CHAPTER 9

MATRIX 1l: NONLINEAR EQUATIONS

In the previous chapter, we numerically solved a linear equation Ax = b. This equation can be also written
as a problem of finding zeros (root-finding) of a linear function

fx)=Ax—-b=0 (9.1)

where f, x, and b are column vectors, and A a matrix. We are able to solve this kind of problems by
Gaussian eliminations or its extension. However, those methods are limited to linear equations and cannot
solve non-linear equations. For example, a function of vector x = (1, z2, z3)

72131 + 2582 -1
f(x) = |32 — 29 — 2125 + 3 (9.2)

Tr1xo — T3 + 2

is nonlinear (the product of multiple elements such as z1z2 makes it nonlinear) and cannot be written in
the linear form Ax = b.

Although many physics problems are linear, non-linear problems are becoming increasingly important in
many areas of science. In this chapter, we develop numerical methods to solve nonlinear equations f(x) = 0,
which is a multivariable version of root finding problem. We have discussed the root finding methods
for nonlinear equations of single variable in Chapter 4. The bisection method obviously won’t work for
multivariable systems. However, the Newton-Raphson and secant method can be extended to multivariable
nonlinear systems.

First Step to Computational Physics: Edition 0.6. 239
Copyright © 2021 Ryoichi Kawai

240 MATRIX II: NONLINEAR EQUATIONS

Figure 9.1: Diagram of 2D Newton-Raphson step. Left: The landscape of fi(x). The thick line indicates the
nullcline f;(x) = 0. Starting at the initial guess (circle), —V f1(x) (arrow) tells the steepest descent toward
the nullcline. Center: The landscape for fo(x). Similar to the left panel, the arrow point to the nullcline
fa(x) = 0. Right: The superimpose of the left and center panel. The crossing points of two nullclines are the
solutions. The vector sum of two steepest descent direction (black arrow) approximately points the solution.

9.0.1 Multi-Dimensional Newton-Raphson Methods

To begin with, we consider two variables case. The equations we want to solve is written explicitly with the
components as

fi(x) 0 (9.3a
fa(x) =0 (9.3b)
where
x=|" (9.3¢)
T2

Figures 9.1 illustrate the landscape of f;(x) in contours. The thick lines are nullclines (9.3a) and (9.3b). The
solutions of Eq. (9.3) are crossing points of the two nullclines. See the right panel of the illustration.

Starting with an initial guess (%) (a blue circle), we want to move toward the solution. The steepest
descent directions determined by —V f; point to the corresponding nullclines. (See the left and middle panel.)
These directions not necessarily point to a root. However, the sum of the two steepest descent directions,
V f1 + V f2 approximately points to the root as the right panel of Fig. 9.1 shows. Using these slopes,

Ax) - AED) = VA (x—x©) (9.4a)
fo(x) = f2(x?) ~V(x?) - (x - x) (9.4b)

Q

Since f1(x) = fa(x) = 0, we can estimate the root by solving

VA x—x@) = —f(x®) (9.5a)
Vi) (x-x0) = —fHx) (9.5b)

241

for x. This is a linear equation and can be solved by the methods discussed in the previous chapter. We
write this equation in a matrix form :

oh oh
ory 0z | [m—a?] _ 1) 0.6)
s Ofa| |22 —2l"| [(x®)

8.131 81‘2

The 2-by-2 matrix is just a Jacobian matrix evaluated at x(?). Inverting the Jacobian matrix, the approximate

solution is x = x(© — J=1f(x(?)). Although formally we use the inverse matrix, remember that we don’t

need to calculate J~! to find the numerical solution as we learned in the previous Chapter. Once we find the

new position x, use it as the new starting point and repeat the procedure until |[x(™ —x(=1|| < tolerance.
Now, we generalize the above result to the N-dimension

fi(x) T
f(x) = f2{x) , where x = " (9.7)
fn(x) TN

We want to find zeros of this function. Starting with an initial guess x(?), we predict the root using the
“slope”. Expanding the function in a Taylor series about x(%),

f(x) = £(x@) + JO(x —xO) 4 ... (9.8)

where J is the Jacobian matrix defined by

ofi
J© = 95i) (9.9)
8xj x=x(0)
Ignoring the higher order terms, the root finding equation is now
f(x) = f(xO) + JO (x —x@) =0 (9.10)
and its solution is .
x() = x(© _ (J<0>) £(x(®) (9.11)

This is the root suggested by the Newton-Raphson’s method. If |f(x(M))| < tolerance, we have found a
solution. If not, we continue the iterative procedure:

-1
x(n 1) = x () _ (J(“>) £(x™) (9.12)
If the initial guess is far from the solution, the Newton-Raphson method often fails. This instability

can be avoided by reducing the jump size. For example, we modify the above iteration process slightly by
multiplying 0 < o < 1 to each step.

-1
K+ () (J(n)) £(x(™). (9.13)

With a small step length, you might expect more iterations. That is not the case for many cases.

242 MATRIX II: NONLINEAR EQUATIONS

Algorithm 9.1 Multivariate Newton-Raphson Method
1. Choose a step factor « € (0, 1].

2. Set an initial guess x(?).
3. Repeat the following procedure starting with n = 0.

4. Solve Ay = b using Gaussian elimination or LU decomposition methods, where A =
J™ and b = —f(x(™).

5. The new solution is given by x(**1) = x(") 4 ay.
6. If |f(x("*1)| < tolerance. Then, x("*1) is the solution.

7. If not, increment n and repeat from step 5.

EXAMPLE 9.1

We solve a two-dimensional nonlinear equation

20 4+3zy = 1 (9.14a)
ry+3y = -1 (9.14b)

using the Newton-Raphson method. See Program 9.1. When o = 1 is used, the output ends up with
NaN. When a = 0.1 is used , 698 iterations are needed to get a desired accuracy (10~8). With a larger
step size a = 0.5, more iterations are needed to get the same answer. Figure 9.2 shows how the iteration

—1+V7

approaches to the solution. The final values of the iteration agree with the exact solution x =

2
—5+7
and y = —9
Iternations = 698

Solution= 8.228757e-01, -2.615832e-01
Exact= 8.228757e-01, -2.615832e-01

9.0.2 Broyden method: (Multidimentional Secant Method)

In the Newton-Raphson methods, the Jacobian matrix is absolutely necessary. However, the Jacobian matrix
is not always available. For a single variable case (See Section 3.2.3), the secant method estimates the gradient
numerically. We want to do the same here, that is to estimate the Jacobian matrix numerically.

To be written.

9.1 Minimization of Mutivariable Non-Linear Functions

We want to minimize a nonlinear function d(x) with respect to x. When the gradient of f(x) is known, the
steepest descent or conjugate gradient method. If the gradient is not available XXXX should be used.
To be written.

APPLICATIONS IN PHYSICS 243

075 08 085 09 095 1 1.05

Figure 9.2: Convergence of Example 9.1. Starting at x = 1 and y = 0, the Newton-Raphson procedure
gradually improves the output toward the root of nonlinear equation (9.14). The step factor o = 0.1 is used
in this case.

9.2 Applications in Physics

9.2.1 Steady states in Laser Dynamics

In Section 4.3.2, we investigate the laser dynamics modeled by the Maxwell-Bloch equation. Type A and B
lasers reach a steady state where all variables are constant after some time. Then, the time derivatives in
the Maxwell-Bloch equations vanishes, and hence

fi = —7MmE+kP=0 (9.15a)
fo = —yP4+rED=0 (915b)
fs = —3(D—-))—kr3EP=0 (9.15¢)

which is a multidimensional nonlinear system. The system has one trivial solution £ = P =0, and D = .
However, when a suitable amount of energy is injected, there is another solution. (We confirmed that in
Section 4.3.2.) For type A laser with A = 5, find the nontrivial steady state values of E, P and D. In terms
of mathematical terminology, this is a stable fixed point of the nonlinear dynamical system.

Let x1 = F, zo = P, and x3 = D. The analytic expression of the Jacobian matrix is given by

-7 K1 0
J = HQD -2 KJQE (9]‘6)
7I£3P 7H3E —73

In Program 9.2, we use the multidimensional Newton-Raphson method and the Gaussian elimination with
partial pivoting. Starting with initial guess E = 2,P = 2, and D = 5, the original Newton-Raphson (a = 1)
experiences instability and even after a thousand iterations, the system variables are wildly changing. When
a = 0.5 is used, only several iterations (See Fig. 9.3.) are necessary to reach the solution which is in good
agreement with the result obtained in Section 4.3.2.

244 MATRIX II: NONLINEAR EQUATIONS

—e—E
—e—p

»
o
I

IN
T

w

wn
T
L

lasing state
N
E [} w

=

o
T
L

1 . . : :
2 4 6 8 10

iteration

Figure 9.3: Fixed points of the Maxwell-Bloch equations for typa A laser. (See Section 4.3.2 for parameter
values.) After several iteration, the Newton-Raphson method converges to the solution.

MATLAB Source Codes

Program 9.1

%****‘k************‘k‘k***********‘k‘k************‘k************‘k‘k***********‘k‘k**
EES Example 9.1

S * filename: ch09pr0l.m *
FH program listing number: 9.1 *
%% *
%% This program solves a two-dimensional non-linear equation *
S* by newton-raphson method. *
% *
EES Programed by Ryoichi Kawai for Computational Physics Course. *
S x Last modification: 02/04/2015. *
%**

clear all;

% set a tolerance
tol = 1.0e-8;

% step factor (between 0 and 1)
= 0.1;

\)

%define functions
fl = Q(X,y) 2*x + 3*xxy — 1;
f2 = Q(x,y) x*xy + 3xy + 1;

%define Jacobian
J11l = Q@(x,y) 2+43xy;
Jlz2 Q(x,y) 3*x;
J21 = @(x,y) Vi

J22 Q(x,y) x+3;

o

iniital guess
) = 1;
) = 0;

(

1
(1

<X

APPLICATIONS IN PHYSICS 245

b(l)=-f1(x(1),y(1));
b(2)=-f2(x(1),y(1));
err=sqrt (b (1) *b(1)+b (2) *b(2));
if err < tol

not_found = false;
else

not_found = true;
end
n=1;

while not_found

% Construct linear equation
A(1,1)=011(x(n),y(n));
A(1,2)=012(x(n),y(n));
A(2,1)=J21(x(n),y(n));
A(2,2)=022(x(n),y(1));
% solve the linear equation

z=A\b;

x(n+l)=x(n)+axz (1);

y (n+l) =y (n)+axz (2);

% check error

b(l)=-f1(x(n+l),y(n+l));

b(2)=-f2(x(n+l),y(n+l));

err=sqrt (b (1) b (1l)+b(2)*xb(2));

fprintf ('err= %f\n',err)

if err < tol

not_found = false;
else
n=n+1;

end

end

p=plot (x,y);

set (p, 'linewidth', 2, 'color"', 'black"')
axis equal

xlabel (texlabel ('x"), 'fontsize', 14)
ylabel (texlabel ('y'), 'fontsize',14)

xa = (-l+sqrt(7))/2;
ya = (-5+sqgrt(7))/9;
fprintf ('Iternations = %d\n',n)
fprintf ('Solution= %d, %d\n',x(n),y(n))
fprintf (' Exact= %d, %d\n',6xa,ya)
AAA
Program 9.2

Bk k kA KA A A A Ak hhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk kA kA A Ak kkkkkkkkkkkkkkkkkkkkkkkkkk kXXX *xxx

% * Section 9.3.1 *
EES filename: ch09pr02.m *
T program listing number: 9.3-1 *
S *
B* This program finds a fixed point of Maxwell-Bloch equation *
Sx by newton-raphson method and Gaussian elimination. *
%% *
Bx Use function gauss.m *
%% *
S * Programed by Ryoichi Kawai for Computational Physics Course. *
% Last modification: 02/04/2015. *

246 MATRIX II: NONLINEAR EQUATIONS

%**

clear all;

% system parameters
gl=0.1; g2=2; g3=3;
k1=0.25; k2=0.2; k3=1;
lambda=5;

% control parameters
alpha = 0.5;

tol = le-4;

N=3;

%$iniital guess
y(1,1:3)=[2;2;5];
i=1;

err = 1;

x(1:3)=y(i,:);

J=[[-gl,k1,0]; [k2*xx(3),-92,k2*xx(2)1; [-k3*x(2),-k3*x(1),-g311;

f=[-gl*x (1) +klxx(2);-g2+x(2)+k2+x (1) *x(3);-g3* (x(3) —lambda) -k3+x (1) *x (2)];
while err > tol

i=1i+1;

B=gauss (J, f);
yv(i,:)=y(i-1,:) - alphaxB;
x=y(i,:);

J=[[-g1,k1,0]1; [k2*x(3),-g2,k2xx(2)]; [-k3*x(2),-k3*x(1),-g311;
f=[-gl*x (1) +kl*xx(2);-g2*x(2)+k2+x (1) *x (3);-g3x (x(3)-lambda) -k3*x (1) *x(2)];
err = f'xf;

end

fprintf ('E=%.6f, P=%.6f, D=%.6f\n',x)

p=plot ([1:1i],y(:,1),'o-", [1:1i],y(:,2),'o-",[1:1],y(:,3),'o-");
set (p, 'linewidth', 2)

xlabel ('iteration', 'fontsize', 14)

ylabel ('lasing state', 'fontsize', 14)

legend ('E','P','D")

legend('location', "'northeast"')

AAA

%*****************‘k**************************‘k*****************************
% x Section 9.3.1

S * filename: gauss.m *
EES program listing number: 9.2-2 *
%% *
% * This program solves a linear equaion Ax=b using Gaussian *
Sx elimination and partial pivoting. *
%% *
S* Input: A (N x N matrix) *
% * b (N-dimensional vector) *
S *
S * Output: x (N-dimensional vector) *
% *x *
S* Programed by Ryoichi Kawai for Computational Physics Course. *
% x Last modification: 02/04/2015. *
%****‘k*******************************‘k‘k******‘k*****************************

function [x]=gauss (A,Db)

% Set a linear equation
N=size (A, 1);
% scale factors
for i=1:N

S(i)=max (A(i,:));
end

for n=1:N-1

% Look for the pivot row
j=n;
Amax=abs (A (n,n) /S (n));
for i=n:N

AS=abs (A(i,n)/S(i));

if AS > Amax

j=1i;
Amax = AS;
end
end
% Carry out pivoting
if § "= n

for i=n:N
TMP=A (n, 1) ;
A(n,1)=A(j,1);
A(j,1i)=TMP;

end

TMP=Db (n) ;
b(n)=b(J);
b (j)=TMP;

o

% Record the permutation
P(n,n)=0; P(J,J)=0;
P(n,3j)=1; P(J,n)=1;

end

% Gaussian elimination

for i=n+1:N

M=-A(i,n)/A(n,n);

A(i,n+1:N)=MxA(n,n+1:N)+A(i,n+1:N);

b (i)=Mxb(n)+b(1i);
end
A(n+l,n)=0;
end
% backsubstitution
for i=3:-1:1
Ax=0;
for j=i+1:3
Ax = Ax+A(1i,J)*x(3);
end
x (1) = (b(i)-Ax)/A(i,1);
end

APPLICATIONS IN PHYSICS

Python Source Codes

Program 9.1

—%- coding: utf-8 —*-

AAA

247

248 MATRIX II: NONLINEAR EQUATIONS

Sk ok Kk k ok Kk ok ok ok ok ok ok k ok ok k k ok ok ko ok ok k ok ok k ok sk ke k ok ok ko ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok kR ok ok ok ok ok k k ok ok ok ok ok k

BH Example 9.1

EES filename: ch09%pr0l.py *
% * program listing number: 9.1 *
%% *
S* This program solves a two-dimensional non-linear equation *
Bx by newton-raphson method. *
% *
S * Programed by Ryoichi Kawai for Computational Physics Course. *
% * Last modification: 02/10/2017. *
%***‘k**************************‘k************‘k‘k*****************************

import numpy as np
import matplotlib.pyplot as plt

set a tolerance
tol = 1.0e-8

step factor (between 0 and 1)
a=20.1

#define functions
def f(x,y):
return [2.0xx + 3.0%xxy - 1.0, x*xy + 3.0xy + 1.0]

#define Jacobian
def J(x,vy):
return [[2.0+3.0*xy,3.0xx], [y, x+3.0]]

nmax=1000
x=np.zeros (nmax+1)
y=np.zeros (nmax+1)
b=np.zeros (2)
A=np.zeros ((2,2))

iniital guess
x[0] = 1.0
yI[0] = 0.0

b=-np.array (£ (x[0],y[0]))

err=np.sqrt (b[0]«b[0]+b[1]*b[1])
if err < tol:

found = True
else:

found = False

n=0
while not (found) and n<nmax:

Construct linear equation
A = np.array(J(x[n],yI[n]))

solve the linear equation
z=np.linalg.solve (A, b)
x[n+l]l=x[n]+ax*xz[0]
yntl]l=y[n]+a*z[1l]

check error
b=-np.array (f (x[n+1],y[n+1]1))

APPLICATIONS IN PHYSICS 249

err=np.dot (b, b)
print ('err="',err)
if err < tol:
found = True
else:
n+=1

plt.figure(figsize=(6,5))

plt.plot (x[0:n],y[0:n], 'ok',linewidth=2)
plt.axes () .set_aspect ('equal', 'datalim')

plt.text (x[0]+0.01,y[0], 'Start Here')

plt.text (x[n]+0.01,y[n]-0.01, 'Converged',color="r")
plt.xlabel ('x', fontsize=14)

plt.ylabel('y', fontsize=14)

plt.show ()

xa = (-1.0+np.sgrt(7.0))/2.0
ya = (-5.0+np.sqrt (7.0))/9.0

print ('Iternations = {0:d}'.format (n))
print ('Solution= {0:f}, {l:f}'.format (x[n],y[n]))
print (' Exact= {0:f}, {1:f}'.format (xa,ya))

AAA

Program 9.2

—+— coding: utf-8 —*-

nmwn
%****k**k***k***************************
% x Section 9.3.1

Sx filename: ch09pr02.py *
% * program listing number: 9.2-1 *
S *
EES This program finds a fixed point of Maxwell-Bloch equation *
R by newton-raphson method and Gaussian elimination. *
%% *
S * Use function gauss.m *
S *
% % Programed by Ryoichi Kawai for Computational Physics Course. *
% * Last modification: 02/15/2017. *
%*~k~k**********~k~k~k***********~k~k************~k~k*******************************
nmwn

import numpy as np

import matplotlib.pyplot as plt

system parameters
gl=0.1; g2=2.0; g3=3.0
k1=0.25; k2=0.2; k3=1.0
lam=5.0

def Jacob (x) :
J = [[-91,k1,0.0], [k2*x[2],-92,k2*x[1]], [-k3*x[1],-k3*x[0],-9g3]]
return J

def Func(x):
f= [-gl*x[0]+klxx[1],-g2*x[1]+k2+x[0]*x[2],-g3* (x[2]-1lam)-k3*x[0]*x[1]
return f

control parameters
alpha = 0.5

250 MATRIX II: NONLINEAR EQUATIONS

tol = le-4

nmax=1000

y=np.zeros ((3,nmax+1))
J=np.zeros ((3,3))
f=np.zeros (3)
B=np.zeros (3)

#initial guess
x=np.array([2.0,2.0,5.0])

yl:,0]=x
#y[:,0]=[x.item(0),x.item(1l),x.item(2)]
n=0

err=tol+1.0
J=np.array (Jacob (x))
f=np.array (Func(x))

while err > tol and n<nmax:
B=np.linalg.solve (J, f)
x=y[:,n] - alpha«B
yl:,ntl]=[x.item(0),x.item(1l),x.item(2)]
J=np.array (Jacob (x))
f=np.array (Func (x))
err = np.dot (£, f)
n+=1

print ('"E={0:f}, P={1:f}, D={2:f}'.format (x.item(0),x.item(1l),x.item(2)))
print ('err=',err)

t=np.linspace(0,n,n+1)

plt.figure()
plt.plot(t,y[0,0:n+1], '-ok', label="E")
plt.plot(t,y[1,0:n+1], " '-ob',label="P")

plt.plot(t,y[2,0:n+1],'-or',label="D")
plt.xlabel ('iteration')

plt.ylabel ('lasing state')
plt.xlim(0.,9.)

plt.ylim(0.,6.)

plt.legend(loc=1)

plt.show ()

AAA

Bibliography

251

