0.932 0.918 0.939

β 58.0 52.7 48.4 44.6 41.4 38.7 36.3 34.1 32.2 30.5 29.0

log k -0.327 -0.288 -0.240 -0.194 -0.134 -0.130 -0.0793 -0.0808 -0.0307 -0.0371 -0.0273

12.3 Applications in Physics

12.3.1 Arrhenius Plot

The temperature dependency of a chemical reaction rate is known to obey the Arrhenius equation

k = Ae−Ea/kBT (12.42)

where T and Ea are the absolute temperature and an activation energy, respectively. The temperature
multiplied by the Boltzmann constant kB = 8.6173324 × 10−5eV/K has the dimension of energy. The
constant A depends on reactants but does not depend on the temperature. Table 12.4 shows an experimental
measurement of the reaction rate. The data is a bit noisy. We want to determine the activation energy of
this reaction. If we fit the data directly to the Arrhenius equation (12.42), we must use a non-linear fitting,
which is not a simple task. Instead, we take the logarithmic of the Arrhenius equation:

log k = −Eaβ + logA (12.43)

where β = 1/kbT . Equation (12.43) indicates that log k is linear with respect to β. Therefore, a simple linear
least square fitting can determine Ea. Program XXX does it. Figure 12.5(a) shows that the measured data
log k as a function of β is almost straight line but significant noises are seen at higher temperature (smaller
β). The solid line determined by the least square fitting matches well to the data. Figure 12.5(b) plots it in
the original variables k vs T . The fitted curve represents the data very well despite it is not a strait line.
The fitting finds that the activation energy is 0.0256eV .

12.3.2 Life Time Broadening in Optical Spectrum

Atoms emit distinctive spectrum of light. In the absence of thermal noise, the intensity of the light has a
peek at the frequency ω0 = ∆E/ℏ where ∆E is the change of electron energy in the atom. However, the
light with slightly different frequency is also observed. The excited atom has a finite life time due to the
spontaneous emission of the light. Theory predicts that the spectrum is Lorentzian

I(ω) ∝ 1
π

Γ
2

(ω − ω0)2 +
(

Γ
2

)2 (12.44)

Determining the peak position ω0 and the life time τ = Γ−1 out of the noisy experimental data is important
task for experimentalists.

The data set given in Table 12.5 is expected to have a Lorentzian distribution:

f(x) = λ1
(x− λ2)2 + λ3

. (12.45)

APPLICATIONS IN PHYSICS 325

-
20 30 40 50 60

lo
g

k

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

T
200 250 300 350 400

k

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 12.5: The least square fitting of the reaction rate. (a) The fitting is done with variables log k and
β sicne the theory perdict a straight line with those variables. The fitted line (solid line) matches well to
the data set (open circle). (b) The fitted curve is shown in the original variable k and T . The cureve is no
longer a straight line but represent the data set quite well.

Table 12.5: Data set for Lorentzian

x -2.01 -1.47 -0.97 -0.52 -0.04 0.52 0.99 1.53 2.03 2.51 2.96 3.47 4.02

f̄ 0.28 0.57 0.62 0.68 1.26 1.29 1.57 1.11 0.91 0.94 0.65 0.80 0.31

σ 0.10 0.11 0.17 0.06 0.15 0.11 0.15 0.10 0.11 0.14 0.16 0.18 0.15

We want find the precise peak position λ2 and the broadening λ3 using the Gauss-Newtom method. The
derivatives of the function are given by

∂f(x; (λ))
∂λ1

= 1
(x− λ2)2 + λ3

(12.46a)

∂f(x; (λ))
∂λ2

= 2(x− λ2)
[(x− λ2)2 + λ3]2 (12.46b)

∂f(x; (λ))
∂λ3

= −λ1
[(x− λ2)2 + λ3]2 (12.46c)

The iteration begin with an initial guess λ1 = 1, λ2 = 0 and λ3 = 1. The χ2 function is optimized by
a step factor α = 0.02. After 40 iterations, the value of χ2 rose up and thus the iteration was terminated.
The result is plotted in Fig. (12.6). The left panel shows the raw data and the fitted curve. The fitting
appeared to be reasonable. The right panel shows the decreasing χ2. The converged parameter values are
λ1 = 4.2527, λ2 = 0.9442, and λ3 = 3.1223.

The Gauss-Newton method works very well for this problem. However, the same method often completely
fails for Gaussian distribution. We need more advanced method for that, which will be introduced in Chapter
18.

326 DATA FITTING

x
-5 0 5 10

f(
x)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iteration
0 1000 2000

@
2

101

102

103

Figure 12.6: Nonlinear least square fitting of the noisy data set in Table 12.5 with a Lorentzian function.
Left; Depite of the error bars, the Gauss-Newton method managed to fit the data to the desired function.
Right: The χ2 decreases as the iteration proceeds.

12.4 Problems

12.1 Life Time of Radio Active Nucleus
A radioactive nuclide spontaneously decays to a different nuclide by emitting a particle such as α particle.
Suppose that there are initially N0 radioactive nuclides of the same kind. As time t proceeds, the number
of the nuclides decreases as

N(t) = N0e−λt (12.47)

where λ is a decay constant. It is difficult to measure N(t) directly. However, we can detect particles
emitted by the nuclides. In experiments, we measure the number of emitted particles per second which
corresponds to the decay rate[1]

R(t) = −dN
dt = λN0e−λt . (12.48)

Table 12.6 show the experimental data. Find the decay constant using an appropriate data fitting.

Table 12.6: Decay rate of a radioactive nuclide.

t(min.) 30 60 90 120 150 180 210 240 270 300

R (counts/s) 461.9 211.6 103.3 45.7 21.7 12.1 5.72 2.52 1.07 0.523

PROBLEMS 327

Appendix

12.I Cubic Spline

q′′i (t) = tq′′i + (1 − t)q
′′

i+1 (12.49)

where
t = x− xi

xi+1 − xi
(12.50)

q
′

i(t) = hi

2 t
2q′′i + hi

2 t(2 − t)q′′i+1 + ai (12.51)

qi(t) = h2
i

6 t
3q′′i + h2

i

6 t
2(3 − t)q′′i+1 + hiait+ bi (12.52)

The first condition requires that the function q(t) must matches the data set. That is qi(0) = f̃i and
qi(1) = f̃i+1 which leads to ai and bi

ai = f̃i+1 − f̃i

hi
− hi

6 (2q′′i + q′′i+1) (12.53a)

bi = f̃i (12.53b)

The second condition requires that the first order derivative is continuous at the data points. That is
q′i(1) = q′i+1(0), which leads to

hiq
′′
i+1 + 2(hi + hi−1)q′′i + hi−1q

′′
i−1 = 6

(
f̃i+1 − f̃i

hi
− f̃i − f̃i−1

hi−1

)
(12.54)

At the boundary we assume q′′1 = q′′N = 0. This is a linear equation with tridiagonal matrix. We can solve
it a method discussed in Section 7.3.1. Now, we have all q′′i , ai, and bi. Plugin these, we obtain qi(t) which
connects data points smoothly.

328 DATA FITTING

MATLAB Source Codes

%**
%* Example 12.1 *
%* filename: ch12pr01.m *
%* program listing number: 12.1 *
%* *
%* This program interpolates 11-point data with linear spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2)-1;
h=X(2:N+1)-X(1:N);

M=10;
dt=1.0/M;
t=linspace(0.,dt*(M-1),M);

n=0;
for i=1:N-1

% linear interpolation between two adjacent data points
for j=1:M

n=n+1;
x(n)=t(j)*h(i)+X(i);
y(n)=(1-t(j))*F(i)+t(j)*F(i+1);

end
end

n=n+1;
x(n)=X(N+1);
y(n)=F(N+1);
z=sin(x).*exp(-0.2*x);

p=plot(x,y,X,F,'o',x,z,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Spline','Data','Original');
legend('location','northeast');

▲▲▲

Program 12.1
%**
%* Example 12.2 *
%* filename: ch12pr02.m *
%* program listing number: 12.2 *
%* *
%* This program interpolates 11-point data with cubic spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *

PROBLEMS 329

%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2)-1;
h=X(2:N+1)-X(1:N);

% Set up linear equation A*P=G
for j=1:N-1

G(j)=3*((F(j+2)-F(j+1))/h(j+1)-(F(j+1)-F(j))/h(j));
end

A=zeros(N-2,N-2);
for j=1:N-1

A(j,j)=(h(j+1)+h(j))/2;
end
for j=1:N-2

A(j,j+1)=h(j+1);
A(j+1,j)=h(j+1);

end

P=A\G'; %Solve the linear equation

% Shift the index to our convention.
for j=1:N-1

Q(j+1)=P(j);
end

% Amend the boundary values.
Q(1)=0;
Q(N+1)=0;

M=10;
dt=1.0/M;
t=linspace(0.,dt*(M-1),M);

n=0;
for k=1:N

for j=1:M
n=n+1;
x(n)=X(k)+t(j)*h(k);
y(n)=h(k)ˆ2/6 * Q(k) * t(j)*(t(j)+1)*(t(j)-1) ...

-h(k)ˆ2/6 * Q(k+1) * t(j)*(t(j)-1)*(t(j)-2) ...
+F(k+1)*t(j) + (1-t(j))*F(k);

end
end

v=sin(x).*exp(-0.2*x);
p=plot(x,y,X,F,'o',x,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Cubic Spline','Data ', 'Original');
legend('location','northeast');

▲▲▲

Program 12.2

330 DATA FITTING

%**
%* Example 12.3 *
%* filename: ch12pr03.m *
%* program listing number: 12.3 *
%* *
%* This program interpolates 11-point data with the Vandermonde *
%* matrix. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2);

% construction of the Vandermonde matrix
x = zeros(N,N);
x(:,1)=1;
for i=2:N

x(:,i)=X(:).ˆ(i-1);
end

% solve the linear equation x*a=F
a=x\F';

% evaluate the function value
% between the sampling points.
M=101;
z=linspace(0,X(N),M);

for j=1:M
y(j)=a(1);
for i=2:N

y(j)=y(j)+a(i)*z(j)ˆ(i-1);
end

end

v = sin(z).*exp(-0.2*z);

p=plot(X,F,'o',z,y,z,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Data','Vandermonde fit','Original');
legend('location','northeast');

▲▲▲

Program 12.3
%**
%* Example 12.4 *
%* filename: ch12pr04.m *
%* program listing number: 12.4 *
%* *
%* This program interpolates 11-point data with the Lagrange *
%* polynomial method. *
%* *

PROBLEMS 331

%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,...

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736];
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
N=size(F,2);

M=101;
z=linspace(0,X(N),M);
for j=1:M

L=1;
y(j)=0;
for n=1:N

L=1; % Lagrange basis polynomial
for m=1:N

if n˜=m
L=L*(z(j)-X(m))/(X(n)-X(m));

end
end
y(j)=y(j)+L*F(n);

end
end

v=sin(z).*exp(-0.2*z);

p=plot(X,F,'o',z,y,z,v,'--');
set(p,'linewidth',2);
xlabel('x','fontsize',14);
ylabel('f(x)','fontsize',14);
legend('Data','Lagrange polynomial','Original');
legend('location','northeast');

▲▲▲

Program 12.4
%**
%* Example 12.5 *
%* filename: ch12pr05.m *
%* program listing number: 12.5 *
%* *
%* This program interpolates 11-point data with the linear *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% Data set (no error bar)
x=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.];
y=[0.1,0.90,1.7,3.4,4.5,4.7,6.2,7.6,7.85,9.03,9.6];
N=size(y,2);

% Linear regression
F=sum(y);
X=sum(x);
X2=sum(x.ˆ2);

332 DATA FITTING

XF=sum(x.*y);
b=(F*X2-X*XF)/(N*X2-Xˆ2);
a=(N*XF-X*F)/(N*X2-Xˆ2);

% fitted curve
f=a*x+b;

p=plot(x,f);
set(p,'linewidth',2,'color','red')
hold on
r=plot(x,y,'o');
set(r,'linewidth',2,'color','black')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off

▲▲▲

Program 12.5
%**
%* Example 12.6 *
%* filename: ch12pr06.m *
%* program listing number: 12.6 *
%* *
%* This program interpolates 11-point data with the quadratic *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all

% Generate a noisy data set
N=13;
sm=5.0;
for i=1:N

x(i)=i-7.+random('unif',-0.2,0.2);
s(i)=random('norm',0,sm/2)+sm;
y(i)=-2*x(i)ˆ2+s(i)*random('unif',0.2,0.9);

end

M=3; % number of parameters

% Construct Jacobian matrix and a vector
for i=1:N

for j=1:M
J(i,j)=x(i)ˆ(j-1)/s(i);

end
b(i)=y(i)/s(i);

end

% Solve the linear equation
A=J'*J;
c=J'*b';
lambda=A\c;

% constructe the fitted curve
K=121;
z=linspace(-6.0,6.0,K);
f=lambda(1)+lambda(2)*z+lambda(3)*z.ˆ2;

PROBLEMS 333

r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','black')
hold on

p=plot(z,f);
set(p,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
legend('data','fitted curve')
legend('location','south')
xlim([-7 7]);
hold off

▲▲▲

Program 12.6
%**
%* Section 12.3.1 *
%* filename: ch12pr07.m *
%* program listing number: 12.7 *
%* *
%* This program finds the activation energy of a reaction from a data *
%* set using the linear regression. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

k=8.617e-5; % Boltzmann constant [eV/K]

% Generate a new dataset
%E=0.025;
%A=2.0;
%for i=1:11
% T(i) = 180+20*i;
% f(i)=2.0*exp(-E/(k*T(i)))*(1+random('unif',-0.05,+0.05));
%end

T=[200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400];
f=[0.471,0.515,0.576,0.639,0.734,0.742,0.833,0.830,0.932,0.918,0.939];
N=size(f,2);

for i=1:N
x(i)=1/(k*T(N+1-i));
y(i)=log(f(N+1-i));

end

F=sum(y);
X=sum(x);
X2=sum(x.ˆ2);
XF=sum(x.*y);
b=(F*X2-X*XF)/(N*X2-Xˆ2);
a=(N*XF-X*F)/(N*X2-Xˆ2);
g=a*x+b;
A=exp(b);
z = A*exp(a./(k*T));

fprintf('Activation Energy = %6.2d eV\n',abs(a))

subplot(1,2,1)

334 DATA FITTING

p=plot(x,g);
set(p,'linewidth',2,'color','red')
hold on
r=plot(x,y,'o');
set(r,'linewidth',2,'color','black')
xlabel(texlabel('beta'),'fontsize',14)
ylabel('log k','fontsize',14)
hold off
subplot(1,2,2)
p=plot(T,f,'o');
set(p,'linewidth',2,'color','black')
hold on
r=plot(T,z);
set(r,'linewidth',2,'color','red')
xlabel('T','fontsize',14)
ylabel('k','fontsize',14)
hold off

▲▲▲

Program 12.7
%**
%* Section 12.3.2 *
%* filename: ch12pr08.m *
%* program listing number: 12.8 *
%* *
%* This program finds the peak position and life-time broadening *
%* of atomic emmision spectrum. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
clear all;

% Generate a sample noisy data

x=[-2.01,-1.47,-0.97,-0.52,-0.04,0.52,0.99,1.53,2.03,2.51,2.96,3.47,4.02];
y=[0.28,0.57,0.62,0.68,1.26,1.29,1.57,1.11,0.91,0.94,0.65,0.80,0.31];
s=[0.10,0.11,0.17,0.06,0.15,0.11,0.15,0.10,0.11,0.14,0.16,0.18,0.15];
N=size(y,2);

%control parametrs
alpha=1e-2;
found=false;

%initial guess
M=3;
lambda(:,1)=[1,0,1];

% Gauss-Newton iteration
n=1;
% evaluate initial chi sqaure
for i=1:N

F=lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n));
b(i)=y(i)-F;

end
b=b./s;
chi2(n)=b*b';

while not(found)
% construct Jacobian and vectors.

PROBLEMS 335

for i=1:N
F=lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n));
J(i,1)=F/lambda(1,n);
J(i,2)=2*lambda(1,n)*(x(i)-lambda(2,n))...

/((x(i)-lambda(2,n))ˆ2+lambda(3,n))ˆ2;
J(i,3)=-lambda(1,n)/((x(i)-lambda(2,n))ˆ2+lambda(3,n))ˆ2;
b(i)=y(i)-F;

end
% Take into account error bar
b=b./s;
for i=1:M

J(:,i)=J(:,i)./s';
end

% Solve the equation
n=n+1;
A=J'*J;
c=J'*b';
d=A\c;

% update parameter values
lambda(:,n)=lambda(:,n-1)+alpha*d;
% evaluate chi sqaure
chi2(n)=b*b';

% if chi square goes up stop
if chi2(n)-chi2(n-1) > 0

found=true;
end

end

subplot(1,2,1)
z=[-4:0.1:6];
L=size(z,2);
for i=1:L
w(i)=lambda(1,n)/((z(i)-lambda(2,n))ˆ2+lambda(3,n));
end
p=plot(z,w);
set(p,'linewidth',2,'color','black')
hold on
r=errorbar(x,y,s,'o');
set(r,'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel('f(x)','fontsize',14)
hold off

subplot(1,2,2)
r=semilogy([1:n],chi2);
set(r,'linewidth',2,'color','black')
xlabel('iteration','fontsize',14)
ylabel(texlabel('chiˆ2'),'fontsize',14)

▲▲▲

Python Source Codes

Program 12.1

336 DATA FITTING

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.1 *
%* filename: ch12pr01.py *
%* program listing number: 12.1 *
%* *
%* This program interpolates 11-point data with linear spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size # Num er of data points
h=np.zeros(N-1)
for j in range(0,N-1):

h[j]=X[j+1]-X[j]

M=10 # Number of interpolation points between data points
dt=1.0/M
T=np.linspace(0.0,dt*(M-1),M) # linear interpolation

x=np.zeros(N*M)
y=np.zeros(N*M)

n=0
for i in range(0,N-1):

linear interpolation between two adjacent data points
for t in T:

x[n]=t*h[i]+X[i]
y[n]=(1.0-t)*F[i]+t*F[i+1]
n+=1

x[n]=X[N-1]
y[n]=F[N-1]
z=np.sin(x)*np.exp(-0.2*x)

n+=1
plt.figure(figsize=(6,5))
plt.plot(x[0:n],y[0:n],'-r',label='Spline')
plt.plot(X,F,'ob',label='Data')
plt.plot(x[0:n],z[0:n],'--k',label='Source')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 12.2
#!/usr/bin/env python3

PROBLEMS 337

-*- coding: utf-8 -*-
"""
%**
%* Example 12.2 *
%* filename: ch12pr02.py *
%* program listing number: 12.2 *
%* *
%* This program interpolates 11-point data with cubic spline. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size
h=np.zeros(N-1)
for j in range(0,N-1):

h[j]=X[j+1]-X[j]

G=np.zeros(N-2)
for j in range(0,N-2):

G[j]=3*((F[j+2]-F[j+1])/h[j+1]-(F[j+1]-F[j])/h[j])

A=np.zeros((N-2,N-2))
for j in range(0,N-2):

A[j,j]=(h[j+1]+h[j])/2.0

for j in range(0,N-3):
A[j,j+1]=h[j+1]
A[j+1,j]=h[j+1]

P=np.linalg.solve(A,G)

Q=np.zeros(N)
for j in range(0,N-2):

Q[j+1]=P[j]

Q[0]=0.0
Q[N-1]=0.0

M=10 # Number of interpolation points between data points
dt=1.0/M
T=np.linspace(0.0,dt*(M-1),M) # linear interpolation
x=np.zeros(N*M)
y=np.zeros(N*M)
n=0
for i in range(0,N-1):

linear interpolation between two adjacent data points
for t in T:

x[n]=t*h[i]+X[i]
y[n]=h[i]**2/6.0 * Q[i] * t*(t+1.0)*(t-1.0) \

-h[i]**2/6.0 * Q[i+1] * t*(t-1.0)*(t-2.0) \
+F[i+1]*t + (1.0-t)*F[i]

338 DATA FITTING

n+=1

z=np.sin(x[0:n])*np.exp(-0.2*x[0:n])

plt.figure(figsize=(6,5))
plt.plot(x[0:n],y[0:n],'-r',label='Spline')
plt.plot(X,F,'ob',label='Data')
plt.plot(x[0:n],z[0:n],'--k',label='Source')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 12.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.3 *
%* filename: ch12pr03.py *
%* program listing number: 12.3 *
%* *
%* This program interpolates 11-point data with the Vandermonde *
%* matrix. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/24/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\
-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]

X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size

construction of the Vandermonde matrix
x = np.zeros((N,N))
x[:,0]=1.0
for n in range(1,N):

x[:,n]=X[:]**n

solve the linear equation
using Gaussian elimination
a=np.linalg.solve(x,F)

evaluate the function value
between the sampling points.

M=101
z=np.linspace(0.0,X[N-1],M)
y=np.zeros(M)

for j in range(0,M):
y[j]=a[0]
for i in range(1,N):

PROBLEMS 339

y[j]=y[j]+a[i]*z[j]**i

v = np.sin(z)*np.exp(-0.2*z)

plt.figure(figsize=(6,5))
plt.plot(X,F,'ob',label="Raw data")
plt.plot(z,y,'-r',label="Vandermonde")
plt.plot(z,v,'--k',label="Source")
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 12.4
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.4 *
%* filename: ch12pr04.py *
%* program listing number: 12.4 *
%* *
%* This program interpolates 11-point data with the Lagrange *
%* polynomial method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

data to be fitted
F=[0.0000, 0.6889, 0.6095, 0.0774, -0.3401, -0.3528,\

-0.0842, 0.1620, 0.1997, 0.0681, -0.0736]
X=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
F=np.array(F)
X=np.array(X)
N=F.size

M=101
z=np.linspace(0.0,X[N-1],M)
y=np.zeros(M)

for j in range(0,M):

for n in range(0,N):
L=1.0 # Lagrange basis polynomial
for m in range(0,N):

if n!=m:
L=L*(z[j]-X[m])/(X[n]-X[m])

y[j]=y[j]+L*F[n]

v=np.sin(z)*np.exp(-0.2*z)

plt.figure(figsize=(6,5))
plt.plot(X,F,'ob',label="Raw data")
plt.plot(z,y,'-r',label="Lagrange")

340 DATA FITTING

plt.plot(z,v,'--k',label="Source")
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 12.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 12.5 *
%* filename: ch12pr05.py *
%* program listing number: 12.5 *
%* *
%* This program interpolates 11-point data with the linear *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Data set (no error bar)

x=[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.]
y=[0.1,0.90,1.7,3.4,4.5,4.7,6.2,7.6,7.85,9.03,9.6]
x=np.array(x)
y=np.array(y)
N=y.size

Linear regression
F=y.sum()
X=x.sum()
X2=(x**2).sum()
XF=(x*y).sum()
b=(F*X2-X*XF)/(N*X2-X**2)
a=(N*XF-X*F)/(N*X2-X**2)

fitted curve
f=a*x+b

plt.figure(figsize=(6,5))
plt.plot(x,f,'-r')
plt.plot(x,y,'ok');
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.show()

▲▲▲

Program 12.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

PROBLEMS 341

%* Example 12.6 *
%* filename: ch12pr06.py *
%* program listing number: 12.6 *
%* *
%* This program interpolates 11-point data with the quadratic *
%* regression method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Generate a noisy data set
N=13
x=np.zeros(N)
y=np.zeros(N)
s=np.zeros(N)
sm=5.0
for i in range(0,N):

x[i]=i-6.+np.random.uniform(-0.2,0.2)
s[i]=np.random.normal(0.0,sm/2.)+sm
y[i]=-2*x[i]**2+s[i]*np.random.uniform(0.2,0.9)

M=3; # number of parameters
J=np.matrix(np.zeros((N,M)))
b=np.matrix(np.zeros(N)).transpose()

Construct Jacobian matrix and a vector
for i in range(0,N):

for j in range(0,M):
J[i,j]=x[i]**j/s[i]

b[i]=y[i]/s[i]

Solve the linear equation
A=J.transpose()*J
c=J.transpose()*b
lam=np.linalg.solve(A,c)

constructe the fitted curve
K=121
z=np.linspace(-6.0,6.0,K)
f=lam[0,0]+lam[1,0]*z+lam[2,0]*z**2

plt.figure(figsize=(6,5))
plt.errorbar(x,y,yerr=s,fmt='ok',label='Data')
plt.plot(z,f,'-r',label='Fit')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)
plt.legend(loc=1)
plt.show()

▲▲▲

Program 12.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

342 DATA FITTING

%* Section 12.3.1 *
%* filename: ch12pr07.py *
%* program listing number: 12.7 *
%* *
%* This program finds the activation energy of a reaction from a data *
%* set using the linear regression. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

k=8.617e-5; # Boltzmann constant [eV/K]

T=[200., 220., 240., 260., 280., 300., 320., 340., 360., 380., 400.]
f=[0.471,0.515,0.576,0.639,0.734,0.742,0.833,0.830,0.932,0.918,0.939]
f=np.array(f)
T=np.array(T)
N=f.size
x=1./(k*T[::-1])
y=np.log(f[::-1])

Linear regression
F=y.sum()
X=x.sum()
X2=(x**2).sum()
XF=(x*y).sum()
b=(F*X2-X*XF)/(N*X2-X**2)
a=(N*XF-X*F)/(N*X2-X**2)

g=a*x+b
A=np.exp(b)
z = A*np.exp(a/(k*T))

print('\nActivation Energy = {0:8.4f} eV\n'.format(np.abs(a)))

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,g,'-r')
plt.plot(x,y,'ok')
plt.xlabel(r'β',fontsize=14)
plt.ylabel(r'$\log\, k$',fontsize=14)

plt.subplot(1,2,2)
plt.plot(T,f,'ok')
plt.plot(T,z,'-r')
plt.xlabel('T',fontsize=14)
plt.ylabel('k',fontsize=14)
plt.show()

▲▲▲

Program 12.8
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 12.3.2 *
%* filename: ch12pr08.m *

PROBLEMS 343

%* program listing number: 12.8 *
%* *
%* This program finds the peak position and life-time broadening *
%* of atomic emmision spectrum. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/25/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Generate a sample noisy data
x=[-2.01,-1.47,-0.97,-0.52,-0.04,0.52,0.99,1.53,2.03,2.51,2.96,3.47,4.02]
y=[0.28,0.57,0.62,0.68,1.26,1.29,1.57,1.11,0.91,0.94,0.65,0.80,0.31]
s=[0.10,0.11,0.17,0.06,0.15,0.11,0.15,0.10,0.11,0.14,0.16,0.18,0.15]

x=np.array(x)
y=np.array(y)
s=np.array(s)
N=x.size

control parametrs
alpha=1.e-2

initial guess
K=2000
M=3
lam=np.zeros((K,M))
chi2=np.zeros(K)

lam[0,:]=np.array([1.,0.,1.])

Gauss-Newton iteration
n=0
evaluate initial chi sqaure
b=np.zeros(N)
J=np.zeros((N,M))

for i in range(0,N):
F=lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])
b[i]=y[i]-F

b=b/s
chi2[n]=(b**2).sum()

found=False
while not(found):

construct Jacobian and vectors.
for i in range(0,N):

F=lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])
J[i,0]=F/lam[n,0]
J[i,1]=2.*lam[n,0]*(x[i]-lam[n,1])\

/((x[i]-lam[n,1])**2+lam[n,2])**2
J[i,2]=-lam[n,0]/((x[i]-lam[n,1])**2+lam[n,2])**2
b[i]=y[i]-F

Take into account error bar
b=b/s

344 DATA FITTING

for i in range(0,M):
J[:,i]=J[:,i]/s

Solve the equation
n+=1
A=np.dot(J.transpose(),J)
c=np.dot(J.transpose(),b)
d=np.linalg.solve(A,c)

update parameter values
lam[n,:]=lam[n-1,:]+alpha*d
evaluate chi sqaure
chi2[n]=(b**2).sum()

if chi square goes up stop
if chi2[n]-chi2[n-1] > 0:

found=True

plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
z=np.linspace(-4.0,6.0,101)
L=z.size
w=np.zeros(L)

for i in range(0,L):
w[i]=lam[n,0]/((z[i]-lam[n,1])**2+lam[n,2])

plt.plot(z,w)
plt.errorbar(x,y,yerr=s,fmt='o')
plt.xlabel('x',fontsize=14)
plt.ylabel('f(x)',fontsize=14)

plt.subplot(1,2,2)
plt.semilogy(np.linspace(1,n,n),chi2[0:n])
plt.xlabel('iteration',fontsize=14)
plt.ylabel(r'$\chiˆ2$',fontsize=14)
plt.show()

▲▲▲

Bibliography

[1] David Halliday, Robert Resnick, and Jearl Walker. Fundamentals of Physics. Wiley, 10th edition, 2013.
Chapter 42.

345

