
CHAPTER 10

MATRIX III: EIGENVALUE PROBLEMS

In Chapter 7 we studied eigenvalue problems in ODE. Eigenvalue problems can be expressed also in matri:

Au = λu (10.1)

where λ is an eigenvalue and u is the eigenvector corresponding to the eigenvalue. The matrix A can be real
or complex. Even when A is real, the eigenvalues can be complex. When the matrix is self-adjoint (A† = A)
the eigenvalues are all real. The eigenvalue problem of a complex self-adjoint matrix can be converted to an
eigenvalue problem of a symmetric real matrix. Consider a self-adjoint matrix A = B + iC where B ans C
are real matrices. Its adjoint is A† = Bt − iCT. Since A is self-adjoint, B is symmetric (Bt = B) and C
is anti-symmetric (Ct = −C). Writing the eigenvalues in u = x + iy where x and y are real vectors, the
original eigenvalue problem is transformed to an eigenvalue problem of real symmetric matrix:

B −C

C B

x

y

 = λ

x

y

 . (10.2)

In this chapter, we focus only on real symmetric matrices.
In some cases we want to find all eigenvalues and in other cases we are interested in only the lowest

eigenvalue. For each case, there are suitable numerical algorithms. In this chapter we discuss some of them
which work well for relatively small problems. For very large matrices, there are more complicated algorithms
which are not covered in this lecture.
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254 MATRIX III: EIGENVALUE PROBLEMS

10.1 The Power Method

We begin with a simple iterative method which converges to an eigenvalue whose absolute value is the largest
among all eigenvalues. Consider an eigenvalue problem of N dimension:

Aun = λnun, n = 1, · · · , N (10.3)

with eigenvalues λn ordered as
|λ1| > |λ2| ≥ · · · ≥ |λN−1| ≥ |λN | . (10.4)

Note that λ1 is strictly larger than λ2 and no degeneracy is allowed between them. This is not a severe
restriction. We will discuss how to resolve degeneracy later. The eigenvector un is assumed to be normalized.

Th iterative process starts with a normalized random vector x(0) which is expanded as

x(0) =
N∑

n=1
cnun (10.5)

where cn is an expansion coefficient. We assume that c1 ̸= 0. Since we do know the eigenvectors yet. We have
no way to guarantee it. We hope that the random vector will not accidentally orthogonal to u1. Multiplying
A to x(0) leads to

Ax(0) = A
∑

n

cnun =
∑

n

cnAun =
∑

n

cnλnun (10.6)

and after repeating it m times we obtain

Amx(0) =
∑

n

cnλ
m
n un = λm

1

[
c1u1 +

N∑
n=2

cn

(
λn

λ1

)m

un

]
(10.7)

Noting that |λn/λ1| < 1 for n ≥ 2, |λn/λ1|m vanishes as m → ∞. Then, the dominant term and its norm
are given by

Amx(0) −−−−→
m→∞

c1λ
m
1 u1 (10.8)

and
∥Amx(0)∥ −−−−→

m→∞
|c1||λ1|m∥u1∥ . (10.9)

These equations still contain an unknown quantity c1, which is eliminated by taking the ratio of these
equations. The ratio now converges to the eigenvector up to the phase factor:

x(m) ≡ Amx(0)

∥Amx(0)∥
−−−−→
m→∞

c1λ
m
1 u1

|c1||λ1|m∥u1∥
= u1 . (10.10)

We can safely ignore the phase factor which is arbitrary in eigenvalue problems. (If u is a solution, so is
eiϕu.). It is also noted that the final result is automatically normalized. Once we found the eigenvector u1,
the corresponding eigenvalue can be computed by

λ1 = (x(m))tAx(m) . (10.11)

The above iterative procedure is known as the power method for the “largest” eigenvalue in the sense of
Eq. (10.4). If we want to find the smallest eigenvalue λN , there is a trick to get it using the power method.
We invert the original equation as follows:

Au = λu =⇒ A−1u = λ−1u. (10.12)
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Let B = A−1 and η = λ−1 and solve Bu = ηu by the power method. We will get the largest eigenvalue η
which is the smallest in the original expression λN = 1/η.

For other eigenvalues, we have another trick. First, we guess an eigenvalue λ′ and then subtract λ′u from
both sides of the original equation. The resulting equation is again an eigenvalue problem:

(A− λ′I)u = (λ− λ′)u (10.13)
where I represents an identity matrix. Letting B = A−λ′I and η = λ−λ′, we are solving another eigenvalue
equation: Bu = ηu. If we use the power method for the smallest eigenvalue, the resulting eigenvalue η is
the smallest. Transforming back to the original eigenvalue we have λ = λ′ + η. Since η is the smallest, we
found an eigenvalue closest to λ′. This method fails when the initial guess is too close to an eigenvalue since
x(m) diverges. If we should get a huge x(m), change the value of λ′.

For any iterative method, there must be a condition to stop the procedure. If a bad condition is used,
the process may falls into an endless loop. A typical condition is if a quantity changes significantly by a step
of the iteration. Since we update the vector x(m), it is a good quantity to check. So, we compare x(n) and
x(n−1). Typically the norm of the difference between two vectors

∥x(n) − x(n−1)∥ (10.14)
is used as the measure of error. If this quantity is smaller than a tolerance, we stop the iteration. However,
this method may fail in the present procedure. During the iterations the sign of the vector may flip. The sign
of the eigenvector is not significant. Both x(n) and −x(n) are equally good candidates for the eigenvector
although they are two different vectors. However, Eq. (10.14) is not a small quantity when the sign flips.
Therefore, we have to make it sure that the iteration does not flip the sign of x. If the sign flipped, we just
need to flip back the sign. See the Algorithm shown in the following box.

Algorithm 10.1 Power method for the largest eigenvalue

1. Pick a normalized random vector x(0).

2. Repeat the following iterative procedure starting with n = 1.

3. Calculate a new vevtor: y = Ax(n−1).

4. Normalize the vector: x(n) = y
∥y∥

.

5. If x(n)
1 < 0, then reverse the sign of the vector: x(n) = −x(n).

6. If ∥x(n) − x(n−1)∥ < tolerance, then and x(n) is the eigenvector. Otherwise
increment n and go to step 3.

7. Calculate the eigenvalue λ =
(
x(n))t

Ax(n).

EXAMPLE 10.1

We first calculate the largest eigenvalue of

A =


2 1 0

1 2 1

0 1 2

 (10.15)
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using the power method. Try a random initial vector x0. Then, try another initial vector x0 =
[2,−

√
2, 0]t.

The exact eigenvalues of this matrix is λ1 = 2+
√

2 = 3.4142135, λ2 = 2, and λ3 = 2−
√

2 = 0.585786.
The corresponding eigenvectors are

u1 =


1/2

1/
√

2

1/2

 , u2 =


1
√

2

0

−1/
√

2

 , u1 =


1/2

−1/
√

2

1/2

 (10.16)

Program 10.1 implements the power method and find the eigenvalue and eigenvector. Starting
with a random vector, the power method iterated 26 times with the tolerance=1 × 10−7 and con-
verged to a large eigenvelue 3.414214, in good agreement with the exact value. The eigenvector
[0.500000, 0.707107, 0.500000]t also agrees well. However, when the other initial vector [2,

√
2, 0]t is used,

the iteration apparently converged to the second eigenvalue 2.00000 and the eigenvector [0.707107, 0.000000,−0.707107]t.
This is because the initial vector happens to be orthogonal to the first eigenvector and c1 in Eq. (10.8)
vanishes. To avoid such accident we should try a few different initial conditions. Can we use such an
initial vector to compute the second largest eigenvalue? Yes, if we know u1. We can chose any vector
orthogonal to it. However, if the initial condition is not perfectly orthogonal to u1, that is exactly c1 = 0,
the iteration eventually converges to the largest eigenvalue.

% With a random initial vector
Eigenvalue=3.414214
Eigenvector
0.500000
0.707107
0.500000

% With the other initial vector
Eigenvalue=2.000000
Eigenvector
0.707107
-0.000000
-0.707107

EXAMPLE 10.2

Next, we try to find the smallest eigenvalue of the matrix in Example 10.1. The inverse of the matrix A
(we can use the Gaussian elimination to get it) is

A−1 =


3/4 −1/2 1/4

−1/4 1 −1/2

1/4 −1/2 3/4

 (10.17)

Replacing the matrix in Program 10.1 with this one, we obtain the following output. Both the eigenvalue
and the eigenvector are in excellent agreement with the exact solution.
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Eigenvalue= 0.585786
Eigenvector
0.500000

-0.707107
0.500000
\end{Verbatim}

\end{mybox}
\normalsize
\end{example}

\bigskip
\begin{example}\label{ex:eigen_power_middle}

Finally, we try to find an eigenvalue close to $\lambdaˆ\prime=1.5$ for the matrix in Example \ref{ex:eigen_power_large}.
First, we compute $Bˆ{-1} = (A-\lambdaˆ\prime I)ˆ{-1}$ using MATLAB \texttt{inv()}. Using Program \ref{prog:power_eigen}. , we obtain the following output.
Both eigenvalue and eigenvector from the code is in a perfect agreement with the exact solution.
If $\lambdaˆ\prime=2.1$ is used, the result is \texttt{Inf}. This is not an error. When the assumed eigenvalue $\lambdaˆ\prime$ is too close to the real eigenvalue, the power method diverges.

\small
\begin{mybox}
\begin{Verbatim}[frame=single]
Eigenvalue= 2.000000
Eigenvector
0.707107

-0.000000
-0.707107

10.2 Inverse Iteration Method

Consider a linear problem
(A− ξI)y = b (10.18)

where b is a unit vector and ξ is a guess close to λj , one of the eigenvalues of A. Expanding y and b using
the eigenvectors ui as base vectors,

y =
∑

i

aiui, b =
∑

i

biui (10.19)

and substituting them into Eq. (10.18) we obain an equality:∑
i

ai(λi − ξ)ui =
∑

i

biui . (10.20)

Since ui are linearly independent, ai = bi/(λi − ξ). Here, we assumed that ξ ̸= λi,∀i. Putting ai back to
the expansion (10.19)

y =
∑

i

bi

λi − ξ
ui (10.21)
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Since ξ ≈ λj , i = j dominates and thus y is close to uj up to the normalization. (We assume bj ̸= 0.) Now,
let b = y/∥y∥ and solve Eq. (10.18) again for new y, you will get

y =
∑

i

(
bi

λi − ξ

)2
ui (10.22)

The dominance of i = j is further enhanced and by repeating this procedure, y approaches to uj up to its
normalization. After n ≫ 1 iteration,

y(n) =
(

bj

λj − ξ

)n

uj (10.23)

and all other terms are negligibly small. It is important to mention here that if bj/(λj −ξ) < 0, the direction
of the vector is reversed every iteration. Be reminded that we must adjust the phase of the eigenvector as
explained in the previous section since the sign of y may flip at each iteration.

Algorithm 10.2 Inverse iteration method

1. Pick a normalized random vector b(0).

2. Guess an initial eigenvalue ξ(0).

3. Repeat the following procedure stating with n = 0.

4. Solve (A− ξ(n)I)y = b(n)

5. Set a new b: b(n+1) = y
∥y∥

.

6. If b(n+1)
1 < 0, then reverse the vector: b(n+1) = −b(n+1).

7. If ∥b(n+1) − b(n)∥ < tolerance, b(n+1) is the eigenvector. Otherwise, increment
n and go to Step 4.

8. Evaluate the eigenvalue λ = (b(n+1))tAb(n+1).

EXAMPLE 10.3

We solve the same eigenvalue problem as Example 10.1 but with the inverse iteration method. Program
10.2 implements the above inverse iterative method. Starting with ξ(0) = 0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, the
iterations converge to an eigenvalue closest to the guess except for ξ(0) = 2. Since this initial guess
accidentally hits the exact value, the calculation diverges.

Guess=0.500, Eigenvalue=0.585786
Guess=1.000, Eigenvalue=0.585786
Guess=1.500, Eigenvalue=2.000000
Guess=2.000, calculation diverge.
Guess=2.500, Eigenvalue=2.000000
Guess=3.000, Eigenvalue=3.414214
Guess=3.500, Eigenvalue=3.414214
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10.3 Jacobi Transformation

There is a robust method to find all eigenvalues of a symmetric matrix A. First, we look at an important
property of orthogonal transformation O. Suppose that the transformed matrix A′ = OtAO has an eigen-
value λ and the corresponding eigenvector x. The following diagram shows that the transformed matrix A′
has the same eigenvalues as the original matrix A:

A′x = λx, → OtAOx = λx → AOx = λOx (10.24)

where we used Ot = O−1. The eigenvector of the original matrix is Ox. In general, any orthogonal
transformation preserves the eigenvalues of the matrix. The eigenvectors are transformed by the same
transformation matrix.

Now, we try to find an orthogonal transformation that transforms A to a diagonal matrix D. The
eigenvalues of D are λi = Dii, i = 1, · · · , N , which are also eigenvalues of A. The corresponding eigenvector
of D are simply

ui =



...

0

1i

0
...


(10.25)

where 1i indicates that the i-component is 1. Then, the corresponding eigenvector of the original matrix A
is xi = Oui, which means that the i-th column of O is the i-th eigenvector of A.

It is difficult to zero all off-diagonal elements at once. We try one by one. Let us begin with Aij and Aji.
We define the Jacobi rotation matrix by

O =



1
. . .

c · · · s
... 1

...

−s · · · c

. . .

1


(10.26)

where all the diagonal elements are unity except for Oii = Ojj = c and all the off-diagonal elements are zero
except for Oij = s and Oji = −s where i < j. When cs +s2 = 1, this matrix is an orthogonal transformation.
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Applying this orthogonal transformation, the matrix A is transformed to a new matrix

A′ =



A′1i A′1j

...
...

A′i1 · · · A′ii · · · A′ij · · · A′iN
...

...

A′j1 · · · A′ji · · · A′jj · · · A′jN

...
...

A′Ni A′Nj


(10.27)

Only two rows and columns are modified by the transformation. Our goal is to make A′ij = A′ji = 0 by
adjusting c and s. Explicitly writing the new element using the original elements

A′ij = (c2 − s2)Aij + s c (Aii −Ajj) = 0 (10.28)

Hence,
c2 − s2

sc
= Ajj −Aii

Aij
. (10.29)

Taking into account c2 + s2 = 1, we find

c = 1√
t2 + 1

, s = t√
t2 + 1

(10.30)

where

t =


1 for Aii = Ajj

sgn(β)
|β| +

√
β2 + 1

, β = Aii −Ajj

2Aij
othersies (10.31)

We are able to eliminate the off-diagonal element Aij and Aji. The same transformation changes the
other elements

A′ii = c2Aii + s2Aj,j − 2scAij (10.32a)
A′jj = s2Ajj + c2Aj,j + 2scAij (10.32b)
A′ki = cAki − sAkj (10.32c)
A′kj = cAkj + sAki (10.32d)
A′ik = A′ki (10.32e)
A′jk = A′kj (10.32f)

where k = 1, · · · , N excluding k = i and k = j.
Now, Aij = Aji = 0. Next, we move to another off-diagonal element Amn and Anm and apply the same

procedure, which zeroes the elements. Note that the second procedure may makes the previous elements
Aij and Aji non-zero again. However, the new value is smaller than the original value. We just repeat this
procedure for all off-diagonal elements until all off-diagonal elements are sufficiently small. This is the Jacobi
transformation (also known as Jacobi rotation) method. After N transformations, we have a diagonal form
and the total orthogonal transformation is

O = O1 · O2 · · · ON (10.33)
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whose columns are eigenvetors of A.

Algorithm 10.3 Jacobi Transformation to Diagonal Form

1. Let P = I (identity matrix).
2. Evaluate S =

∑
i ̸=j

|Aij |2

3. If S < tolerance, the matrix is now diagonal. Stop.
4. If S ≥ tolerance, do Steps 5-9 for ∀(i, j), j > i.
5. Compute c and s using Eq. (10.30).
6. Transform Aki, Akj and their transpose (except for Aij and Aji using Eq. (10.32).
7. Set Aij = Aji = 0.
8. Construct transformation matrix O [Eq. (10.26)].
9. Accumulate the transformation by P = P · O.

10. Repeat from Step 1
11. Diagonal elements of the final A are eigenvalues and the columns of the final P are

the eigenvectors.

EXAMPLE 10.4

Let us find all eigenvalues of matrix 
1 −4 2

−4 1 −2

2 −2 −2

 (10.34)

using the Jacobi transformation method. Program xxx The exact eqigenvalues and the corresponding
eigenvectors are

λ1 = 6, x1 =


2
3

− 2
3

− 1
3

 ; λ2 = −3, x2 =


1√
2

1√
2

0

 ; λ3 = −3, x3 =


−
√

2
6√
2

6
2
√

2
3

 (10.35)

Since the last two eigenvalues are degenerate, any linear combination of x2 and x3 is an eigenvector.
Program 10.3 solves this problem using the Jacobi transformation method. The output shows that the
transformed matrix is indeed diagonal and its diagonal elements agree with the eigenvalues. Each column
of the transformation matrix is exactly matches to the eigenvector except for the sign of some elements.
Remember that the phase factor is arbitrary for eigenvectors.

Final A Matrix
6.0000 0.0000 0.0000
0.0000 -3.0000 0.0000
0.0000 0.0000 -3.0000

Transformation Matrix
-0.6667 -0.7071 -0.2357
0.6667 -0.7071 0.2357

-0.3333 0.0000 0.9428
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10.4 Advanced Methods

The Jacobi transformation method works great for small matrices. Unfortunately, it is too slow for larger
matrices. There are more efficient methods. The theoretical background of such advanced methods involves
a bit of elaborate mathematics. Therefore, only the basic ideas are introduced here.

10.4.1 Triangular Matrices

To begin with we consider a simple case. Finding eigenvalues of upper or lower triangular matrices is trivial.
We consider an upper triangular matrix

A =



A11 A12 A13 · · · A1N

0 A22 A23 · · · A2N

0 0 A33 · · · A3N

...
...

... . . . ...

0 0 0 · · · AN N


(10.36)

as example but the resulot is exactly the same for the lower triangular matrix.
Recall that eigenvalue λ is a solution to the characteristic equation P (λ) ≡ det(A− λI) = 0. If A is

triangular, then A−λI is also the same type of triangular matrix. The determinant of the triangular matrix
is just a product of all diagonal elements [See Eq. (7.18)]. Hence, P (λ) =

∏N
i (Aii − λ) = 0. Obviously,

the solution is λi = Aii. Hence, the eigenvalues of a triangular matrix are its diagonal elements. The
corresponding eigenvectors are given by Eq. (10.25). Therefore, numerical calculation is not needed for the
triangular matrices. This is another nice property of triangular matrices in addition to other properties
discussed in Chapter 7. If we can transform a general matrix to a triangular matrix by an orthogonal
transformation, then we have the eigenvalues of the original matrix.

10.4.2 Tridiagonal Matrices

Finding eigenvalues of tridiagonal matrices is also not difficult although we need numerical methods. Consider
eigenvalues of the tridiagonal matrix

A =



A11 A12 0

A21 A22 A23

A32 A33
. . .

. . . . . . AN N−1

0 AN−1 N AN N


(10.37)

We want to find a characteristic equation P (λ) ≡ det(A− λI) If A is tridiagonal, so is A − λI. Using Eq
(7.36). the recursive equation for the characteristic equation is

Pn(λ) = ((Ann − λ)Pn−1(λ) −An n−1An−1 nPn−2(λ), P0 = 1, P−1 = 0. (10.38)

Then, we solve PN (λ) = 0 which is nothing but a root finding problem. It can be numerically solved with
the root finding methods discussed in Chapter 3.
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10.4.3 Householder Reduction

Now, we want to find eigenvalues of a general symmetric function. Unfortunately, there is no simple method.
However, recall that we can transform the matrices using orthogonal transformation preserving the eigen-
values. The Householder reduction transforms a symmetric matrix to a tridiagonal matrix. Then, you can
use the method discussed above. However, the following QR algorithm is more efficient.

To be written.

10.4.4 QR Method

It is known that a matrix can be written as a product of orthogonal matrix Q and an upper triangular
matrix R. This is called QR decomposition. Using this decomposition we can transform a symmetric matrix
to an upper triangular matrix. Suppose that the original matrix A is decomposed to A = QR. Then,
consider a new matrix A1 = RQ = Q−1QRQ = QtAQ. A1 is an orthogonal transform of A. Therefore, A
and A1 has the same eigenvalues. We repeat the procedure: QR decomposition Ai = QiRi and orthogonal
transformation Ai+1 = RiQi. After many iterations, Ai approaches an upper triangular matrix. When
all the lower triangle elements are zero (smaller than a tolerance), the iteration ends. If A is originally
symmetric, Ai is also symmetric since the orthogonal transformation preserves the symmetry. A matrix that
is upper triangle and also symmetric must be diagonal. Hence, Ai approaches to a diagonal matrix as i
increases.

If we need to find eigenvectors along with the eigenvalues, we accumulate the all orthogonal transformation:

Q = Q1 ·Q2 · · ·QN (10.39)

where N is the number of iterations. Since the eigenvector of the final matrix AN is given by Eq. (10.25),
the eigenvector coresspoing to the i-th eigenvalue is simply Qui, which means that the i − th column of Q
is the i-th eigenvector.

Although QR algorithm works with general form of matrices, the computation time is the order of N3

per iteration. On the other hand, if the matrix is tridiagonal, it is only order of N per iteration. Therefore,
it is more practical to transform the symmetric matrix to a tridiagonal form by the Householder reduction
before applying the QR algorithm.

The algorithms of QR decomposition are a little bit complicated and not elaborated here. Interested
readers are encouraged to read advanced books.[1, 2] We rely on the routines in the well established libraries.
MATLAB has a built-in function qr(). For C and C++, gsl linalg QR decomp() in GSL works well.[3]

Algorithm 10.4 QR method for Eignvalue Problem

1. Let P = I (identity matrix).
2. Evaluate S =

∑
i>j

|Aij |2

3. If S < tolerance, the matrix is now upper triangular. Go to the final step
4. If S ≥ tolerance, do the following steps
5. Find Q and R by QR decomposition: A = QR.
6. Calculate A = RQ. This is a new A transformed from the previous A.
7. Accumulate the transformation by P = P Q.
8. Repeat from Step 2
9. The diagonal elements of the final A are eigenvalues and the columns of the final P

are the eigenvectors.
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EXAMPLE 10.5

We solve Example 10.4 using the QR algorithm. See Program 10.4. The QR decomposition is done
by MATLAB built-in function. After 17 iterations the final matrix appears to be nearly diagonal. A
small residual is seen at one element. The use of a smaller tolerance removed it. The eigenvalues and
eigenvectors are all in good agreement with exact values.

# of iterations = 17

Transformed Matrix
6.0000 0.0001 0.0000
0.0001 -3.0000 0.0000
0.0000 0.0000 -3.0000

Transformation Matrix
-0.6667 -0.7071 -0.2357
0.6667 -0.7071 0.2357

-0.3333 -0.0000 0.9428

10.5 Applications in Physics

10.5.1 Coupled Harmonic Oscillators

First, we solve a popular problem in classical mechanics[4]. Three particles of mass mi, i = 1, · · · , 3 are
chained with four springs of spring constant, ki, i = 1, · · · , 4 as shown in Figure. The equations of motion
for these particles are

m1ẍ1 = −k1x1 + k2(x2 − x1) (10.40a)
m2ẍ2 = −k2(x2 − x1) + k3(x3 − x2) (10.40b)
m3ẍ3 = −k3(x3 − x2) − k4x3 (10.40c)

where xi, i = 1, · · · , 3 are the displacement of each particle from its equilibrium position. Equation (10.40)
can be written in a matrix form

M ẍ = −Kx (10.41)
where

x =


x1

x2

x3

 (10.42)

K =


k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3 + k4

 (10.43)

To find normal frequency ω, we assume x(t) = ueiωt where u is a constant vector to be determined. The
equation of motion is now written as

ω2Mu = Ku → M−1Ku = ω2u (10.44)
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Since M is a diagonal matrix, its inverse is

M−1 =


1/m1 0 0

0 1/m2 0

0 0 1/m3

 (10.45)

Letting A = M−1K and λ = ω2, Eq (10.44) is just an eigenvalue equation. A is clearly symmetric. All
eigenvaules must be positive (ω is real). Hence, A is positive definite.

In principle, we can solve this equation analytically since this is just a 3-by-3 problem. However, the result
can be very complicated and not very useful (try to find them using Maple or Mathematica). Therefore,
we want to numerically find all eigenvalues. In Program 10.5, first, we calculate the largest and smallest
eigenvalues using the power method. The remaining eignevalue must be between them. We use the inverse
iterative method starting with ξ(0) in the middle of the largest and smallest eigenvalues, hoping that it
is close to the last eigenvalue. This approach is not efficient for this problem since we are looking for all
eigenvalues. The Jacobi transformation or the QR method is better. We just use the present methods simply
for practice.

Using the spring constants k1 = k4 = 2 and k2 = k3 = 4, and mass m1 = 2, m2 = 4, and m3 = 3, we
obtain three normal modes:

Frequency=2.056127
Eigenvector
0.813313

-0.499234
0.298810

Frequency=1.540700
Eigenvector
0.652911
0.204441

-0.729322

Frequency=0.631338
Eigenvector
0.508680
0.661643
0.550883

Let look at the lowest frequency mode. The eigenvector indicates that all particles move in the same
direction (in phase) and their amplitude of the oscillation is similar. On the other hand, the eigenmode of
the largest frequency show that the middle particle moves in the opposite direction to the two others. (out
of phase) and the first particle oscillates with bigger amplitude than the others.

10.5.2 Chains of Atoms

A Linear Chain
Next example is a popular problem in quantum mechanics. Consider a linear chain of N atoms shown in
Fig 10.1a. All atoms are identical. Based on a simple tight-binding model[5], the Hamiltonian of the system
is a tridiagonal matrix:

H =



α β 0

β α β

. . . . . . . . .

β α β

. . . . . . . . .

β α β

0 β α


(10.46)

where α and β are site energy and hopping matrix element.[5] Te orbital energy of electrons in the polymer
is determined by the equation

Hψn = Enψn (10.47)
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1 2 K N-1 N

(a) A linear chain of atoms. The edge atoms interacts
with only one neighboring atom.

3

2
1

N

N-1

K

(b) A circular chain of atoms. All atoms interacts
with two adjacent atoms.

Figure 10.1: Two different boundary conditions for the chain of atoms.

where En and ψn are energy and wave function of the electron, respectively. Mathematically speaking, they
are eigenvalue and eigenvector.

This problem can be solved analytically. For α = −2 and β = −1, En = −4 sin2
(

nπ

2(N + 1)

)
. Program

10.6 tries to get the same result using the QR algorithm. Form N = 10, it took 141 iterations. The resulting
numerical eigenvalues perfectly agree with the exact solution Figure 10.2a plots the wavefunctions for the
lowest three eigenvalues. The result resemble to those of the particle in the infinite square well[6]. In fact,
the present model is the discrete version of the infinite square well.

numerical exact
n= 1 : E=-3.9190 (-3.9190)
n= 2 : E=-3.6825 (-3.6825)
n= 3 : E=-3.3097 (-3.3097)
n= 4 : E=-2.8308 (-2.8308)
n= 5 : E=-2.2846 (-2.2846)
n= 6 : E=-1.7154 (-1.7154)
n= 7 : E=-1.1692 (-1.1692)
n= 8 : E=-0.6903 (-0.6903)
n= 9 : E=-0.3175 (-0.3175)
n=10 : E=-0.0810 (-0.0810)

A Circular Chain: Periodic Boundary Condition

We continue the previous model of the atomic chain. This time it is not a linear chain but a ring of atoms
(see Fig. 10.1b. Atom 1 and N are connected so that electron can hop between them. The Hamiltonian
is similar to Eq (). Place β at the top-right corner (H1N) and the bottom-left corner (HN1). The exact
solution is E = α + 2β cos(2nπ/N), n = 0, · · · , N − 1.[5] Changing the Hamiltonian in Program 10.6 we
obtain the following results. Again the agreement is perfect. Note the two-fold degeneracy except for n = 1
and n = 10. This degeneracy is due to the rotational symmetry. Clockwise and counterclockwise circular
motions must have the same energy. Waveufnctions plotted in Figure 10.2b illustrates it. The lowest energy
state is uniform. Recalling that the momentum of the particle is proportional to the inverse of the wave
function. This state has the infinitely long wavelength and thus the particle must be at rest (in the classical
sense). There is only one such state. The next two wave functions look like sin and cos functions since
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(a) A linear chain of atoms. The wavefunctions cor-
responding to the lowest three energy are plotted.
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(b) A circular chain of atoms (periodic boundary con-
dition).

Figure 10.2: Tight binfing model of atomic chains with two different boundary conditions. The wavefunctions
corresponding to the lowest three energy are plotted.

their phases are shifted by π/2. Since they have the same eigenvalue, any linear combination of the two
wavefunctions is again the solution. we can create two traveling waves one in the clockwise and the other in
counterclockwise.

numerical exact
n= 1 : E=-4.0000 (-4.0000)
n= 2 : E=-3.6180 (-3.6180)
n= 3 : E=-3.6180 (-3.6180)
n= 4 : E=-2.6180 (-2.6180)
n= 5 : E=-2.6180 (-2.6180)
n= 6 : E=-1.3820 (-1.3820)
n= 7 : E=-1.3820 (-1.3820)
n= 8 : E=-0.3820 (-0.3820)
n= 9 : E=-0.3820 (-0.3820)
n=10 : E= 0.0000 ( 0.0000)

Impurity in the Chain

Previous two examples have simple analytic solutions and thus no numerical calculation is necessary. How-
ever, the agreement between numerical results and exact solutions makes us confident with the numerical
methods. Now, we try a slightly difficult case. Consider again the chain of atoms shown in Fig. 10.1. The
K-th atom is replaced with an impurity. Accordingly, the Hamiltonian matrix must be modified. Assuming
that the impurity weakly interacts with the adjacent atoms, we use HK-1 K = HK,K+1 = −0.1. We use
Program 10.6 again. Placing the impurity at K = 3, we obtain the following eigenvalues. The exact solution
is not known. To see what is happening near the impurity, we plot the wavefunctions of three lowest energy
state in Figure 10.3. The waveufnctions of the two lowest energy are nearly zero at atoms 1 through 3. The
low energy particle can’t hop to the impurity since the hopping matrix element is too small. It is possible to
confine the electron on atom 1 and 2 but that state must have very high energy due to the uncertainty prin-
ciple. (The momentum becomes large and thus the kinetic energy is also high.). The third state seems not
sensitive to the presence of the impurity. All higher energy states are only slightly affected by the impurity.
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Figure 10.3: A chain of atoms with an impurity at K = 3. The wavefunctions of lowest three energy states
are plotted. Note that electrons in the lowest two energy states do not hop to atom 1 and 2. The impurity
seems blocking it.

n= 1 : E=-3.8499
n= 2 : E=-3.4244
n= 3 : E=-3.0526
n= 4 : E=-2.7874
n= 5 : E=-2.1448
n= 6 : E=-1.8552
n= 7 : E=-1.2125
n= 8 : E=-0.9474
n= 9 : E=-0.5756
n=10 : E=-0.1501

Exercise 10.1 What will happen if the hopping matrix elements between the impurity and its neighbors
are bigger than other hopping matrix elements?
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10.6 Problems

10.1 A Triangular Molecule
Consider a triangular molecule consisting of three identical atoms as shown
in Figure. A simple model assume that electrons are hopping between
potential wells, Vn (n=1,2,3). The distance between spheres is short enough
for electrons to jump from one well to another. Following a tight-binding
method, we use a basis, |ψn⟩ representing an electron in the potential well
Vn . Using this base set, the Hamiltonian of the system can be written in
a matrix form as

H =


ϵ β β

β ϵ β

β β ϵ

 (10.48)
β

β β

ϵ

ϵ

ϵ

1

2 3

where ϵ and βi denote the energy of an electron trapped in a potential well and a hopping matrix element
between the potential wells, respectively. Here we assume ϵ < 0 and β < 0.
A state of the particle is given by a column vector

u =


u1

u2

u3

 (10.49)

Energy eigenstates are determined by Schrönger equation

Hu = Eu (10.50)

which is an eigenvalue problem. We want to find all eigenvalues using the QR method. We can use
Program 10.4. Assuming that ϵ = −2 and β = −1, the exact solutions are λ1 = −4 and λ2 = λ3 = −1.
The corresponding eigenvectors are

x1 =


1√
3

1√
3

1√
3

 , x2 =


1√
2

− 1√
2

0

 , x3 =


− 1√

6

− 1√
6

2√
6

 (10.51)

Find numerically the all eigenvalues and the corresponding eigenvectors. Compare the results with the
exact values.
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MATLAB Source Codes

Program 10.1

%%*************************************************************************
%* Example 10.1 - 10.3 *
%* filename: ch10pr01.m *
%* program listing number: 10.1 *
%* *
%* This program finds eigenvalues and eigenvectors of a symmetric *
%* matrix using the power method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**************************************************************************
clear all;

% system
A=[[2,1,0];[1,2,1];[0,1,2]];
% A=inv(A); % Example 9.2
% lambda0=1.5; % Example 9.3
% A=inv(A-lambda0*eye(3,3)); % Example 9.3

% tolerance
tol = 1e-7;
found=false;
n=1;

% initial guess
x=rand(3,1);
x=[2;-sqrt(2);0];

% normalization
u0=x/sqrt((x'*x));

% power method iteration
while not(found)

x=A*x; % update x
u1=x/sqrt(x'*x); % normalization
err=sqrt( (u1-u0)'*(u1-u0) ); %error
if err < tol

found=true;
else

u0=u1;
n=n+1;

end
end

% eigenvalue
lambda=u1'*A*u1;
lambda=1/lambda; % Example 9.2
%lambda = lambda0+1/lambda; % Example 9.3

fprintf('Eigenvalue=%.6f \n',lambda)
fprintf('Eigenvector\n');
fprintf('%.6f\n',u1);

▲▲▲
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Program 10.2
%**************************************************************************
%* Example 10.4 *
%* filename: ch10pr02.m *
%* program listing number: 10.2 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the inverse iteration method method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**************************************************************************
clear all;

% Matrix
A=[[2,1,0];[1,2,1];[0,1,2]];

for i=1:6;
% generate an initial guess
if i<4

q=0.5*i;
else

q=0.5*(i+1);
end

% tolerance
tol = 1e-7;

found=false;
n=1;

% Generate a random vector
b0=rand(3,1);
b0=b0/sqrt(b0'*b0);

B=A-q*eye(3,3);

% inverse iteration method
while not(found)

y=gauss(B,b0); % solve linear equation by the Gaussian elimination
b1=y/sqrt(y'*y);
if b1(1)<0 % correct the phase.

b1=-b1;
end
err=sqrt( (b1-b0)'*(b1-b0) );
if err < tol

found=true;
else

b0=b1;
n=n+1;

end
end

% eigenvalue
lambda=(b1'*A*b1);
fprintf('Guess=%.3f, Eigenvalue=%.6f \n',q,lambda)

end

▲▲▲
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Program 10.3

%**************************************************************************
%* Example 10.5 *
%* filename: ch10pr03.m *
%* program listing number: 10.3 *
%* *
%* This program finds eigenvalues and eigenvectors of a symmetric *
%* matrix using the Jacobi transformation method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**************************************************************************
clear all

% Define the matrix
A=[[1,-4,2];[-4,1,-2];[2,-2,-2]];

% Tolerance
tol = 1e-4;

% Evalkuate error
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

P=eye(3,3); %Initial transformation matrix

while S > tol
for i=1:3

for j=i+1:3
if A(i,j) ˜= 0

% Jacobian rotation
if A(j,j)==A(i,i)

c=-1/sqrt(2);
s=-1/sqrt(2);

else
beta=(A(j,j)-A(i,i))/(2*A(i,j));
t=sign(beta)/(abs(beta)+sqrt(betaˆ2+1));
c=1/sqrt(tˆ2+1);
s=t/sqrt(tˆ2+1);

end
r=s/(1+c);
ai = cˆ2*A(i,i)+sˆ2*A(j,j)-2*s*c*A(i,j);
aj = sˆ2*A(i,i)+cˆ2*A(j,j)+2*s*c*A(i,j);
A(i,i)=ai;
A(j,j)=aj;
% Transformation matrix
Q=eye(3,3);
Q(i,i)=c;
Q(j,j)=c;
Q(i,j)=s;
Q(j,i)=-s;
P=P*Q;
for k=1:3

if k˜=i && k˜=j
aki=c*A(k,i)-s*A(k,j);
akj=c*A(k,j)+s*A(k,i);
A(k,i)=aki;
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A(i,k)=aki;
A(k,j)=akj;
A(j,k)=akj;

end
end
A(i,j)=0;
A(j,i)=0;

end
end

end

% Evaluate error
S=0;
for i=1:3

for j=i+1:3
S=S+abs(A(i,j));

end
end

end

fprintf('\nTransformed Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',A')

fprintf('\nTransformation Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',P')

▲▲▲

Program 10.4
%**************************************************************************
%* Example 10.6 *
%* filename: ch10pr04.m *
%* program listing number: 10.4 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the QR algorithm method. *
%* *
%* Uses MATLAB function qr() *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**************************************************************************
clear all

% Define the matrix
A=[[1,-4,2];[-4,1,-2];[2,-2,-2]];

% Tolerance
tol = 1e-8;

% Magnitude of total off-diagonal elements
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

P=eye(3,3);
while S > tol

[Q, R] =qr(A); % QR decomposition



274 MATRIX III: EIGENVALUE PROBLEMS

A = R*Q; % Orthogonal transformation
P=P*Q; % Accumulating the transformation
% Error evaluation
S=0;
for i=1:3

for j=i+1:3
S=S+A(i,j)ˆ2;

end
end

end

fprintf('# of iterations = %d\n',n)

fprintf('\nTransformed Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',A')

fprintf('\nTransformation Matrix\n')
fprintf('%8.4f %8.4f %8.4f\n',P')

▲▲▲

Program 10.5
%**************************************************************************
%* Section 10.5.1 *
%* filename: ch10pr05.m *
%* program listing number: 10.5 *
%* *
%* This program finds eigen modes of harmonic oscillators. *
%* The highest and lowest frequencies are obtained by the power *
%* method and the remaining frequency is computed by the inverse *
%* iteration method. *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**************************************************************************
clear all;

% system parameters
k1=2; k2=4; k3=4; k4=2;
m1=2; m2=4; m3=3;
K=[[k1+k2, -k2, 0];[-k2,k2+k3,-k3];[0,-k3,k3+k4]];
Minv=[[1/m1,0,0];[0,1/m2,0];[0,0,1/m3]];
A0=Minv*K;

tol = 1e-7; % tolerance

% Find the largest/smallest eigenvalues
% by the power method.
for i=1:2

if i==1
A=A0; % for largest eigenvalue

else
A=inv(A0); % for smallest

end

found=false;
n=1;

x=rand(3,1); % initial guess
u0=x/sqrt((x'*x)); % normalization
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% power method iteration
while not(found)

x=A*x; % update x
u1=x/sqrt(x'*x); % normalization
err=sqrt( (u1-u0)'*(u1-u0) ); %error
if err < tol

found=true;
else

u0=u1;
n=n+1;

end
end

if i==1
lambda(1)=u1'*A*u1; % largest eigenvalue
u(1:3,1)=u1;

else
lambda(3)=1/(u1'*A*u1); % smallest
u(1:3,3)=u1;

end
end

% The other eigenvalue by the inverse
% iterative method.
% guess=middle between the largest and
% the lowest.
q = (lambda(1)+lambda(2))/2;
A = A0;

b0=rand(3,1); % random vector
b0=b0/sqrt(b0'*b0);
B=A-q*eye(3,3); % shifted matrix

found=false;
n=1;

% inverse iteration method
while not(found)

y=gauss(B,b0);
b1=y/sqrt(y'*y);
if b1(1)<0 % correct the phase.

b1=-b1;
end
err=sqrt( (b1-b0)'*(b1-b0) );
if err < tol

found=true;
else

b0=b1;
n=n+1;

end
end

% eigenvalue
lambda(2)=(b1'*A*b1);
u(1:3,2)=b1;

% output
for i=1:3

fprintf('\nFrequency=%.6f \n',sqrt(lambda(i)))
fprintf('Eigenvector\n');
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fprintf('%.6f\n',u(:,i));
end

▲▲▲

Program 10.6
%**************************************************************************
%* Section 10.5.2 - 10.5.4 *
%* filename: ch10pr06.m *
%* program listing number: 10.6 *
%* *
%* This program finds energy and wavefunction of a chain of atoms *
%* using the QR algorithm method. *
%* *
%* Uses MATLAB function qr() *
%* *
%* Programmed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/09/2015. *
%**************************************************************************
clear all
%
N=10;
alpha=-2;
beta=-1;

% Define the matrix
A=zeros(N,N);

for i=1:N
A(i,i)=alpha;

end

for i=1:N-1
j=i+1;
A(i,j)=beta;
A(j,i)=beta;

end

% Tolerance
tol = 1e-8;

% Magnitude of total off-diagonal elements
S=0;
for i=1:N

for j=1:i-1
S=S+A(i,j)ˆ2;

end
end

P=eye(N,N);
n=0;
while S > tol

n=n+1;
[Q, R] =qr(A); % QR decomposition
A = R*Q; % Orthogonal transformation
P=P*Q; % Accumulating the transformation
% Error evaluation
S=0;
for i=1:N

for j=1:i-1
S=S+A(i,j)ˆ2;
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end
end

end

fprintf('# of iterations = %d\n',n)

fprintf('Eigenvalues\n')
for n=1:N

E=-4*sin((N-n+1)*pi/(2*(N+1)))ˆ2;
fprintf('n=%2d : E=%6.4f (%6.4f)\n',n,A(n,n),E)

end

fprintf('\nTransformation Matrix\n')
P

p=plot([1:N],P(:,1),'-o',[1:N],P(:,2),'-o',[1:N],P(:,3),'-o');
set(p(1),'linewidth',2,'color','blue')
set(p(2),'linewidth',2,'color','green')
set(p(3),'linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel(texlabel('psi'),'fontsize',14)
legend(p,{texlabel('psi_1'),texlabel('psi_2'),texlabel('psi_3')});
legend(p,'Location','SouthEast');

▲▲▲

Python Source Codes

Program 10.1

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 10.1 -10.3 *
%* filename: ch10pr01.m *
%* program listing number: 10.1 *
%* *
%* This program finds eigenvalues and eigenvectos of a 3x3symmetric *
%* matrix using the power method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/08/2013. *
%**************************************************************************
"""
import numpy as np

def evpower(A):

# tolerance
tol=1.0e-7
found=False

# create arrays
u0=np.matrix(np.zeros(3)).transpose()
u1=np.matrix(np.zeros(3)).transpose()
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# initial guess
x=np.matrix(np.random.rand(3)).transpose()

# normalization
u0=x/np.sqrt(np.asscalar(x.transpose()*x))

# power method iteration
n=0
while not(found):

x=A*x # update x
u1=x/np.sqrt(np.asscalar(x.transpose()*x)) # normalization
err=np.sqrt( np.asscalar((u1-u0).transpose()*(u1-u0)) ) #error
if err < tol:

found=True
else:

u0[:]=u1[:]

n+=1

eig=np.asscalar(u1.transpose()*A*u1)

return [n, eig, u1]

A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])

# SOlution by eignvalue solver in numpy
eig_np, u_np = np.linalg.eig(A)

# Example 10.1
[n, eig, u] = evpower(A)
# Eigenvalue

print('\nLargest Eigenvalue (Example 10.1)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[0]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,0],u_np[1,0],u_np[2,0]))
eig_max=eig

# Example 10.2
A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])
A=np.linalg.inv(A)
[n, eig, u] = evpower(A)
# Eigenvalue
eig=1.0/eig

print('\nSmallest Eigenvalue (Example 10.2)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[2]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,2],u_np[1,2],u_np[2,2]))
eig_min=eig

# Example 10.3
A=np.matrix([[2.,1.,0.],[1.,2.,1.],[0.,1.,2.]])
eig0=0.5*(eig_min+eig_max)
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A=np.linalg.inv(A-eig0*np.identity(3))
[n, eig, u] = evpower(A)
eig=1.0/eig+eig0

print('\nThe Eigenvalue between the smallest and largest (Example 10.3)')
print('Iteration=',n)
print('Eigenvale={0:f} (numpy: {1:f})'.format(eig, eig_np[1]))
print('Eigenvector=[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u[0,0],u[1,0],u[2,0]))
print(' (numpy):[{0:8.4f}, {1:8.4f}, {2:8.4f}]'\

.format(u_np[0,1],u_np[1,1],u_np[2,1]))

▲▲▲

Program 10.2
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 10.4 *
%* filename: ch10pr02.py *
%* program listing number: 10.2 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the inverse iteration method method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/17/2017. *
%**************************************************************************
"""
import numpy as np

# Set a matrix
A=np.matrix([[2,1,0],[1,2,1],[0,1,2]])

for q in (0.5,1.0,1.5,2.5,3.0,3.5):

#tolerance
tol = 1e-7

found=False
n=1

# Generate a random vector
b0=np.random.rand(3,1)
b0=b0/np.linalg.norm(b0)

B=A-q*np.identity(3)

# inverse iteration method
while not(found):

y=np.linalg.solve(B,b0)
b1=y/np.linalg.norm(y)
if b1[0]<0: # correct the phase.

b1=-b1

err=np.linalg.norm(b1-b0)
if err < tol:

found=True
else:
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b0=b1
n+=1

# eigenvalue
eig= np.asscalar(b1.transpose()*A*b1)
print('Guess={0:6.3f}, Eigenvalue={1:10.6f}'.format(q,eig))

▲▲▲

Program 10.3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 10.5 *
%* filename: ch10pr03.m *
%* program listing number: 10.3 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the Jacobi transformation method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2015. *
%**************************************************************************
"""
import numpy as np

# Define the matrix
A=np.matrix([[1.,-4.,2.],[-4.,1.,-2.],[2.,-2.,-2.]])

# Tolerance
tol=1.0e-4

# Evaluate error
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+abs(A[i,j])

# Initial transformation matrix
P=np.matrix(np.identity(3))

while S > tol:
for i in range(0,3):

for j in range(i+1,3):
if A[i,j] != 0:

# Jacobian rotation
if A[j,j]==A[i,i]:

c=-1./np.sqrt(2.)
s=-1./np.sqrt(2.)

else:
beta=(A[j,j]-A[i,i])/(2.0*A[i,j])
t=np.sign(beta)/(np.abs(beta)+np.sqrt(beta**2+1.0))
c=1./np.sqrt(t**2+1.0)
s= t/np.sqrt(t**2+1.0)

r=s/(1.0+c)
ai = c**2*A[i,i]+s**2*A[j,j]-2.0*s*c*A[i,j]
aj = s**2*A[i,i]+c**2*A[j,j]+2.0*s*c*A[i,j]
A[i,i]=ai
A[j,j]=aj
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# Transformation matrix
Q=np.matrix(np.identity(3))
Q[i,i]=c
Q[j,j]=c
Q[i,j]=s
Q[j,i]=-s
P=P*Q

for k in range(0,3):
if k!=i and k!=j:

aki=c*A[k,i]-s*A[k,j]
akj=c*A[k,j]+s*A[k,i]
A[k,i]=aki
A[i,k]=aki
A[k,j]=akj
A[j,k]=akj

A[i,j]=0.0
A[j,i]=0.0

# Evaluate error
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+abs(A[i,j])

print('\nTransformed Matrix\n')
print(A)

print('\nTransformation Matrix\n')
print(P)

▲▲▲

Program 10.4
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 10.6 *
%* filename: ch10pr04.py *
%* program listing number: 10.4 *
%* *
%* This program finds eigenvalues and eigenvectos of a symmetric *
%* matrix using the QR algorithm method. *
%* *
%* Uses NUMPY function qr() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**************************************************************************
"""
import numpy as np

# Define the matrix
A=np.matrix([[1.,-4.,2.],[-4.,1.,-2.],[2.,-2.,-2.]])

# Tolerance
tol = 1e-8;

# Magnitude of total off-diagonal elemens
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S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+A[i,j]**2

# Initial transformation matrix
P=np.matrix(np.identity(3))

n=0
while S > tol:

n+=1
[Q, R] =np.linalg.qr(A) # QR decomposition
A=R*Q # Orthogonal transformation
P=P*Q # Accumulating the transformation
# Error evaluation
S=0.0
for i in range(0,3):

for j in range(i+1,3):
S=S+A[i,j]**2

print('# of iterations ={0:d}'.format(n))

print('\nTransformed Matrix\n')
print(A)

print('\nTransformation Matrix\n')
print(P)

▲▲▲

Program 10.5
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Section 10.5.1 *
%* filename: ch10pr05.py *
%* program listing number: 10.5 *
%* *
%* This program finds eigenmodes of cpoupled harmonic oscillators. *
%* The higest and lowest frequencies are obgtained by the power *
%* method and the remaining frequency is computed by the inverse *
%* iteration method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**************************************************************************
"""
import numpy as np

# system parameters
k1=2.0; k2=4.0; k3=4.0; k4=2.0
m1=2.0; m2=4.0; m3=3.0
K=np.matrix([[k1+k2, -k2, 0.0],[-k2,k2+k3,-k3],[0.0,-k3,k3+k4]])
Minv=np.matrix([[1.0/m1,0.0,0.0],[0.0,1.0/m2,0.0],[0.0,0.0,1/m3]])
A0=Minv*K
A=np.matrix(np.zeros((3,3)))
u=np.matrix(np.zeros((3,3)))
eig=np.zeros(3)

tol = 1e-7 # tolerance
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# Find the largest/smallest eigenvalues
# by the power method.
for i in (0,1,2):

if i==0:
A[:,:]=A0[:,:] # for largest eigenvalue

else:
A=np.linalg.inv(A0) # for smallest

found=False
x=np.matrix(np.random.rand(3)).transpose() # initial guess
u0=x/np.linalg.norm(x) # normalization

# power method iteration
n=1
while not(found):

x=A*x # update x
u1=x/np.linalg.norm(x) # normalization
err=np.linalg.norm(u1-u0) # error
if err < tol:

found=True
else:

u0=u1
n+=1

if i==0:
eig[0]=u1.transpose()*A*u1 # largest eigenvalue
u[:,0]=u1

else:
eig[2]=1.0/(u1.transpose()*A*u1) # smallest
u[:,2]=u1

# The other eigenvalue by the inverse
# iterative method.
# guess=middle between the largest and
# the lowest.

u0=np.matrix(np.random.rand(3)).transpose() # random vector
u0=u0/np.linalg.norm(u0)
q = (eig[0]+eig[2])/2.0
A=A0-q*np.identity(3) # shifted matrix

found=False
n=1

# inverse iteration method
while not(found):

x=np.linalg.solve(A,u0)
u1=x/np.linalg.norm(x)
if u1[0]<0: # correct the phase.

u1=-u1

err=np.linalg.norm(u1-u0)
if err < tol:

found=True
else:

u0=u1
n+=1

# eigenvalue
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eig[1]=u1.transpose()*A0*u1
u[:,1]=u1

# output
for i in range(0,3):

print('\nFrequency={0:f}'.format(np.sqrt(eig[i])))
print('Eigenvector')
print(u[:,i])

▲▲▲

Program 10.6
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Section 10.5.2 - 10.5.4 *
%* filename: ch10pr06.py *
%* program listing number: 10.6 *
%* *
%* This program finds energy and wavefunction of a chain of atoms *
%* using the QR algorithm method. *
%* *
%* Uses NUMPY method qr() *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/18/2017. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt

N=10 # The size of the chain molecule
alpha=-2.0
beta=-1.0

# Define the tridiagonal matrix
A=np.zeros((N,N))
for i in range(0,N):

A[i,i]=alpha
for i in range(0,N-1):

A[i,i+1]=beta
A[i+1,i]=beta

A=np.matrix(A)

# Tolerance
tol = 1.0e-8

# Magnitude of total off-diagonal elemens
S=0.0
for i in range(0,N):

for j in range(0,i):
S=S+A[i,j]**2

P=np.matrix(np.identity(N))

n=0
while S > tol:

n+=1
Q, R=np.linalg.qr(A); # QR decomposition
A=R*Q #Orthogonal transformation
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P=P*Q #Accumulating the transformation
# Error evaluation
S=0.0
for i in range(0,N):

for j in range(0,i):
S=S+A[i,j]**2

print('# of iterations={0:d}'.format(n))
print('Eigenvalues\n')
for n in range(0,N):

E=-4.*np.sin((N-n)*np.pi/(2*(N+1)))**2
print('n={0:d} : E={1:f} ({2:f})'.format(n,A[n,n],E))

print('\nTransformation Matrix\n')
print(P)

plt.figure(figsize=(6,5))
plt.plot(np.linspace(0,N-1,N),P[:,0],'-ob',label=r'$\psi_1$')
plt.plot(np.linspace(0,N-1,N),P[:,1],'-og',label=r'$\psi_2$')
plt.plot(np.linspace(0,N-1,N),P[:,2],'-or',label=r'$\psi_3$')

plt.xlabel('x',fontsize=14)
plt.ylabel(r'$\psi$',fontsize=14)
plt.legend(loc=4)
plt.show()

▲▲▲
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