
CHAPTER 8

MATRIX I: LINEAR ALGEBRAIC EQUATIONS

So far our focus has been on numerical methods for calculus. Linear algebra is another major mathematical
component in physics, where vectors and matrices are main players. It plays an essential role particularly
in quantum mechanics. The numerical methods of linear algebra are also used in other numerical methods
in later chapters when we solve multivariate root finding/minimization problems, data fitting, and partial
differential equations. It is highly desirable to develop efficient and accurate numerical methods for linear
algebra. Despite that the problem looks very basic, numerical methods to solve it is not trivial. In this
chapter, various numerical methods for solving linear systems are introduced.

The size of the matrix can be very large in real world applications. Writing a code for large matrices
is often complicated. Fortunately, standard libraries such as LAPACK[1] are available for most computer
languages and we utilize them. However, it is dangerous to use such black-box routines without knowing
how they work. In this chapter, basic ideas are introduced using small matrices, mostly 3-by-3. Once we
understand the ideas, we can use the black-box routines with confidence and when they fail we will find
alternative methods.

In particular, we are interested in linear algebraic equations. We often encounter a set of simultaneous
equations like

3x− y + 4z = 2 (8.1a)
2x− z = −1 (8.1b)

3y + 2z = 3 (8.1c)

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

195

196 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Writing it in a matrix form, the set of equations are expressed in a single equation Ax = b, where

A =


3 −1 4

2 0 −1

0 3 2

 , b =


2

−1

3

 . (8.2)

To discuss more general cases, we write a system of linear equation in a matrix form
A11 A12 · · · A1N

A21 A22 · · · A2N

. . .

AN1 AN2 · · · ANN




x1

x2
...

xN

 =


b1

b2
...

bN

 (8.3)

or simply
Ax = b (8.4)

where A is a N -by-N square matrix, and x and b are column vectors of length N . Mathematically speaking,
the solution to this equation is as simple as x = A−1b where A−1 the inverse of A. However, finding the
inverse matrix is not a trivial task as you know from the linear algebra course. Fortunately, there are smart
numerical methods to solve it even without computing the actual inverse matrix. In MATLAB, simply
x=b\A solves the problem. We can of course use it and it works in most cases. However, we always need to
understand the degree of accuracy and the stability of the numerical method used inside MATLAB.

When we solve Eq. (8.1) by hand a common method is to eliminate variables one by one (the method
of variable elimination). Numerical methods essentially do the same. First, we discuss a trivial case. If the
matrix A is either upper or lower triangular, forward substitution and back substitution solve the problem
right away. For general cases, we introduce numerical methods known as Gaussian elimination and LU
decomposition, which transform general matrix problems to triangular matrix problems.

8.1 Triangular Matrices

We first discuss a special kind of matrices: lower triangular matrix

L =



L11 0 0 · · · 0

L21 L22 0 · · · 0

L31 L32 L33 · · · 0
...

...
... . . . 0

LN1 LN2 LN3 · · · LNN


, (8.5)

and upper triangular matrix

U =



U11 U12 U13 · · · U1N

0 U22 U23 · · · U2N

0 0 U33 · · · U3N

0
...

...

0 0 0 0 UNN


. (8.6)

TRIANGULAR MATRICES 197

The triangular matrices have several nice properties such as
The product of two same type of triangular matrices is again the same type of a triangular matrix.

The inverse of a triangular matrix is the same type of triangular matrix as the original one.

The determinant of a triangular matrix is just a product of all diagonal elements.

EXAMPLE 8.1

To familiarize ourselves with triangular matrices, we verify the above properties numerically. Since we
have not learned how to evaluate matrix inverse and determinant, we use MATLAB built-in functions,
inv() and det(). Numerical methods to compute them will be discussed in this chapter. Let us verify
the three properties using the following lower triangular matrix,

A =


2 0 0

−1 1 0

3 2 −1

 , B =


1 0 0

2 4 0

−1 −2 3

 . (8.7)

Program 8.1 computes the product of A and B, inverse and determinant of A. Here is the outputs.

Mutilication: A*B
2 0 0
1 4 0
8 10 -3

Inverse of A
5.0000e-01 -5.5511e-17 5.5511e-17
5.0000e-01 1.0000e+00 0.0000e+00
2.5000e+00 2.0000e+00 -1.0000e+00

Products of the diagonal elements = -2
Determinant by MATLAB = -2.000000e+00

The product is again a lower triangular matrix. The inverse is not exactly a lower triangular matrix since
the upper triangle elements are not exactly zero. They are numerical errors caused mostly by round-off
error and practically small enough to be ignored. Finally, the product of the diagonal elements matches
to the determinant obtained by the built-in function.

8.1.1 Forward/Back Substitutions

First, we will solve a simple linear equation
Lx = b (8.8)

where the matrix L is lower triangular. For simplicity, we consider 3-by-3 matrices but the method will work
for any size of matrices.

Writing Eq. (8.8) explicitly, the corresponding equations of the system is

L11x1 = b1 (8.9a)
L21x1 + L22x2 = b2 (8.9b)

L31x1 + L32x2 + L33x3 = b3 (8.9c)

198 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

It is trivial to solve this equation. From the first equation, x1 = b1/L11. Solving the second equation for x2,
we obtain x2 = (b2 − L21x1)/L22 = (b2 − b1L21/L11)/L22. x3 can be obtained in the same way. For general
cases, the solution is given by

xi = 1
Lii

bi −
i−1∑
j=1

Lijxj

 (8.10)

In order to find xi, we must know x1, x2, · · · , xi−1. In other words, you must evaluate this equation in the
forward order from i = 1 to N . That is why this method is called forward substitution.

Similarly for the upper triangular matrix, Ux = b can be solved easily by back substitution

xi = 1
Uii

bi −
N∑

j=1+1
Uijxj

 (8.11)

which must be evaluated backward from i = N to i = 1 and thus this method is known as back substituion.

EXAMPLE 8.2

We solve the following equation.

3x− y + 4z = −1 (8.12a)
2y − z = −2 (8.12b)

2z = 4 (8.12c)

First, we write it in matrix form 
3 −1 4

0 2 −1

0 0 2



x

y

z

 =


−1

−2

4

 . (8.13)

Since the matrix is upper triangular, we use the back substitution method. Program 8.2 carries out back
substitution and the solution is

x=-3.0, y=0.0, z=2.0

8.2 Gaussian Elimination

Solving linear equations of triangular matrix is almost trivial. Is there a similar formula for general matrix
problems? The answer is NO. The problem is much harder. However, almost any general matrix problem
can be transformed to an equivalent triangular matrix problem as long as A is not singular. Since a non-
trivial problem becomes a trivial problem, the transformation procedure must be non-trivial (due to the
law of the conservation of difficulty). The procedure is actually the same as what we do when we solve
the equation manually by hand. That is the method of variable elimination which is commonly known as
Gaussian elimination.

GAUSSIAN ELIMINATION 199

8.2.1 Elmination Procedures

First, let us solve (8.1) by hand. Diagram (8.14) shows it. First, we eliminate x in the second equation using
the first equation. From the first equation x = 1

3 (y−4z+2). Substituting it to the second equation, x in the
second equation is eliminated. Next, we do the same for the third equation. This time, we will eliminate y.
The third equation contains only z and thus we solve the problem. Notice that the final expression is upper
triangle. The second equation can be simplified by multiplying 3 to both sides. However, that will change
the properties of the matrix, namely the determinant. So, we keep the rather messy expression.

3x− y + 4z = 2 3x− y + 4z = 2 3x− y + 4z = 2 (8.14a)

2x− z = −1 1 st−−−−−−−→
elimination

2
3y − 11

3 z = −7
3

2 nd−−−−−−−→
elimination

2
3y − 11

3 z = −7
3 (8.14b)

3y + 2z = 3 3y + 2z = 3 37
2 z = 27

2 (8.14c)

Now we write this procedure in a matrix form,

Ax = b ⇒ M (1)Ax = M (1)b ⇒ M (2)M (1)Ax = M (2)M (1)b. (8.15)

where the transformation matrix M (i) applies the i-th step of the forward Gaussian elimination. For the
above example, the transformation matrices are

M (1) =


1 0 0

−2/3 1 0

0 0 1

 , M (2) =


1 0 0

0 1 0

0 −9/2 1

 . (8.16)

Notice that these matrices are lower triangular matrices and only one element differs from the identity
matrix.

In general, the product of N −1 transformation matrices transforms a general linear equation to an upper
triangular equation.

M (N−1)M (N−2) · · ·M (2)M (1)Ax = M (N−1)M (N−2) · · ·M (2)M (1)b −→ Ux = b′ (8.17)

Note that the transformation matrix is applied to the both sides of the equation. In other words, we are
modifying b as well as A, which is a weak point of the Gaussian elimination method which we will discuss
later. Algorithm 9.1 shows the summary of the Gaussian forward elimination procedure.

Algorithm 8.1 Gaussian forward elimination

1. Consider a recursive equation A(n+1) = M (n)A(n) and b(n+1) = M (n)b(n), starting
with the original equation A(1)x = b(1) where A(1) is a N -by-N matrix.

2. M (n) is the same as the identity matrix except for the n-th column,
M

(n)
kn = −A(n)

kn /A
(n)
nn where k = n+ 1, · · · , N .

3. Apply the transformation to both A(n) and b(n). Note that the transformation affect
only the rows from n+ 1 to N of A(n) and b(n).

4. Increment n and repeat from step 2 until n = N .

200 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Although the method is simple and works fine for many cases, it fails when the matrix is close to singular.
There are better methods. We introduced the Gaussian elimination method for a pedagogical purpose since
similar ideas are used in other methods. More practical methods will be discussed later.

EXAMPLE 8.3

We solve Eq. (8.1) using the Gaussian elimination followed by the back substitution. Program 8.3
implements Algorithm 9.1. The following output shows the linear equation after Gaussian elimination is
applied. The matrix A is transformed to a upper triangular form and b is also transformed accordingly.
Then, the solution x is obtained from the transformed equation by the back substitution, which is in
agreement with the exact solution x = − 5

37 , y = 19
37 , z = 27

37 .

A=
3.00000 -1.00000 4.00000
0.00000 0.66667 -3.66667
0.00000 0.00000 18.50000

b=
2.00000

-2.33333
13.50000

x=
-0.13514
0.51351
0.72973

8.2.2 Pivoting

The Gaussian elimination method suffers from round-off errors, sometimes severely. To see the source of the
error, apply the Gaussian elimination to the following problem:

ϵx+ y + z = 1 ϵx+ y + z = 1 ϵx+ y + z = 1

x+ y = 2 1st−−−−−−−→
elimination

(
1 − 1

ϵ

)
y − 1

ϵ
z = 2 − 1

ϵ

ϵ→0−−−−−−→
round-off

−1
ϵ
y − 1

ϵ
z = −1

ϵ

x+ z = 3 −1
ϵ
y +

(
1 − 1

ϵ

)
z = 3 − 1

ϵ
−1
ϵ
y − 1

ϵ
z = −1

ϵ

where ϵ ≪ 1. Using the first equation, we eliminate x from the second and third equations. As ϵ → 0, 1
ϵ

becomes so large that computers cannot distinguish 1 − 1
ϵ

and −1
ϵ

due to round-off. Now the second and
third equations are identical and thus there is no unique solution. On the other hand, when ϵ = 0, the
solution does exist and it is x = 2, y = 0, z = 1. This example demonstrates the failure of the Gaussian
elimination.

Fortunately, there is a way to avoid such errors. We did not have to use the first equation to eliminate x.
Instead, use the second equation to eliminate x in two other equations. After swapping the first and second
rows, we apply the regular Gaussian elimination.

GAUSSIAN ELIMINATION 201

x+ y = 2 x+ y = 2 x+ y = 2

ϵx+ y + z = 1 1st−−−−−−−→
elimination

(1 − ϵ)y + z = 1 − 2ϵ 2nd−−−−−−−→
elimination

(1 − ϵ)y + z = 1 − 2ϵ

x+ z = 3 −y + z = 1 2 − ϵ

1 − ϵ
z = 2 − 3ϵ

1 − ϵ

ϵ→0−−−−−−→
round-off

x+ y = 2
y + z = 1

2z = 2

After the first step, we don’t see any extreme value. Now, we eliminate y using the second equation. If the
new coefficient to y happened to be very small, we need to swap the second and third equations to avoid the
round-off error. Since the coefficient to y is not small in this example, we don’t need to worry about it. We
now go ahead and eliminate y. The final expression takes an upper triangular form. When ϵ = 0, we obtain
the correct solution by the back substitution.

This algorithm of avoiding the round-off errors by rearranging the equations is known as pivoting. The
above example swapped two rows. This is known as partial pivoting. In some cases, interchanging both rows
and columns may be needed to achieve a desired accuracy. This is known as complete pivoting. We must
recall that when the matrix A is singular (the determinant of A is zero) Eq. (8.4) does not have a unique
solution. When A is near singular (the determinant is close to zero) the Gaussian elimination in general fails
even with pivoting. Then, we must resort to other method such as singular value decomposition (SVD)[2].

Algorithm 8.2 summarizes the so-called scaled partial pivoting method. The basic idea is that when we
eliminate a variable xn, we look for the row which has the largest coefficient to xn (the pivot element).
However, the absolute magnitude of the coefficients does not have significant meaning since each row can be
scaled by multiplying a constant without changing the solution. So, we normalize each row by the largest
coefficient in the row.

Algorithm 8.2 Scaled Partial Pivoting

1. Find a scale factor for each row. Si = maxj(|Aij |).

2. Staring with n = 1, repeat the following procedure up to n = N − 1.

3. Assume that n− 1 variables are already eliminated and the first n− 1 rows are already
upper triangular. The remaining submatrix is still not triangular. (See Fig. 8.1.) Now,
we eliminate xn.

4. Find a row j ≥ n such that |Ajn|/Sj ≥ |Akn|/Sk, (∀k ≥ n). This is the pivot row.

5. Move j-th row to the top of the submatrix. (Pivoting)

6. Apply the forward elimination to the row below the pivot row. After that, we have a
new A and b.

7. If n = N − 1, the elimination is completed. Otherwise, increment n and go to step 3.

202 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

A11 A12 A13 A14 A15

0

0

0

0

A22 A23 A24 A25

0

0

0

A33 A34 A35

A43 A44 A45

A53 A54 A55

Figure 8.1: After two steps of forward elimination, 3-by-3 submatrix remains non-triangular. To find the
next pivot, find the maximum of A33/S3, A43/S4, and A53/S5. The row carrying the maximum goes to the
top of the submatrix.

EXAMPLE 8.4

We solve Eq. (8.1) again but using partial pivoting this time. Program 8.4 will do it. The permutation
matrix P indicates which rows are swapped. The results show that the first elimination swapped the
first and second rows. Then, the second elimination interchanged the second and third rows. The
final triangular form of A is totally different from the one obtained without pivoting (see example 8.3).
However, the final solution x agrees with the previous example. Note that the final triangular matrix
in Example 8.3 contains a large element 18.5. However, the pivoting avoided the appearance of such a
large element.

A=
2.00000 0.00000 -1.00000
0.00000 3.00000 2.00000
0.00000 0.00000 6.16667

b=
-1.00000
3.00000
4.50000

P=
0 1 0
1 0 1
0 1 0

x=
-0.13514
0.51351
0.72973

GAUSSIAN ELIMINATION 203

8.2.3 Determinant

The determinant of a triangular matrix is simple. Just the product of the all diagonal is the determinant.
For example, an upper triangular matrix U has the determinant:

|U | =
N∏
i

Uii. (8.20)

Now, we show that the Gaussian elimination preserves the determinant. Using the transform matrices defined
in Eq. (8.17), the final upper triangular form U is given by

U = M (N−1)M (N−2) · · ·M (2)M (1)A (8.21)

and its determinant

|U | = |M (N−1)M (N−2) · · ·M (2)M (1)A| = |M (N−1)||M (N−2)| · · · |M (2)||M (1)||A| (8.22)

Noting that M (n) is a lower triangular matrix with a unit diagonal, its determinant is 1. Hence, |U | = |A|.
When pivoting is used,

|U | = |M (N−1)||P (N−1)||M (N−2)||P (N−2)| · · · |M (1)||P (1)||A| = (−1)p|A| (8.23)

where p is the number of pivoting. The proof is simple. If two rows are swapped |P (n)| = −1 and otherwise
it is |P (n)| = +1.

EXAMPLE 8.5

We calculate the determinant of the matrix in Eq. (8.2). By using the rule of Sarrus, its determinant is
37. Now, look at Eq. (8.14). The corresponding matrix take a upper triangular form:

3 −1 4

0 2/3 −11/3

0 0 37/2

 (8.24)

The product of the all diagonal elements is 3 × 2/3 × 37/2 = 37 which is the determinant.

8.2.4 Matrix Inversion

The Gaussian elimination cleverly solves equation Ax = b without deriving A−1. However, since we are able
to calculate x, there must be a way to find A−1. Indeed, the Gaussian elimination method can be used to
get the inverse. Consider N sets of the linear equations with unit vectors as b. Aij



x11

x21

x31

 =


1

0

0

 ,
 Aij



x12

x22

x32

 =


0

1

0

 ,
 Aij



x13

x23

x33

 =


0

0

1

 , (8.25)

204 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Each equation can be solved by the Gaussian elimination. Therefore, we have xij . Now, we can write the
set of equations in a single matrix equation Aij


 xij

 =

 Iij

 (8.26)

where Iij is an identity matrix. Therefore, the matrix x is the inverse of A. By performing Gaussian
elimination N times, we can find the inverse of a matrix. This method is known as Gauss-Jordan elimination.
Since this is based on the Gaussian elimination method, it may suffer from round-off error. Other methods
are usually used in practical applications. However, it is very useful to know the basic idea of Gauss-Jordan
method in order to develop other methods.

EXAMPLE 8.6

We calculate the inverse of matrix A in Eq (8.2)) using the Gaussian elimination. It is trivial to modify
the code in Example 8.4. Program 8.5 calculates the inverse and check the answer by calculating AA−1.
The output show that we recover the identity matrix and thus the inverse is accurate.

Invers of A=
0.08108 -0.10811 0.16216
0.37838 0.16216 -0.24324
0.02703 0.29730 0.05405

A Aˆ(-1)=
1.00000 0.00000 0.00000
0.00000 1.00000 -0.00000

-0.00000 0.00000 1.00000

8.3 LU Decomposition

While it is simple, the Gaussian elimination has various weakness. We reduced the chance of round-off error
by pivoting. Another issue arises when we want to solve the equation many times with the same A but
different b. We have to carry out the elimination for every different b even with the same A. For a large
system, that is annoying. Fortunately, there are better ways. LU decomposition[2] is one of them.

8.3.1 Decomposition Algorithm

Looking at Eq. (8.21) again. U = MA where M = M (N−1)M (N−2) · · ·M (1). Recall that U is upper
triangular and each M (n) is lower triangular. Now, using the properties of triangular matrices: (1) the
product of triangular matrices is again the same kind of triangular matrix. (2) the inverse of a triangular
matrix is again the same kind of triangular matrix. Hence, M is lower triangular and so is M−1. Let
L = M−1, we conclude that

A = LU (8.27)

LU DECOMPOSITION 205

which is called LU decomposition or LU factorization of A. If pivoting is used, the rows are shuffled.
Therefore,

PA = LU (8.28)

where P is a permutation matrix. Using the property of permutation, namely P−1 = P , we obtain a more
popular expression

A = PLU (8.29)

This is just another way to express the Gaussian elimination. However, this decomposition does not depend
of the right hand side b. You need to carry out the decomposition only once for A. This saves computer
time significantly if Ax = b has to be solved many times with different b.

MATLAB has a built-in function lu() to compute LU decomposition (See Example 8.7.) For other
languages, LAPACK includes LU decomposition routines. Actually MATLAB internally calls LAPACK
routines. Be reminded that any numerical algorithm has weakness. A blind use of “canned” routines is
dangerous. We should carefully check possible pitfalls whenever we use canned routines.

8.3.2 Linear equations

Now, we solve Ax = b using the LU decomposition. The equation is now PLUx = b or equivalently
LUx = Pb, which can be divided to two equations, Ly = Pb and Ux = y where y is an auxiliary vector.
The former equation can be solved for y easily by forward substitution. Then, solve the latter for x with
back substitution. Once L and U are computed for A, we can use them for different b with the same L and
U . That is a huge advantage.

EXAMPLE 8.7

Here is another attempt to solve Eq. (8.1). This time we use LU decomposition (built-in function in
MATLAB). The permutation matrix indicated that the second and third rows are swapped during the
decomposition procedure. The product PLU recovers the original A. The results agree perfectly with
the analytic answers.

206 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

L (Lower Triangular Matrix)
1.00000 0.00000 0.00000
0.00000 1.00000 0.00000
0.66667 0.22222 1.00000

U (Upper Triangular Matrix)
3.00000 -1.00000 4.00000
0.00000 3.00000 2.00000
0.00000 0.00000 -4.11111

P (Permutation Matrix)
1 0 0
0 0 1
0 1 0

P*L*U
3.00000 -1.00000 4.00000
2.00000 0.00000 -1.00000
0.00000 3.00000 2.00000

x=-0.13514, y=0.51351, z=0.72973

8.3.3 Matrix Inverse

It is straight forward to find the inverse of a matrix using LU decomposition. The idea is exactly the same
as Gauss-Jordin elimination. Substituting A = PLU and using P−1 = P , Eq. (8.26) becomes (LU)ij


 xij

 =

 Pij

 (8.30)

If Gaussian elimination is used, we have to repeat the elimination N times for a N × N matrix. With LU
decomposition, we use the elimination only once and we need to repeat only forward/back substitution.

8.3.4 Determinant

Calculation of the determinant is also straight forward. |A| = |P LU | = |P | |U | |L| = (−1)p|U | |L|. Here we
used |P | = (−1)p where p is the number of pivoting (the number of permutations). The determinant of U
and L are just the product of all diagonal elements. Thus,

|A| = (−1)p
N∏

i=1
Uii Lii (8.31)

EXAMPLE 8.8

Using the L and U obtained in Example 8.7, we find the determinant |A| = |PLU | = (−1) ∗ 3 ∗ 3 ∗
(−4.11111) = 36.99999 which is in agreement with exact value 37.

TRIDIAGONAL MATRICES 207

8.4 Tridiagonal Matrices

A tridiagonal matrix is defined by a sparse matrix

d1 u1 0

ℓ2 d2 u2

ℓ3 d3
. . .

. uN−1

0 ℓN dN


(8.32)

which is a popular matrix expression of one-dimensional Laplace operator. In Chapter 2, we evaluated the
second order derivative of a function f(x) at a single point x. Suppose that we want evaluate the second
order derivative at all points on a grid xi = x0 + ih, i = 1, · · · , N where h is a step length. Using the
standard method (2.14),

f ′′(xi) = f(xi+1) + f(xi−1) − 2f(xi)
h2 , i = 1, · · · , N (8.33)

where we assume that x0 = xN+1 = 0. We can express it simultaneously for all points in a matrix form.

f ′′1

f ′′2

f ′′2
...

f ′′N


= 1
h2



−2 1

1 −2 1

1 −2 . . .
. 1

1 −2





f1

f2

f3
...

fN


(8.34)

where fi = f(xi) and f ′′i = f ′′(xi). This indicates that the second-order derivative is an tridiagonal matrix
acting on a column vector f .

8.4.1 Linear Equations

If A in the linear equations eq8.4 is tridiagonal, the Gaussian elimination becomes rather simple. Since the
most of matrix elements are zero, the use of regular Gaussian elimination programs is not efficient. We can
actually write down the elimination process explicitly. Here is the backward elimination procedure:

ξN−1 = −ℓN

dN
, ξi−1 = −ℓi

di + uiξi
, i = N − 1, · · · , 2 (8.35)

ζN−1 = bN

dN
, ζi−1 = bi − uiζi

di + uiξi
, i = N − 1, · · · , 2 (8.36)

If the denominator is close to zero, pivoting is necessary. Now, the equation is lower triangular and the
solution is obtained by forward substitution:

x1 = b1 − u1ζ1
d1 + u1ξ1

, xi+1 = ξixi + ζi, i = 1, · · · , N − 1. (8.37)

208 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

8.4.2 Determinant and Inverse

We can also write down the explicit procedure for determinant and inverse. The following recursive equation

Dn = dnDn−1 − ℓn−1un−1Dn−2, D0 = 1 and D−1 = 0 (8.38)

converges to the determinant DN .
For the inverse of tridiagonal matrix, first we compute the following recursive equations,

ηn = ℓnηn−1 − dn−1un−1ηn−2, n = 1, 2, · · · , N (8.39)

starting with η0 = 1, η−1 = 0 and compute

ξn = anξn+1 − dnunξn+2, n = N,N − 1, · · · , 1 (8.40)

backward starting with ξN+1 = 1 and ξN+2 = 0. Then, the elements of the inverse matrix is given by

(A−1)ij =

(−1)i+jdi · · · dj−1ηi−1ξj+1/ηN i ≤ j

(−1)i+juj · · ·uj−1ηj−1ξi+1/ηN i > j
(8.41)

EXAMPLE 8.9

We want to solve the following equation.
1 2 0 0

2 1 2 0

0 3 1 3

0 0 3 1




x1

x2

x3

x4

 =


2

−1

1

3

 (8.42)

Program 8.7 first checks if this is not a singular problem by computing the determinant. If the determi-
nant is not zero, it solves the equation and check the numerical errors. Since the determinant is rather
large compared with the matrix elements, it is safe to ignore pivoting. The error of all solutions is quite
small.

Determinant -18
x= 1.000000 -0.500000 0.500000 0.833333
Eerror= 4.440892e-16 4.440892e-16 0.000000e+00 0.000000e+00

8.5 Solving Linear Equations by Minimization

The methods discussed above are strictly for the linear equations (8.4). There are quite different approaches
to solve the same linear equations. Although they are not very efficient for linear problems, they can be
extended to non-linear equations. Therefore, we introduce them here for the pedagogical purpose.

Consider a multivariate function
f(x) = 1

2xt Ax − btx (8.43)

SOLVING LINEAR EQUATIONS BY MINIMIZATION 209

where A is a N × N positive definite symmetric matrix and b and x are vectors of N dimension. The
superscript T represents transpose. Recall that atb is inner product between a and b. The function has a
unique minimum at x determined by

∇f(x) = Ax − b = 0 (8.44)

which is nothing but a linear equation.
Let us take it inversely. If we want to solve the linear equation (8.44), we just minimize Eq. (8.43) with

respect to x. If A is not symmetric nor positive definite, minimize the following function:

f(x) = 1
2xt AtAx −Atbtx (8.45)

This expression is essentially the same as Eq. (8.43) since it has a positive definite symmetric matrix AtA
and constant vector Atb. Furthermore, this function has a minimum at

At(Ax − b) = 0 (8.46)

which is equivalent to Eq. (8.4) since A is not singular.
There are many ways to minimize such a function. In the following we will discuss the steepest descent

and conjugate gradient methods.

8.5.1 Steepest Descent Method

To minimize the function value starting from an initial point x0, we need to find the direction in which the
function value decreases. Recalling that the gradient of the function gives the direction of the highest slope,

g0 ≡ −∇f(x0) = b −Ax0 (8.47)

provides the direction of the steepest descent. Do not miss the minus sign in front of the nabla operator.
Now, we move down the slope along the line specified by the steepest descent until we hit the bottom along
the line. This process is called line minimization. The new point is written as

x1 = x0 + λg0. (8.48)

where λ is a constant to be determined. The new gradient g1 at x1 must be orthogonal to the previous
gradient because we are already at the minimum in the direction of g0. Hence,

gt
1g0 = (bt − xt

1A
t)g0 = [bt − (xt

0 + λgt
0)At]g0 = (gt

0 − λgt
0A

t)g0 = 0 (8.49)

Solving this equation for λ, we find

λ = gt
0g0

gt
0Ag0

(8.50)

where we used the symmetric property At = A. Now the line minimization is completed. The new point
x1 is just a minimum on the line and not the minimum of the function yet. However, if the procedure is
repeated with x1 as a new stating point, the function value keeps decreasing and reaches the global minimum
of the function within a tolerance. The summary of the procedure is gicen in Algorithm 8.3.

210 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Algorithm 8.3 Steepest Descent Minimization

1. Starting with n = 0, repeat the following recursive process.

2. Evaluate the gradient vector gn = b −Axn.

3. If |gn| < tolerance, xn is the solution. Otherwise continue.

4. Calculate the step length λ = gt
ngn

gt
nAgn

.

5. Jump to a new point xn+1 = xn + λgn.

6. Increment n and go to step 2.

EXAMPLE 8.10

We solve a simple two-dimensional problem of Ax = b where

A =

4 1

1 3

 , b =

1

2

 (8.51)

Note that A is symmetric. The analytic solution is x1 = 1/11 and x2 = 7/11. We solve this problem
iteratively using the steepest descent minimization. The corresponding function to be minimized is

f(x) = 1
2xtAx − xtb (8.52)

Program 8.9 minimizes it with the steepest descent method. The contour plot in Fig. 8.2a shows the
function near the minimum. The trajectory of the steepest descent plotted in Fig 8.2a shows that after
a few line minimization, it is already very close to the minimum. In fact, it took only nine steps even
with a small tolerance 1 × 10−8. The result agrees well with the analytic solution.

Solution=(0.09092,0.63636)

8.5.2 Conjugate Gradient Method

The steepest descent method becomes inefficient when the trajectory is trapped in a narrow valley as shown
in Fig. 8.2c. For a quadratic system (8.43), there is an algorithm called conjugate gradient method[3] which
find the solution in exactly N iterations for N dimensional quadratic system. We again assume that A is
symmetric and positive definite. The conjugate gradient method utilizes the geometry of quadratic system
as summarized in Algorithm 8.4.

SOLVING LINEAR EQUATIONS BY MINIMIZATION 211

x
1

-1 0 1

x 2

-1

-0.5

0

0.5

1

1.5

2

f(x)
line minimization

(a) The steepest descent minimization of the 2D
quadratic system (Example 8.10). Fore steps are vis-
ible. More steps (not visible in the plot) are needed
to get sufficient accuracy.

x
1

-1 0 1

x 2

-1

-0.5

0

0.5

1

1.5

2

f(x)
CG steps

(b) The conjugate gradient minimization of the 2D
quadratic system (Example 8.11. By construction, it
needs only two steps to find the solution.

x
1

-3
-2

-1
0

1

x
2

0 2 4 6 8 10 12 14 16 18 20

(c) When the function has a narrow valley like this case, the steepest descent
method takes a long zig-zag path, making it very inefficient.

(d) Illustration of steepest descent/conjugate gradient methods.

212 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

Algorithm 8.4 Conjugate Gradient Method

1. Start with an initial guess x0 and n = 0.

2. Set the initial residual vector: r0 = b −Ax0

3. Set the initial conjugate direction: p0 = r0.

4. Evaluate the step size: α = rt
nrn

pt
nApn

.

5. Update the point: xn+1 = xn + αpn.

6. Update the residual vector: rn+1 = rn − αApn.

7. If |rn+1| < tolerance, xn+1 is the solution. Otherwise continue.

8. Evaluate the other step size: β =
rt

n+1rn+1

rt
nrn

.

9. Update the conjugate vector: pn+1 = rn+1 + βpn.

10. Increment n and go to step 4.

EXAMPLE 8.11

We solve the same problem as Example 8.10 again but with the conjugate gradient method. Program
8.10 implements the above Algorithm and solve the problem. Figure 8.2b shows that two steps of line
minimization hits the minimum as expected. The solution is in a good agreement with the exact one.

Solution=(0.09089,0.63638)

8.6 Applications in Physics

8.6.1 Multiloop circute: Kirchhoff rules

Find currents Ii, i = 1, 2, 3 in the circuit shown in Figure.

Applying the Kirchhoff rules, we find a set of equations for the
currents

I1 − I2 − I3 = 0
3I1 + 2I2 = 3

−2I2 + 4I3 = 3

APPLICATIONS IN PHYSICS 213

or in a matrix form AI = b with

A =


1 −1 −1

3 2 0

0 −2 4

 , b =


0

3

3



The code used in Example 8.4 can be used. The answer is I1 = 0.92308 A, I2 = 0.11538 A, I3 = 0.80769 A.

8.6.2 Coupled Harmonic Oscillators in a Uniform Gravity

Four particles of mas mi (i = 1, · · · , 4) are linked by four springs and the whole system
is hanged from the ceiling as shown in Figure. The natural length of the springs is
ℓ1 = ℓ3 = 0.1m, ℓ2 = ℓ4 = 0.2 and their spring constants are k1 = k4 = 100N/m and
k2 = k3 = 150N/m. The mass of particles is m1 = m2 = 0.15 kg, m3 = m4 = 0.30 kg
We want to know the distance between particles when the system is at a mechanical
equilibrium. The force on each particles are given by

F1 = k1x1 − k2x2 −m1g (8.53a)
F2 = k2x2 − k3x3 −m2g (8.53b)
F3 = k3x3 − k4x4 −m3g (8.53c)
F4 = k4x4 −m2g . (8.53d)

k1

k 2

k3

k 4

m1

m2

m3

m4

where xi is the stretch of each spring from its natural length. At the mechanical equilibrium, the force on
each particle must vanish. Hence, Fi = 0 for all i. Writing it in matrix form Ax = b,

A =


k1 −k2 0 0

0 k2 −k3 0

0 0 k3 −k4

0 0 0 k4

 , b =


m1g

m2g

m3g

m4g

 (8.54)

The matrix is already upper triangular and thus we can solve it immediately using back substitution. Taking
into account the natural length, the distance between particles i − 1 and i is di−1,i = ℓi + xi. We can use
Program 8.1 to solve this problem. The answer is d12 = 0.249000, d23 = 0.139200, d34 = 0.229400.

8.6.3 Determinant of Tree Graphs: Graham-Pollack theorem

Consider a graph shown in Fig 8.3. This graph consist of n = 10 vertices and 9 edges. When there is no loop
in it, the graph is called tree. A tree of n vertices has n − 1 edges. We consider distance between vertices.
The distance between vertices v2 and v9 is 3 since there are three edges between them. The distance of

214 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

v1

v 2
v3

v 4

v5

v6
v7

v8

v9

v10

Figure 8.3: A small example of tree graph. It has 10 vertices and 9 edges.However, there is no loop.

between vi and vj forms a distance matrix Dij . The example graph shown in Fig 8.3 has a distance matrix

D =



0 1 2 3 4 4 3 4 4 5

1 0 1 2 3 3 2 3 3 4

2 1 0 1 2 2 1 2 2 3

3 2 1 0 1 1 2 3 3 4

4 3 2 1 0 2 3 4 4 5

4 3 2 1 2 0 3 4 4 5

3 2 1 2 3 3 0 1 1 2

4 3 2 3 4 4 1 0 2 3

4 3 2 3 4 4 1 2 0 1

5 4 3 4 5 5 2 3 1 0



(8.55)

In 1971, Graham and Pollak obtained a remarkable formula[4, 5]

det(D) = −(n− 1)(−2)n−2 (8.56)

which is independent of the structure of the tree. For the above distance matrix, det(D) = −9 · (−2)8 =
−2304. We now check it by numerical calculation. Program 8.8 calculates the determinant of the distance
matrix using Gaussian elimination with partial pivoting. The output is

Gaussian Elimination: -2304.000000
Graham-Pollak: -2304.000000

The formula works!

PROBLEMS 215

8.7 Problems

8.1 Orthogoinal matrices
A rotation matrix R rotates points in a coordinate space. Accordingly, any vector a is rotated as b = Ra.
Since rotation does not changes the norm of vector, btb = atRtRa = ata where t indicates transpose.
Hence, RtR = I where I is the identity matrix. This means the rotation matrix is an orthogonal matrix
defined by R−1 = Rt. A rotation of −74◦ around the axes (-1/3,2/3,2/3) is given by a rotation matrix

R =


0.36 0.48 −0.80

−0.80 0.60 0

0.48 0.64 0.60

 . (8.57)

Show that this matrix is indeed orthogonal by comparing R−1 and Rt. You may use build-in functions
in MATLAB or Numpy.

8.2 Three particles are chained by four springs as shown in Fig. Two
springs at the ends are fixed to the walls. The walls are separated
by distance d = 8. The natural length of the springs are ℓ1 = ℓ3 =
1, ℓ2 = ℓ4 = 2 and their spring constants are k1 = k4 = 2 and
k2 = k3 = 4. Let di be the length of the i-th spring. The potential
energy of the system is defined by U =

∑
i

1
2ki(di − ℓi)2. Letting

the position of the particles xi, i = 1, · · · , 4.

1 2 3
k 2 k 3k 1 k 4

U = k1
2 (x1 − ℓ1)2 + k2

2 (x2 − x1 − ℓ2)2 + k3
2 (x3 − x2 − ℓ3)2 + k4

2 (d− x3 − ℓ4)2 (8.58)

Find the length of the springs at mechanical equilibrium. Yu may use built-in functions such as linsolve()
in MATLAB.
[Solve ∂

∂x1
U(x1, x2, x3) = 0, ∂

∂x2
U(x1, x2, x3) = 0, and ∂

∂x3
U(x1, x2, x3) = 0 for x1, x2, and x3.]

216 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

MATLAB Source Codes

Program 8.1

%**
%* Example 8.1 *
%* filename: ch08pr01.m *
%* program listing number: 8.1 *
%* *
%* This program checks the properties of triangular matrices. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/31/2015. *
%**
clear all;

% define matrices A and B
A=[[2, 0, 0];[-1,1,0];[3,2,-1]]
B=[[1, 0, 0];[2,4,0];[-1,-2,3]]

C=A*B;
fprintf('Mutilication: A*B\n')
% MATLAB print column first. Thus you need to print its transpose
fprintf('%3d %3d %3d\n',C')
fprintf('\nInverse of A\n')
D=inv(A);
fprintf('%15.4e %15.4e %15.4e\n',D')

E1=A(1,1)*A(2,2)*A(3,3);
E2=det(A);
fprintf('\nProducts of the diagonal elements = %d\n',E1)
fprintf('Determinant by MATLAB = %d\n',E2)

▲▲▲

Program 8.2

%**
%* Example 8.2 *
%* filename: ch08pr02.m *
%* program listing number: 8.2 *
%* *
%* This program solves a upper-triangular linear equation with *
%* the backsubstitution method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% define matrix A and vector b
A=[[3, -1, 4];[0,2,-1];[0,0,2]];
b=[-1;-2;4];

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end

PROBLEMS 217

x(i) = (b(i)-Ax)/A(i,i);
end

fprintf('x=%.1f, y=%.1f, z=%.1f\n',x)

▲▲▲

Program 8.3
%**
%* Example 8.3 *
%* filename: ch08pr03.m *
%* program listing number: 8.3 *
%* *
%* This program solves a simple linear equation with the Gaussian *
%* eliminationa and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A=[[3,-1,4];[2,0,-1];[0,3,2]];
b=[2;-1;3];

%forward elimination
for n=1:N-1

for i=n+1:N
M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i)=M*b(n)+b(i);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end
x(i) = (b(i)-Ax)/A(i,i);

end

% result
fprintf('\nA=\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nb=\n')
fprintf('%8.5f\n',b)
fprintf('\nx=\n')
fprintf('%8.5f\n',x)

▲▲▲

Program 8.4
%**
%* Example 8.4 *
%* filename: ch08pr04.m *
%* program listing number: 8.4 *

218 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* *
%* This program solves a simple linear equation with the Gaussian *
%* elimination with partial pivoting and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A=[[3,-1,4];[2,0,-1];[0,3,2]];
b=[2;-1;3];
P=eye(N,N); % permutation matrix is initially an identity matrix

% Find scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1
% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
TMP=b(n);
b(n)=b(j);
b(j)=TMP;
% Record the permutation
P(n,n)=0; P(j,j)=0;
P(n,j)=1; P(j,n)=1;

end
% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i)=M*b(n)+b(i);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax=0;
for j=i+1:3

Ax = Ax+A(i,j)*x(j);
end
x(i) = (b(i)-Ax)/A(i,i);

PROBLEMS 219

end

% result
fprintf('\nA=\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nb=\n')
fprintf('%8.5f\n',b)
fprintf('\nP=\n')
fprintf('%i %i %i\n',P')
fprintf('\nx=\n')
fprintf('%8.5f\n',x)

▲▲▲

Program 8.5
%**
%* Example 8.6 *
%* filename: ch08pr05.m *
%* program listing number: 8.5 *
%* *
%* This program calculates the inverse of a given matrix using *
%* Gaussi-Jordin methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Set a linear equation
N=3;
A0=[[3,-1,4];[2,0,-1];[0,3,2]];
A=A0; % keep the original matrix
b=eye(N,N);

% scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1
% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
TMP2(1:N) = b(n,:);
b(n,:)=b(j,:);
b(j,:)=TMP2(1:N);

end

220 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);
b(i,:)=M*b(n,:)+b(i,:);

end
A(n+1,n)=0;

end

% backsubstitution
for i=3:-1:1

Ax(1:N)=0;
for j=i+1:3

for k=1:N
Ax(k) = Ax(k)+A(i,j)*x(j,k);

end
end
for j=1:N

x(i,j) = (b(i,j)-Ax(j))/A(i,i);
end

end

% result
fprintf('\nInvers of A=\n')
fprintf('%8.5f %8.5f %8.5f\n',x)
fprintf('\nA Aˆ(-1)=\n')
fprintf('%8.5f %8.5f %8.5f\n',A0*x)

▲▲▲

Program 8.6
%**
%* Example 8.7 *
%* filename: ch08pr06.m *
%* program listing number: 8.6 *
%* *
%* This program solves a simple linear equation with LU decomposition.*
%* MATLAB function lu() is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;

% Define a matrix
A=[[3, -1, 4];[2, 0, -1];[0, 3, 2]];
b=[2;-1;3];

% LU dcomposition
[L U P]=lu(A);

% Rcover the original matrix
S=P*L*U;

% Show the results
fprintf('\nA (Original Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',A')
fprintf('\nL (Lower Triangular Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',L')
fprintf('\nU (Upper Triangular Matrix)\n')
fprintf('%8.5f %8.5f %8.5f\n',U')

PROBLEMS 221

fprintf('\nP (Permutation Matrix)\n')
fprintf('%i %i %i\n',P')
fprintf('\nP*L*U\n')
fprintf('%8.5f %8.5f %8.5f\n',S')

b = P*b;
% forward substition
for i=1:3

Ly=0;
for j=1:i-1

Ly = Ly+L(i,j)*y(j);
end
y(i) = (b(i)-Ly)/L(i,i);

end

% backsubstitution
for i=3:-1:1

Ux=0;
for j=i+1:3

Ux = Ux+U(i,j)*x(j);
end
x(i) = (y(i)-Ux)/U(i,i);

end

fprintf('\nx=%.5f, y=%.5f, z=%.5f\n',x)

▲▲▲

Program 8.7
%**
%* Example 8.9 *
%* filename: ch08pr07.m *
%* program listing number: 8.7 *
%* *
%* This program solves a tridiagonal system with backward elimination.*
%* Then, find solution by forward substitution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/01/2015. *
%**
clear all

% Define matrices. No need to use the full matrix.
d=[2,3,4,3]; % diagonal elements
u=[2,3,3,0]; % above diagonal
l=[0,2,3,3]; % below diagonal
b=[1,2,3,4]; % right hand side

% Calculation of determinant
D(1)=d(1);
D(2)=d(2)*D(1)-l(1)*u(1);
for i=3:4

D(i)=d(i)*D(i-1)-l(i-1)*u(i-1)*D(i-2);
end

fprintf('Determinant %d\n',D(4))
if D(4) == 0

fprintf('Singular')
stop

end

222 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

% Decomposition by backword elimination
Y(3)=-l(4)/d(4);
Z(3)= b(4)/d(4);
for i=3:-1:2

Y(i-1)=-l(i)/(d(i)+u(i)*Y(i));
Z(i-1)=(b(i)-u(i)*Z(i))/(d(i)+u(i)*Y(i));

end

% Forward substitution
x(1)=(b(1)-u(1)*Z(1))/(d(1)+u(1)*Y(1));
for i=1:3

x(i+1)=Y(i)*x(i)+Z(i);
end

% Answer
fprintf('x= %f %f %f %f\n',x)

% Check the errors.
s(1)=d(1)*x(1)+u(1)*x(2)-b(1);
s(2)=l(2)*x(1)+d(2)*x(2)+u(2)*x(3)-b(2);
s(3)=l(3)*x(2)+d(3)*x(3)+u(3)*x(4)-b(3);
s(4)=l(4)*x(3)+d(4)*x(4)-b(4);
fprintf('Error= %e %e %e %e\n',s)

▲▲▲

Program 8.8
%**
%* Section 8.6.3 *
%* filename: ch08pr08.m *
%* program listing number: 8.8 *
%* *
%* This program calculate the determinant of distance matrix for *
%* a tree graph using Gaussian elimination with partial pivoting. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/01/2015. *
%**
clear all;

% Set a linear equation
N=10;
A=[[0 , 1 , 2 , 3 , 4 , 4 , 3 , 4 , 4 , 5];...

[1 , 0 , 1 , 2 , 3 , 3 , 2 , 3 , 3 , 4];...
[2 , 1 , 0 , 1 , 2 , 2 , 1 , 2 , 2 , 3];...
[3 , 2 , 1 , 0 , 1 , 1 , 2 , 3 , 3 , 4];...
[4 , 3 , 2 , 1 , 0 , 2 , 3 , 4 , 4 , 5];...
[4 , 3 , 2 , 1 , 2 , 0 , 3 , 4 , 4 , 5];...
[3 , 2 , 1 , 2 , 3 , 3 , 0 , 1 , 1 , 2];...
[4 , 3 , 2 , 3 , 4 , 4 , 1 , 0 , 2 , 3];...
[4 , 3 , 2 , 3 , 4 , 4 , 1 , 2 , 0 , 1];...
[5 , 4 , 3 , 4 , 5 , 5 , 2 , 3 , 1 , 0]];

P=eye(N,N); % permutation matrix is initially an identity matrix

% Find scale factors
for i=1:N

S(i)=max(A(i,:));
end

for n=1:N-1

PROBLEMS 223

% Look for the pivot row
j=n;
Amax=abs(A(n,n)/S(n));
for i=n:N

AS=abs(A(i,n)/S(i));
if AS > Amax

j=i;
Amax = AS;

end
end
% Carry out pivoting
if j ˜= n

for i=n:N
TMP=A(n,i);
A(n,i)=A(j,i);
A(j,i)=TMP;

end
% Record the permutation
P(n,n)=0; P(j,j)=0;
P(n,j)=1; P(j,n)=1;

end
% Gaussian elimination
for i=n+1:N

M=-A(i,n)/A(n,n);
A(i,n+1:N)=M*A(n,n+1:N)+A(i,n+1:N);

end
A(n+1,n)=0;

end

p=sum(sum(P))
D=(-1)ˆp;
for i=1:10

D=D*A(i,i);
end
D_GP=-(N-1)*(-2)ˆ(N-2);
fprintf('Gaussian Elimination: %f\n',D)
fprintf(' Graham-Pollak: %f\n',D_GP)

▲▲▲

Program 8.9
%**
%* Example 8.10 *
%* filename: ch08pr09.m *
%* program listing number: 8.9 *
%* *
%* This program solves a 2x2 linear equation by the steepest descent *
%* minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;
A=[[4,1];[1,3]];
b=[1;2];
c=[-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1];
tol = 1e-8;

% contour plot of the cost function
x=linspace(-1,1.2);
y=linspace(-1,2);

224 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

[X,Y]=meshgrid(x,y);
N=size(X,2);
M=size(Y,2);
for i=1:N

for j=1:M
Z(i,j) = 0.5*(X(i,j)ˆ2*A(1,1)+(A(1,2)+A(2,1))*X(i,j)*Y(i,j)...

+A(2,2)*Y(i,j)ˆ2) - X(i,j)*b(1)-Y(i,j)*b(2);
end

end

contour(X,Y,Z,c);
hold on

% steepest descent with line minimization
n=1;
x=[1;0.5]; % starting point
u(1)=x(1);
v(1)=x(2);
g = A*x-b;
gg=g'*g;
while abs(gg)>tol

n=n+1;
lambda = gg/(g'*A*g);
x = x - lambda * g;
u(n)=x(1);
v(n)=x(2);
g = A*x-b;
gg = g'*g;

end

fprintf('Solution=(%.5f,%.5f)\n',x)

p=plot(u,v);
set(p,'linewidth',2,'color','black')
axis equal tight
xlabel(texlabel('x_1'),'fontsize',14)
ylabel(texlabel('x_2'),'fontsize',14)

hold off

▲▲▲

Program 8.10
%**
%* Example 8.11 *
%* filename: ch08pr10.m *
%* program listing number: 8.10 *
%* *
%* This program solves a 2x2 linear equation by the conjugate *
%* gradient minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**
clear all;
A=[[4,1];[1,3]];
b=[1;2];
c=[-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1];
tol = 1e-8;

% contour plot of the cost function

PROBLEMS 225

x=linspace(-1,1.2);
y=linspace(-1,2);
[X,Y]=meshgrid(x,y);
N=size(X,2);
M=size(Y,2);
for i=1:N

for j=1:M
Z(i,j) = 0.5*(X(i,j)ˆ2*A(1,1)+(A(1,2)+A(2,1))*X(i,j)*Y(i,j)...

+A(2,2)*Y(i,j)ˆ2) - X(i,j)*b(1)-Y(i,j)*b(2);
end

end

contour(X,Y,Z,c);
hold on

% conjugate gradient method
n=1;
x=[1;0.5]; % starting point
u(1)=x(1);
v(1)=x(2);
r=b- A*x;
p=r;
rr=r'*r;
while abs(rr)>tol

n=n+1;
alpha = rr/(r'*A*r);
x = x + alpha*p;
u(n)=x(1);
v(n)=x(2);
r1=b-A*x;
rr1=r1'*r1;
beta=rr1/rr;
r=r1;
rr=rr1;
p=r+beta*p;

end

fprintf('Solution=(%.5f,%.5f)\n',x)

p=plot(u,v);
set(p,'linewidth',2,'color','black')
axis equal tight
xlabel(texlabel('x_1'),'fontsize',14)
ylabel(texlabel('x_2'),'fontsize',14)
legend('f(x)','CG steps');
hold off

▲▲▲

Python Source Codes

Program 8.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

226 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* Example 8.1 *
%* filename: ch08pr01.m *
%* program listing number: 8.1 *
%* *
%* This program checks the properties of triangular matrices. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/31/2015. *
%**
"""
import numpy as np

define matrices A and B (do not use array)
A=np.matrix([[2, 0, 0],[-1,1,0],[3,2,-1]])
B=np.matrix([[1, 0, 0],[2,4,0],[-1,-2,3]])

print("A*B")
print(A*B)

print('\nInverse of A')
print(np.linalg.inv(A))

print("\nDeterminant of A={0:7.5f}".format(np.linalg.det(A)))

▲▲▲

Program 8.2

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.2 *
%* filename: ch08pr02.py *
%* program listing number: 8.2 *
%* *
%* This program solves a upper-triangular linear equation with *
%* the backsubstitution method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/06/2017. *
%**
"""
import numpy as np

define matrix A and vector b
A=np.matrix([[3, -1, 4],[0,2,-1],[0,0,2]])
b=np.matrix([[-1],[-2],[4]])
x=b
backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

x[i] = (b[i]-Ax)/A[i,i]

print(x)

▲▲▲

Program 8.3

PROBLEMS 227

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.3 *
%* filename: ch08pr03.py *
%* program listing number: 8.3 *
%* *
%* This program solves a simple linear equation with the Gaussian *
%* eliminationa and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/06/2017. *
%**
"""
import numpy as np

Set a linear equation
N=3;
A=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
b=np.matrix.transpose(np.matrix([2.,-1.,3.]))
x=np.matrix.transpose(np.matrix(np.zeros(N)))

#forward elimination
for n in range(0,N-1):

for i in range(n+1,N):
M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

x[i] = (b[i]-Ax)/A[i,i]

result
print('\nA=\n')
print(A)
print('\nb=\n')
print(b)
print('\nx=\n')
print(x)

▲▲▲

Program 8.4

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.4 *
%* filename: ch08pr04.pu *
%* program listing number: 8.4 *

228 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

%* *
%* This program solves a simple linear equation with the Gaussian *
%* elimination with poartial pivoting and backsubstitution methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""

Set a linear equation
N=3;
A=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
b=np.matrix.transpose(np.matrix([2.,-1.,3.]))
x=np.matrix.transpose(np.matrix(np.zeros(N)))
permutation matrix must be initially an identity matrix
P=np.matrix(np.identity(3,dtype=int))
S=np.zeros(3)

Find scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n :

for i in range(n,N) :
TMP=A.item(n,i)
A[n,i]=A.item(j,i)
A[j,i]=TMP

TMP=b.item(n)
b[n]=b.item(j)
b[j]=TMP
Record the permutation
P[n,n]=P[j,j]=0
P[n,j]=P[j,n]=1

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

backsubstitution
for i in range(2,-1,-1):

Ax=0.0
for j in range(i+1,3):

Ax = Ax+A[i,j]*x[j]

PROBLEMS 229

x[i] = (b[i]-Ax)/A[i,i]

result
print('\nA=\n')
print(A)
print('\nb=\n')
print(b)
print('\nP=\n')
print(P)
print('\nx=\n')
print(x)

▲▲▲

Program 8.5

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.5 *
%* filename: ch08pr05.py *
%* program listing number: 8.5 *
%* *
%* This program calculates the inverse of a given matrix using *
%* Gaussi-Jordin methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np

Set a linear equation
N=3
A0=np.matrix([[3.,-1.,4.],[2.,0.,-1.],[0.,3.,2.]])
A=np.identity(N)
A[:,:]=A0[:,:]
b=np.matrix(np.identity(N)) # permutation matrix is initially an identity matrix
x=np.matrix(np.identity(N))
S=np.zeros(N)
TMP2=np.zeros(N)

scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n:

for i in range(n,N):

230 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

TMP=A[n,i]
A[n,i]=A[j,i]
A[j,i]=TMP

TMP2[:]=b[n,:]
b[n,:]=b[j,:]
b[j,:]=TMP2[:]

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i,:]=M*b[n,:]+b[i,:]

A[n+1,n]=0.0

backsubstitution
Ax=np.zeros(N)
for i in range(N-1,-1,-1):

Ax=np.zeros(N)
for j in range(i+1,N):

for k in range(0,N):
Ax[k] = Ax[k]+A.item(i,j)*x[j,k]

x[i,:] = (b[i,:]-Ax[:])/A[i,i]

result
print('\nInvers of A=')
print(x)
print('\nA Aˆ(-1)=')
print(A0*x)

▲▲▲

Program 8.6

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.6 *
%* filename: ch08pr06.py *
%* program listing number: 8.6 *
%* *
%* This program solves a simple linear equation with LU decomposition.*
%* MATLAB function lu() is used. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""

import numpy as np
import scipy.linalg as la

Define a matrix
A=np.matrix([[3., -1., 4.],[2., 0., -1.],[0., 3., 2.]])
b=np.matrix([2.,-1.,3.]).transpose()
x=np.matrix(np.zeros(3)).transpose()
y=np.matrix(np.zeros(3)).transpose()

LU dcomposition

PROBLEMS 231

P, L, U = la.lu(A)
P=np.matrix(P)
U=np.matrix(U)
L=np.matrix(L)

Rcover the original matrix
S=P*L*U
Show the results
print('\nA (Original Matrix)')
print(A)
print('\nL (Lower Triangular Matrix)')
print(L)
print('\nU (Upper Triangular Matrix)')
print(U)
print('\nP (Permutation Matrix)')
print(P)
print('\nP*L*U')
print(S)

b = P*b
forward substition
for i in range(0,3):

Ly=0.0
for j in range(0,i):

Ly = Ly+L[i,j]*y[j]

y[i] = (b[i]-Ly)/L[i,i]

backsubstitution
for i in range(2,-1,-1):

Ux=0.0
for j in range(i+1,3):

Ux = Ux+U[i,j]*x[j]

x[i] = (y[i]-Ux)/U[i,i]

print('\nSolution x')
print(x)

▲▲▲

Program 8.7

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.7 *
%* filename: ch08pr07.py *
%* program listing number: 8.7 *
%* *
%* This program solves a tridiagonal system with backward elimination.*
%* Then, find solution by forward substitution. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np

Define matrices. No need to use the full matrix.
d=[2,3,4,3] # diagonal elements

232 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

u=[2,3,3,0] # above diagonal
l=[0,2,3,3] # below diagonal
b=[1,2,3,4] # right hand side
D = np.zeros(4)
Y = np.zeros(4)
Z = np.zeros(4)
s = np.zeros(4)
x = np.zeros(4)
Calculation of determinant
D[0]=d[0]
D[1]=d[1]*D[0]-l[0]*u[0]
for i in range(2,4):

D[i]=d[i]*D[i-1]-l[i-1]*u[i-1]*D[i-2]

print('Determinant {0:8.3f}='.format(D[3]))
if D[3] == 0:

exit('Singular')

Decomposition by backword elimination
Y[2]=-l[3]/d[3]
Z[2]= b[3]/d[3]
for i in range(2,0,-1):

Y[i-1]=-l[i]/(d[i]+u[i]*Y[i])
Z[i-1]=(b[i]-u[i]*Z[i])/(d[i]+u[i]*Y[i])

Forward substitution
x[0]=(b[0]-u[0]*Z[0])/(d[0]+u[0]*Y[0])
for i in range(0,3):

x[i+1]=Y[i]*x[i]+Z[i]

Answer
print('Solution x')
print(x)

Check the errors.
s[0]= d[0]*x[0]+u[0]*x[1]-b[0]
s[1]=l[1]*x[0]+d[1]*x[1]+u[1]*x[2]-b[1]
s[2]=l[2]*x[1]+d[2]*x[2]+u[2]*x[3]-b[2];
s[3]=l[3]*x[2]+d[3]*x[3]-b[3]
print('Error')
print(s)

▲▲▲

Program 8.8

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 8.6.3 *
%* filename: ch08pr08.py *
%* program listing number: 8.8 *
%* *
%* This program calculate the determinant of distance matrix for *
%* a tree graph using Gaussian elimination with partial pivoting. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**

PROBLEMS 233

"""
import numpy as np

Set a linear equation
N=10
A=[[0. , 1. , 2. , 3. , 4. , 4. , 3. , 4. , 4. , 5.],

[1. , 0. , 1. , 2. , 3. , 3. , 2. , 3. , 3. , 4.],
[2. , 1. , 0. , 1. , 2. , 2. , 1. , 2. , 2. , 3.],
[3. , 2. , 1. , 0. , 1. , 1. , 2. , 3. , 3. , 4.],
[4. , 3. , 2. , 1. , 0. , 2. , 3. , 4. , 4. , 5.],
[4. , 3. , 2. , 1. , 2. , 0. , 3. , 4. , 4. , 5.],
[3. , 2. , 1. , 2. , 3. , 3. , 0. , 1. , 1. , 2.],
[4. , 3. , 2. , 3. , 4. , 4. , 1. , 0. , 2. , 3.],
[4. , 3. , 2. , 3. , 4. , 4. , 1. , 2. , 0. , 1.],
[5. , 4. , 3. , 4. , 5. , 5. , 2. , 3. , 1. , 0.]]

A=np.matrix(A)
P=np.matrix(np.identity(N),dtype=int) # permutation matrix
b=np.matrix(np.zeros(N)).transpose()

S=np.zeros(N)
Find scale factors
for i in range(0,N):

S[i]=A[i,:].max()

for n in range(0,N-1):
Look for the pivot row
j=n
Amax=abs(A[n,n]/S[n])
for i in range(n,N):

AS=abs(A[i,n]/S[i])
if AS > Amax:

j=i
Amax = AS

Carry out pivoting
if j != n :

for i in range(n,N):
TMP=A[n,i]
A[n,i]=A[j,i]
A[j,i]=TMP

TMP=np.asscalar(b[n])
b[n]=b[j]
b[j]=TMP

Record the permutation
P[n,n]=P[j,j]=0
P[n,j]=P[j,n]=1

Gaussian elimination
for i in range(n+1,N):

M=-A[i,n]/A[n,n]
A[i,n+1:N]=M*A[n,n+1:N]+A[i,n+1:N]
b[i]=M*b[n]+b[i]

A[n+1,n]=0.0

p=P.sum()
D=(-1)**p
for i in range(0,N):

234 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

D=D*A[i,i]

D_GP=-(N-1)*(-2)**(N-2);
print('Gaussian Elimination: {0:f}'.format(D))
print(' Graham-Pollak: {0:d}'.format(D_GP))

▲▲▲

Program 8.9

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.10 *
%* filename: ch08pr09.py *
%* program listing number: 8.9 *
%* *
%* This program solves a 2x2 linear equation by the steepest descent *
%* minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

A=np.matrix([[4.,1.],[1.,3.]])
b=np.matrix([1.,2.]).transpose()

steepest descent with line minimization

kmax=1000
tol = 1e-8
x=np.matrix([1,0.5]).transpose() # starting point
u=np.zeros(kmax)
v=np.zeros(kmax)
u[0]=np.asscalar(x[0]) # In numpy, a column vector must be
v[0]=np.asscalar(x[1]) # treated as matrix of (Nx1).

g = A*x-b;
gg=np.asscalar(g.transpose()*g)

n=0
while abs(gg)>tol and n<kmax:

n+=1
lam = gg/np.asscalar(g.transpose()*A*g)
x = x - lam * g
u[n]=np.asscalar(x[0])
v[n]=np.asscalar(x[1])
g = A*x-b
gg = np.asscalar(g.transpose()*g)

print('\nSolution=({0:f},{1:f})'.format(x.item(0),x.item(1)))

contour plot of the cost function
plt.figure(figsize=(5,6))
delta = 0.025
x = np.arange(-1.0, 1.2, delta)

PROBLEMS 235

y = np.arange(-1.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
c=np.array([-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1])

N=x.size
M=y.size
Z=np.zeros((M,N))

for i in range(0,M):
for j in range(0,N):

Z[i,j] = 0.5*(X[i,j]**2*A[0,0]+(A[0,1]+A[1,0])*X[i,j]*Y[i,j]
+A[1,1]*Y[i,j]**2) - X[i,j]*b[0]-Y[i,j]*b[1]

CS = plt.contour(X, Y, Z, c)
plt.clabel(CS, inline=1, fontsize=10)
plt.xlim(-1.0,1.2)
plt.ylim(-1.0,2.0)
plt.axes().set_aspect('equal', 'datalim')

plot the trajectory
plt.plot(u[0:n+1],v[0:n+1],'-r',linewidth=2)
plt.xlabel(r'x_1',fontsize=14)
plt.ylabel(r'x_2',fontsize=14)
plt.title('Steepest Descent Minimization')

plt.show()

▲▲▲

Program 8.10

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 8.11 *
%* filename: ch08pr10.py *
%* program listing number: 8.10 *
%* *
%* This program solves a 2x2 linear equation by the conjugate *
%* gradient minimization. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 02/08/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

A=np.matrix([[4.,1.],[1.,3.]])
b=np.matrix([1.,2.]).transpose()
p=np.matrix([0.,0.]).transpose()
r=np.matrix([0.,0.]).transpose()
r1=np.matrix([0.,0.]).transpose()

tol = 1e-8;

conjugate gradient method
kmax=1000
tol = 1e-8
x=np.matrix([1,0.5]).transpose() # starting point

236 MATRIX I: LINEAR ALGEBRAIC EQUATIONS

u=np.zeros(kmax)
v=np.zeros(kmax)
u[0]=x[0,0] # In numpy, a column vector must be
v[0]=x[1,0] # treated as matrix of (Nx1).

r=b-A*x
p[:]=r[:]
rr=np.asscalar(r.transpose()*r)
n=0
while abs(rr)>tol and n<kmax:

n+=1
alpha = rr/np.asscalar(r.transpose()*A*r)
x = x + alpha*p
u[n]=x.item(0) # In numpy, a column vector must be
v[n]=x.item(1) # treated as matrix of (Nx1).
r1=b-A*x
rr1=np.asscalar(r1.transpose()*r1)
beta=rr1/rr
r[:]=r1[:]
rr=rr1
p[:]=r[:]+beta*p[:]

print('\nSolution=({0:f},{1:f})'.format(x.item(0),x.item(1)))

contour plot of the cost function
plt.figure(figsize=(5,6))
delta = 0.025
x = np.arange(-1.0, 1.2, delta)
y = np.arange(-1.0, 2.0, delta)
X, Y = np.meshgrid(x, y)
c=np.array([-0.65, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1])

N=x.size
M=y.size
Z=np.zeros((M,N))

for i in range(0,M):
for j in range(0,N):

Z[i,j] = 0.5*(X[i,j]**2*A[0,0]+(A[0,1]+A[1,0])*X[i,j]*Y[i,j]
+A[1,1]*Y[i,j]**2) - X[i,j]*b[0]-Y[i,j]*b[1]

CS = plt.contour(X, Y, Z, c)
plt.clabel(CS, inline=1, fontsize=10)
plt.xlim(-1.0,1.2)
plt.ylim(-1.0,2.0)
plt.axes().set_aspect('equal', 'datalim')

plot the trajectory
plt.plot(u[0:n+1],v[0:n+1],'-r',linewidth=2)
plt.xlabel(r'x_1',fontsize=14)
plt.ylabel(r'x_2',fontsize=14)
plt.title('Conjugate Gradient Minimization')

plt.show()

▲▲▲

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and
Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University Press, 4th
edition, 2012.

[3] Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain. This is unpublished document. Use Google to find it., 1994.

[4] R. L. Graham and H. O. Polak. On the addressing problem for loop switching. Bell System Tech. J.,
50:2495–2519, 1971.

[5] Wigen Yan and Teong-Nan Yeh. A simple proof of graham and pollak’s theorem. Journal of Combinatorial
Theory, Series A, 113:892–893, 2006.

237

