
CHAPTER 6

ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY
VALUE PROBLEMS

When we solve a Newton equation, a set of initial conditions, i.e., initial position x(t0) and velocity ẋ(t0),
are usually specified. In general second order ODEs need two conditions for each variable. However, a set of
initial conditions is not only the way to specify the two independent conditions. For example, A trajectory
x(t) can be uniquely determined by specifying an initial position x(ti) and a final position x(tf) (Dirichlet
boundary condition). When the two conditions are given at two different time we call it a boundary value
problem. It seems strange to use a future position as a condition but it is a popular problem in physics. For
example, we could ask a question like how fast we should drive to arrive at the destination in a given time.
It is also possible to specify a derivative as a boundary condition (Neumann boundary condition). Boundary
value problems are also more common for ODEs with one-dimensional spatial coordinates such as Poisson
equation for scalar potential φ(x), heat equation for temperature profile T (x), and diffusion equation for
particle density ρ(x). From the numerical view of point, however, there is no difference between temporal
and spatial problems. Eigenvalue problems are also a kind of boundary value problems but we will discuss
them in the next chapter.

6.1 Shooting method

In the previous chapter, we solved Newton’s equation of motion as an initial value problem. Now, we solve a
Newton equation as a boundary value problem. Consider the following problem: The trajectory of a particle
of mass m is determined by a Newton’s equation of motion

ẍ = F (x, ẋ, t) (6.1)

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

141



142 ORDINARY DIFFERENTIAL EQUATIONS II: BOUNDARY VALUE PROBLEMS

as before. At time t = ti, the particle is located at xi. The particle arrives at xf at time tf. What are the
trajectory x(t) and velocity v(t) of the particle? This is clearly a boundary value problem. If we can solve
the Newton equation as an initial value problem, the trajectory can be considered as a function of the initial
position xi and velocity vi. We write it as x(t;xi, vi). We know that the particle must be at xf at time
tf. Thus, we have x(tf;xi, vi) = xf where only vi is unknown. By solving this equation for vi we find the
answer. This is nothing but a root finding problem. Once we find the initial velocity, we can find x(t) and
v(t) by solving the Newton equation using the method discussed in the previous chapter. In other words,
the boundary value problem is now replaced with an initial value problem combined with root finding. The
root finding method needs a function value f(vi) ≡ x(tf;xi, vi) − xf. In other words, we must be able to
evaluate f(vi) for any given vi. The evaluation of f(vi) is an initial value problem and thus we can solve it
by the method discussed in the previous chapter.

Since the solution to a Newton equation is unique, there is only one root. Therefore, the secant method
should work well. Remembering that the secant method needs two initial guesses. The algorithm known
as shooting method is given in Algorithm 6.1. We shoot again and again not at random but with some
intelligence until the target is hit.

Algorithm 6.1 Shooting method

1. Guess an initial velocity v1. Here subscript ”1” indicates the first try.

2. Solve the Newton equation as an initial value problem using v1 and get the final position
x1 = x(tf). Here the subscript ”1” indicates the first try.

3. If |x1 − xf| < tolerance, we already found a solution. Otherwise continue to step 4.

4. Change the initial velocity slightly v2 = v1 + δ. This is the second try.

5. Solve the Newton equation again and get x2 = x(tf).

6. If |x2 − xf| < tolerance then we find a solution. Otherwise continue step 7.

7. Now, we enter a loop of the secant method.

8. vn+1 = vn − vn − vn−1
xn − xn−1

[xn − xf]. Here, the (n + 1)-th try is suggested by the secant
method.

9. Solve the Newton equation with vn+1 as initial condition and get xn+1 = x(tf).

10. If |xn+1 − xf| < tolerance then we find a solution. Otherwise repeat from step 8.

EXAMPLE 6.1 Air Rocket

A compressed air rocket of mass m = 1 kg is launched vertically from ground. We want to make it reach
height yf = 100 m in tf = 2 s. At what speed should the rocket be launched? The Newton equation for
the rocket is

mÿ = −C|ẏ|ẏ −mg (6.2)
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Figure 6.1: The output of Example 6.1. Improvement of the solution as the secant method is iterated. Initial
guesses (step 1 and 2) are far from the correct answer but the iteration quickly converges to the right answer.

where the coefficient∗ is C = 0.01 kg/m. Note that the rocket may reach the desired height at the given
time on its way down.

If the rocket satisfies the condition on its way up, the analytic solution is given by

vi =

√
gλ

[√
e2yf/λ − cos

(√
g t2

f
λ

)]
sin
(√

g t2
f

λ

) (6.3)

where λ = m/C. Substituting all parameter values we obtain vi = 101.9281 m/s. We try to get
this value numerically using the shooting method. Program 6.1 solves the problem using the 4th-order
Runge-Kutta and secant methods.

First, we have to guess the first two steps. The average speed, 50 m/s, may be a good starting value.
The second guess should be slightly faster since the answer must be larger than the average speed. We
use 51 m/s for the second guess. Figure 6.1 shows how the iteration of secant method improves the
solution. Our initial guess is far from the final answer. Nevertheless the iteration quickly converges to
the correct answer. With tolerance 10−8, the calculation stopped after 6 secant iterations. The final
velocity is positive and thus the rocket is moving upward. The final answer vi = 101.9968 m/s is close
to the exact one.

6.2 Numerov method

An efficient method is availabe for the second-order ODE of the following form:

d2y

dx2 + w(x)y = S(x) (6.4)

This type of differential equations is popular in physics. For example, when w(x) = 0 this equation is equiv-
alent to one-dimensional Poisson equation, heat equation, and diffusion equation. It becomes a Shrödinger

∗If only linear drag force is considered the problem is too trivial because we are rooking for a root of a linear equation. The secant
method converges immediately at the first iteration. Quadratic drag force requires at least several steps due to non-linearity.
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equation (energy eigenvalue equation) and Newton equation for parametric harmonic oscillators if S(x) = 0.
The algorithm shown below is essentially the same as initial value problems and can be used to solve them.
However, since this type of differential equation appear mostly in boundary value problems, we focus on the
boundary value problems.

Recall the three-points numerical second-order derivative (2.14),

yn+1 − 2yn + yn−1
h2 = d2y

dx2 + h2

12
d4y

dx4 + O
(
h4) (6.5)

here we includes the forth order term explicitly. We can evaluate it using the original differential equation
as follows:

d4y

dx4 = d2

dx2 (−w(x)y + S(x))

= −wn+1yn+1 − 2wnyn + wn−1yn−1
h2 + Sn+1 − 2Sn + Sn−1

h2 + O
(
h2) (6.6)

where wn = w(xn) and Sn = S(xn). Substituting Eqs (6.5) and (6.6) to Eq (6.4) and rearranging y’s, the
explicit recursive equation is obtained:(

1 + h2

12wn+1

)
yn+1 =2

(
1 − 5h2

12 wn

)
yn −

(
1 + h2

12wn−1

)
yn−1

+ h2

12 (Sn+1 + 10Sn + Sn−1) + O
(
h6) (6.7)

This algorithm is one order more accurate than the fourth-order Runge-Kutta method and yet w(x) and
S(x) are evaluated only one time on the grid points. Therefore, the Numerov method is more efficient than
the Runge-Kutta method for this type of the second-order differential equation.

EXAMPLE 6.2 One-dimensional Poisson equation

Electric potential ϕ(x) in one-dimensional space satisfies the Poisoon equation

ϕ′′(x) = −ρ(x)
ϵ0

(6.8)

where ρ(x) is electric charge density and ϵ0 vacuum permittivity. We consider an electric charge density

ρ(x) = Cxe−x2
(6.9)

where C is a positive constant. The present model has an exact solution

ϕ(x) =
√
π

2 erf(x) (6.10)

where erf is the error function. We solve this model numerically using the Numerov method and secant
root finding.

For simplicity, we set C/ϵ0 = 1. As Fig. 6.2 shows the charge density is localized around x = 0.
Since

∫∞
−∞ ρ(x)dx = 0 (the net charge is zero), the charge is invisible from distance. Therefore, the

potential should be nearly constant at |x| ≫ 1. Mathematically speaking, the boundary condition is
lim
|x|→∞

ϕ′(x) = 0. This kind of boundary condition at infinity is not suitable for numerical calculation.
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Figure 6.2: The output of Example 6.2. Left: The profile of the charge density (black), the numerical
potential (red) and exact solution (blue). Right: The boundary value of the derivative is iteratively optimized
to the correct boundary condition.

We assume that ϕ′(±L) = 0 for some large L. A common method integrates the ODE from x = −L
using ϕ(−L) and ϕ′(−L) as boundary conditions. Since we don’t know ϕ(−L), we guess one. Then,
we solve the ODE as initial value problem and find ϕ′(L). If this value does not match to the given
boundary condition, the initial guess was wrong. Then, we start over again with a different value of
ϕ(−L) suggested by the secant method.

The above method should work well but there is an even better way by taking into account the
symmetry of the problem. Since the charge density is anti-symmetric (ρ(−x) = −ρ(x)), ϕ′′(x) is also
anti-symmetric and thus ϕ(x) must be anti-symmetric, too. Therefore, ϕ(0) = 0. We can start at x = 0
and shoot out toward x = L. A shorter shooting range is better! We still have to guess the next function
value, ϕ(h) where h is step size of x. Using ϕ(0) and ϕ(h), we can find the potential up to the end
point ϕ(L). If |ϕ′(L)| < tolerance, the guess is correct and we found a solution. Otherwise, repeat the
calculation using a new guess suggested by the secant method. However, we don’t know ϕ′(L) and thus
we need to evaluate it numerically. It does not have to be super accurate and the forward finite difference
method (2.2) is sufficient for this purpose.

ϕ′(L) = ϕ(L) − ϕ(L− h)
h

(6.11)

In the left panel of Fig 6.2, the numerical solution is compared with the analytic solution. The agree-
ment is so good that they are visually indistinguishable. The right panel shows that the progressive
improvement toward the given boundary condition ϕ′(L) = 0. Despite that the initial guess was quite
off the mark, the iteration converges very quickly.
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6.3 Applications in Physics

6.3.1 Quantum Free Falling (See Problem 3.3)

A quantum particle of mass m is in a uniform gravitational field g. The stationary Schrödinger equation is(
− ℏ2

2m
d2

dy2 +mgy

)
ψ(y) = Eψ(y) (6.12)

where y and E are the position and energy of the particle. We assume that the particle is dropped from
y = 0 and the gravitational potential energy is also measured from y = 0. Under this reference conditions,
E = 0.

Using a normalized coordinate x =
(

2m2g

ℏ2

)1/3

y, Eq. (6.12) is simplified to

d2

dx2ψ(x) = xψ(x) (6.13)

which is known as Airy equation. Despite of its simple looking, the solution to this equation cannot be
expressed in a simple form. General solution is given by

ψ(x) = c1Ai(x) + c2Bi(x) (6.14)

where Ai(x) and Bi(x) are first and second kind of Airy functions.[1] Now we apply the first boundary
condition. Since the particle should not be found at x = ∞, we impose limx→∞ ψ(x) = 0. If this is the
classical particle, the particle should not move upward. However, due to uncertainty principle, the quantum
particle can be observed slightly above x = 0. Since lim

x→∞
Bi(x) = ∞, we immediately conclude that c2 = 0.

What is the second boundary condition? It turns out that physics imposes no additional condition.† Hence,
c1 can be any finite value.‡ We could impose a condition such as ψ(0) = 1 for convenience. It makes the
numerical method more time consuming. Therefore, we don’t use additional boundary condition and we will
utilize this freedom in the numerical method.

One may try to evaluate the analytical solution. The integral form of Ai(x) is given by

Ai(x) = 1
π

∫ ∞
0

cos
(
t3

3 + xt

)
dt . (6.15)

This integral is super improper and none of standard numerical quadrature works. It is much faster and more
accurate to integrate the ODE (6.13) numerically. There are other ways to evaluate the Airy functions and
many numerical libraries include them. MATLAB has a built-in Airy function airy(). However, numerical
methods to evaluate Airy functions are still actively investigated.[2].

Now, we try to solve the problem by direct numerical integration of the ODE. Noting that Eq. (6.13) is a
special case of Eq. (6.4) with w(x) = −x and S(x) = 0, we can integrate it with the Numerov method. The
rigorous boundary condition is lim

x→∞
ψ(x) = 0 but we replace it with ψ(xmax) = 0, xmax ≫ 1. Considering a

similar ODE, y′′ = y, has a solution y ∼ e−x, we expect Ai(x) vanishes very quickly, xmax = 5 is sufficiently
large. In order to use the Numerov method, we need ψ(xmax − h). As we discussed above, if ψ(x) is a
solution, cψ(x) is also a solution and thus we don’t have to worry about the magnitude. This implies that
ψ(xmax − h) can be any finite value. Now we have two points to start the iterations. At the end, we fix the
absolute magnitude by letting ψ(0) = 1. This is not a physical condition but just for our convenience.

†This is an unbound state and thus we cannot normalize the wave function.
‡It is a convention to set Ai(0) = Γ( 2

3 )
32/3 = 0.355028 . . . [1]
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Figure 6.3: The numerical solution (red) to Eq. (6.13) is compared with the airy function (blue) provided
by MATLAB. Two curves are normalized at x = 0.

Algorithm 6.2 Airy Equation

1. Starting with ψ(xmax) = 0 we integrate the equation backward from x = xmax
to x = xmin.

2. Choose an integration step h = −0.1. (negative because it steps backward.)

3. Guess the next value ψ(xmax + h) = δ. In principle, we can use any positive
value for δ since the absolute magnitude of the solution cannot be determined
until the normalization condition is applied.

4. Integrate the ODE using the Numerov method down to xmin.

5. Normalized the solution so that ψ(0) = 1.

Program 6.3 implements this algorithm. The results are plotted in MATLAB in Fig. 6.3. The numerical
result agrees well with the MATLAB built-in airy function. In the region where the classical particle is
prohibited (x > 0), the wave function decays quickly. For x < 0, the wave function oscillates and its wave
length decreases as the particle falls down. Recalling p = h

λ , as the momentum p increases the wave length
λ decreases.

6.3.2 Heating a rod

A general heat equation for one-dimensional system is given by

cpρ
∂T

∂t
= κ

∂2T

∂x2 + qloss (6.16)

where cp, ρ, and κ are specific heat capacity, mass density and heat conductivity, respectively. We also take
into account the loss of heat to the environment by qloss. When the system is in a steady state (∂T/∂t = 0),
this partial differential equation becomes a ODE

κ
d2T

dx2 = −qloss (6.17)
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Now, we consider a long metallic rod of length L placed in a thermal environment. The temperature of
the environment is kept at T0. Then, each end of the rod is attached to thermostat so that the temperature
of the left end is kept at TL > T0 and the right end at TR > T0 As the temperature of the rod is higher than
the environment, heat energy dissipate into the environment by

qloss = −µ(T (x) − T0) (6.18)

where µ is a positive constant. This model is valid only when |T − T0| is small.
Now we calculate the temperature profile of the rod. It is convenient to use a temperature measured from

T0. Introducing, u = T − T0 and normalized length, s = x/L, the ODE is simplified to

d2

ds2u(s) = γu(s) (6.19)

where γ = µL2/κ is a dimensionless constant. Letting w(x) = −γ and S(x) = 0, this ODE can be integrated
by the Numerov method.

Finally, we want to make it sure that the solution is accurate enough to compute other physical quantities.
As an example, we check the conservation of energy. In the current setting, energy is injected from the left
end of the rod. Its magnitude is determined by the temperature gradient:

Qin = −κT ′(0) → −u′(0) (6.20)

where the last expression is for dimensionless calculation. Similarly energy loss from the right end is

Qout = +κT ′(L) → +u′(1) (6.21)

and the heat dissipation through the surface of the rod is given by

Qdiss = −µ
∫ L

0
[T (x) − T0]dx → −γ

∫ 1

0
u(s)ds (6.22)

Since the net energy transaction must be balanced, Qin +Qout +Qdiss = 0.
Program 6.4 calculates the temperature profile using the Numerov method and evaluates the energy

transaction. Now, pick parameter values. All constants (µ,L, κ) are combined together into one parameter
γ and thus we don’t have to specify each parameter value. We use γ = 10 in the example calculation. The
example boundary conditions are u(0) = 1 and u(1) = 0. It is not necessary to compute other value of u(0)
because eq. (6.19) is linear. If u(x) is a solution, c u(x) is also a solution. If you change the temperature at
the left end as TL = 100, the solution would be 100u(x). There is no need to recalculate the solution. If the
heat loss is not linear to the temperature difference, we cannot use this trick. (See Problem 5.1.)

The temperature profile is plotted in the left panel of Fig 6.4. When the temperature is high, heat
dissipation is faster and thus temperature gradient is larger near the left edge. If the heat dissipation to the
environment is not considered, the profile is a straight line from TL to TR. The effect of the dissipation is
clearly visible in the plot. The right panel shows the error after each iteration. The improvement is not very
fast but steady. Here is the output of the energy transaction:

Q_in=3.173136, Q_out=-3.129448, Q_diss=-0.043694, Q_net=-0.000007

The energy conserves with 5 significant figures.
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Figure 6.4: Left: The numerical solution to Eq. (6.19). Right: Error after each secant iteration.

6.4 Problems

6.1 Heating Rod with Nonliear Heat Loss
In Sec 6.3.2, the temperature profile is computed with the linear heat loss (6.18) which is valid only
when the temperature is not far from the temperature of the environment. When temperature difference
becomes large, heat loss due to radiation becomes dominant. In that case, the loss density is given by

qloss = −µ(T 4 − T 4
0 ) (6.23)

Find the temperature profile. Note that the Numerov method cannot be used with this loss function.
Use the 4th-order Rung-Kutta instead.

6.2 Cannon

A cannon ball is shot at a target located 1200 m away on the same level of ground. The initial speed
of the cannon ball is fixed to v0 = 150 m/s. You can control only the elevation angle θ. Taking into
account quadratic friction, the equation of motion is given by

m
d2

dt2 v⃗ = −bvv⃗ −mgẑ (6.24)

where v is the magnitude of the velocity v⃗ and ẑ is a unit vector in the vertical upward direction. The
coefficient b is defined by

b = 1
2ρCDA (6.25)

where ρ is the mass density of air, CD dimensionless drag coefficient, and A is the cross sectional area
of the cannon ball. Reasonable parameter values are m = 5 kg, A = 9 × 10−3 m2, ρ = 1.2 kg/m3,
CD = 0.5. At what angle θ the target is hit?
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MATLAB Source Codes

Program 6.1

%**************************************************************************
%* Example 6.1 *
%* filename: ch06pr01.m *
%* program listing number: 6.1-1 *
%* *
%* This program determines a launching speed that a rocket necessary *
%* to reach height yf in travel time tf. *
%* Use function: rocket_trajectory(v,t) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
clear all;

% set the boundary conditions
yf=100; tf=2;

% tolerance
tol=1e-8;

% control variable
found = false;

% first guess
n=1;
v(n) = 50;
[y(n), vf] = rocket_trajectory(v(n),tf);
if abs(y(n)-yf) < tol

found = true;
v0 = v(n);

end

%second guess
n=n+1;
v(n) = 51;
[y(n), vf] = rocket_trajectory(v(n),tf);
if abs(y(n)-yf) < tol

found = true;
v0 = v(n);

end

% secant iteration
while not(found)

v(n+1) = v(n) - (v(n)-v(n-1))/(y(n)-y(n-1))*(y(n)-yf);
[y(n+1), vf] = rocket_trajectory(v(n+1),tf);
if abs(y(n+1)-yf) < tol

found = true;
v0 = v(n+1);

end
n=n+1;

end

% show the result
fprintf('initial velocity = %.6f final velocity = %.6f \n',v(n),vf)

% plot the convergency
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p=plot([1:n],v,'-o',[0,n+2],[101.9281,101.9281],'--');
xlabel('Iteration','Fontsize',14)
ylabel(texlabel('v_0'),'Fontsize',14)
axis([0 n+2 40 110])
set(p(1),'linewidth',2)
legend('numerical','exact')
legend('location','southeast')

%**************************************************************************
%* Example 6.1 *
%* filename: rocket_trajectory.m *
%* program listing number: 6.1-2 *
%* Called by ch06pr01.m *
%* *
%* This function detemines the trajectory of the rocket for a given *
%* initial velocity and the final time. *
%* Input: vi = initial velocity *
%* t = final time *
%* Output: y = final position of the rocket *
%* v = final velocity of the rocket *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
function [y,v]=rocket_trajectory(vi,t)

% This function calculat the height of the rocket at t;
% system parameter values
g=9.8; m=1; C=0.01;

% control parameters
N=1000;
h=t/N;

% define force/mass as a function of v
f=@(v) -(C/m)*abs(v)*v-g;

% initial conditions
y0=0;
v0=vi;

% 4th-order Runge-Kutta
for n=1:N-1

ky1 = v0;
kv1 = f(v0);

y_mid = y0 + ky1*h/2;
v_mid = v0 + kv1*h/2;
ky2 = v_mid;
kv2 = f(v_mid);

y_mid = y0 + ky2*h/2;
v_mid = v0 + kv2*h/2;
ky3 = v_mid;
kv3 = f(v_mid);

y_end = y0 + ky3*h;
v_end = v0 + kv3*h;
ky4 = v_end;
kv4 = f(v_end);

y0=y0+(ky1+2*(ky2+ky3)+ky4)*h/6;
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v0=v0+(kv1+2*(kv2+kv3)+kv4)*h/6;
end

% return the final height and velocity
y=y0;
v=v0;
end

▲▲▲

Program 6.2

%**************************************************************************
%* Example 6.2 *
%* filename: ch06pr02.m *
%* program listing number: 6.2-1 *
%* *
%* This program solves one-dimensional Poisson equation using *
%* Numerov integration and secant root finding methods. *
%* Use function: numerov_poisson(y,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
clear all;

% set the boundary conditions
L=10;
% tolerance
tol=1e-16';
% control variable
found = false;

n=1;
% first guess of phi_1
y1(n) = 0.1;
% get the potential phi(x)
y = numerov_poisson(y1(n),L);
N = size(y,1); % check how many grid points are used.
% derivative of phi(x) at the end point.
y2(n) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n)) < tol

found = true;
end

if not(found)
n=n+1;
% second guess of phi_1
y1(n) = y1(n-1)+0.01;
% get the potential phi(x)
y = numerov_poisson(y1(n),L);
% derivative of phi(x) at the end point.
y2(n) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n)) < tol

found = true;
end

end

% secant iteration
while not(found)

% guess phi_1 by secant method
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y1(n+1) = y1(n) - (y1(n)-y1(n-1))/(y2(n)-y2(n-1))*y2(n);
% derivative of phi(x) at the end point.
y = numerov_poisson(y1(n+1),L);
% derivative of phi(x) at the end point.
y2(n+1) = (y(N,2)-y(N-1,2))/(y(N,1)-y(N-1,1));
if abs(y2(n+1)) < tol

found = true;
end
n=n+1;

end

% construct the whole curve from x=-L to x=L.
X(1:N) = -y(N:-1:1,1); X(N+1:2*N)=y(1:N,1);
Y(1:N) = -y(N:-1:1,2); Y(N+1:2*N)=y(1:N,2);

%plot charge density
subplot(1,2,1)
p1=plot(X,2.*X.*exp(-X.*X));
set(p1,'color','black')
hold on
% plot the numerical potential
p2=plot(X,Y);
set(p2,'Linewidth',2,'color','red')
xlabel('x','fontsize',14)
ylabel(texlabel('phi(x)'),'fontsize',14)
axis([-L L -1 1])
hold on
% plot the analytic potential
p3=plot(X,sqrt(pi)/2*erf(X));
set(p3,'color','blue')
legend('charge','numerical','exact')
legend('Location','southeast')
hold on
% plot the zero line
p4=plot([-L,L],[0,0],'--');
set(p4,'color','black')
hold off

subplot(1,2,2)
% plot the improvment of the first point.
q=semilogy([1:n],abs(y2),'-o');
xlabel('iteration')
ylabel(texlabel('phi''(L)'))
%axis([0 8 0.0001 1])
set(q,'linewidth',2)

%**************************************************************************
%* Example 6.2 *
%* filename: numerov_poisson.m *
%* program listing number: 6.2-2 *
%* Called by ch06pr02.m *
%* *
%* This function integrates a one-dimensional Poisson equation for *
%* given initial velocity and the final time. *
%* Input: y1 = y(h) *
%* L = boundary *
%* Output: y = y(L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
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%**************************************************************************
function [y]=numerov_poisson(y1,L)

% control parameters
N=10000; h=L/N;
y=zeros(N+1,2); % y(:,1) is position x

% y(:,2) is field phi(x)

% define S(x) in Numerov method
S=@(x) -2*x*exp(-xˆ2);

% initial conditions
% due to symmetry phi(0)=0
n=1;
y(n,1)=0;
y(n,2)=0;
s(n)=S(y(n,1));

% we guess phi(h)=phi_1
n=n+1;
x(n,1)=y(n-1,1)+h;
y(n,2)=y1;
s(n)=S(y(n,1));

% shoot out to x=L by the Numerov method
for n=2:N

y(n+1,1) = y(1,1) + (n-1)*h;
s(n+1)=S(y(n+1,1));
y(n+1,2) = 2*y(n,2)-y(n-1,2)+(s(n+1)+10*s(n)+s(n-1))*hˆ2/12;

end

end

▲▲▲

Program 6.3

%**************************************************************************
%* Section 6.3.1 *
%* filename: ch06pr03.m *
%* program listing number: 6.3 *
%* *
%* This program finds the wave function of freely falling particle. *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
clear all;
clc

% control parameters
xmax = 5;
xmin = -15;

% Integrating from xmax to 0

h = -0.1;
N = ceil((xmin-xmax)/h);

% define w(x) in Numerov method
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W = @(x) -x;

% initial conditions
n = 1;
y(n,1) = xmax;
y(n,2) = 0;
w(n) = W(y(n,1));

% we guess next value
n = n+1;
y(n,1) = y(n-1,1)+h;
y(n,2) = y(n-1,2)+0.1;
w(n) = W(y(n,1));

% shoot left by the Numerov method
for n=2:N

y(n+1,1) = y(n,1) + h;
w(n+1) = W(y(n+1,1));
y(n+1,2) = 2*(1-5*hˆ2*w(n)/12)*y(n,2) - (1+hˆ2*w(n-1)/12)*y(n-1,2);
y(n+1,2) = y(n+1,2)/(1+hˆ2*w(n+1)/12);

end

% normalization
N0 = int32(-xmax/h)+1; % find the location of x=0
y(:,2) = y(:,2)/y(N0,2);

p=plot(y(:,1),y(:,2),y(:,1),airy(y(:,1))/airy(0));
xlabel('x')
ylabel(texlabel('psi(x)'))
set(p(1),'linewidth',2,'color','red');
set(p(2),'linewidth',1,'color','blue');
legend('Numerov','MATLAB');
legend('location','southeast');
hold on
q=plot([-15, 5],[0,0],'--',[0,0],[-1.5,2],'--');
set(q,'color','black');
axis([-15 5 -1.5 2]);
hold off

▲▲▲

Program 6.4

%**************************************************************************
%* Section 6.3.2 *
%* filename: ch06pr04.m *
%* program listing number: 6.4-1 *
%* *
%* This program solves one-dimensional heat equation and finds *
%* temperature profile and heat energy transaction using *
%* Numerov integration. *
%* Use function: numerov_heat(TL,delta,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************

clear all;
% system parameters
global mu
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mu = -10;
TL=1; TR=0; L=1;
% tolerance
tol=1e-9;
% control variable
found = false;

n=1;
% first guess of delta
y1(n) = 1;
% get the u(x)
y = numerov_heat(TL,y1(n),L);
N = size(y,1); % check how many grid points are used.
y2(n)=(y(N,2)-TR)ˆ2;
if abs(y2(n)) < tol

found = true;
end

if not(found)
n=n+1;
% second guess of delta
y1(n) = y1(n-1)+0.01;
% get u(x)
y = numerov_heat(TL,y1(n),L);
y2(n)=(y(N,2)-TR)ˆ2;
if abs(y2(n)) < tol

found = true;
end

end

% secant iteration
while not(found)

% guess delta by secant method
y1(n+1) = y1(n) - (y1(n)-y1(n-1))/(y2(n)-y2(n-1))*y2(n);
% derivative of phi(x) at the end point.
y = numerov_heat(TL,y1(n+1),L);
y2(n+1)=(y(N,2)-TR)ˆ2;
if abs(y2(n+1)) < tol

found = true;
end
n=n+1;

end

% Energy conservation
Q_in = -(y(2,2)-y(1,2))/(y(2,1)-y(1,1));
Q_out= +(y(n,2)-y(n-1,2))/(y(n,1)-y(n-1,1));
Q_diss = mu*sum(y(1:2:n-2,2)+4*y(2:2:n-1,2)+y(3:2:n,2))*(y(2,1)-y(1,1))/3;
fprintf('Q_in=%.6f, Q_out=%.6f, Q_diss=%.6f, Q_net=%.6f\n',...

Q_in, Q_out, Q_diss, Q_in+Q_out+Q_diss);

% plot heat source
subplot(1,2,1)
p=plot(y(:,1),y(:,2));
set(p,'Linewidth',2,'color','red')
xlabel('s','fontsize',14)
ylabel(texlabel('u(s)'),'fontsize',14)
hold on

p2=plot([0,L],[0,0],'--');
set(p2,'color','black')
hold off
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subplot(1,2,2)
% plot the error after each iteration.
q=semilogy([1:n],abs(y2),'-o');
xlabel('iteration','fontsize',14)
ylabel(texlabel('T_R'),'fontsize',14)
set(q,'linewidth',2)

%**************************************************************************
%* Section 6.3.2 *
%* filename: numerov_heat.m *
%* program listing number: 6.3-2 *
%* Called by ch06pr02.m *
%* *
%* This function integrates a one-dimensional heat equation. *
%* Input: TL = temperature at the left end of the rod *
%* delta = decrease of the temperature at next point *
%* L = length of the rod *
%* Output: y = position y(:,1) and temperature profile y(:,2) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
function [y]=numerov_heat(TL,delta,L)

global mu

% control parameters
N=10000; h=L/N;
y=zeros(N+1,2); % y(:,1) is position x

% y(:,2) is field u(x)

% define w(x) in Numerov method
w=mu;

% initial conditions
n=1;
y(n,1)=0;
y(n,2)=TL;

% we guess u(h)
n=n+1;
y(n,1)=y(n-1,1)+h;
y(n,2)=y(n-1,2)-delta;

% shoot out to x=L by the Numerov method
for n=2:N

y(n+1,1) = y(1,1) + (n-1)*h;
y(n+1,2) = 2*(1-5*hˆ2*w/12)*y(n,2) - (1+hˆ2*w/12)*y(n-1,2);
y(n+1,2) = y(n+1,2)/(1+hˆ2*w/12);

end

end

Python Source Codes

Program 6.1
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 6.1 *
%* filename: ch06pr01.py *
%* program listing number: 6.1-1 *
%* *
%* This program determines a launching speed that a rocket necessary *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt

def f(v):
# right hand side of the ODE
g=9.8; m=1.0; C=0.01
return -(C/m)*np.abs(v)*v-g

def rocket_trajectory(vi,t):
# Solve the ODE using RK5 and return the final position abd velocity
N=1000
h=t/N
y0=0.0
v0=vi

for n in range(N):
ky1 = v0
kv1 = f(v0)

y_mid = y0 + ky1*h/2.0
v_mid = v0 + kv1*h/2.0
ky2 = v_mid
kv2 = f(v_mid)

y_mid = y0 + ky2*h/2.0
v_mid = v0 + kv2*h/2.0
ky3 = v_mid
kv3 = f(v_mid)

y_end = y0 + ky3*h
v_end = v0 + kv3*h
ky4 = v_end
kv4 = f(v_end)

y0=y0+(ky1+2*(ky2+ky3)+ky4)*h/6.0
v0=v0+(kv1+2*(kv2+kv3)+kv4)*h/6.0

return [y0,v0]

if __name__ == "__main__":
# set the boundary conditions
yf=100.0; tf=2.0

# tolerance
tol=1e-8
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# control variable
nmax = 100
found = False

y=np.zeros(nmax+1)
v=np.zeros(nmax+1)
# first guess
n=1
v[n] = 50.0
[y[n], vf] = rocket_trajectory(v[n],tf)
if np.abs(y[n]-yf) < tol :

found = True
v0 = v[n]

#second guess
n+=1
v[n] = 51.0
[y[n], vf] = rocket_trajectory(v[n],tf)
if np.abs(y[n]-yf) < tol:

found = True
v0 = v[n]

# secant iteration
while not(found) :

v[n+1] = v[n] - (v[n]-v[n-1])/(y[n]-y[n-1])*(y[n]-yf)
[y[n+1], vf] = rocket_trajectory(v[n+1],tf)
if np.abs(y[n+1]-yf) < tol:

found = True
v0 = v[n+1]

n+=1

# show the result
print('initial velocity = {0:10.6f} final velocity = {1:10.6f}'

.format(v[n],vf))

# plot the convergency
plt.ioff()
plt.figure(figsize=(6,5))
plt.plot(np.linspace(1,n,n),v[1:n+1],'-ob',label='numerical')
plt.plot([0,n+2],[101.9281,101.9281],'--',label='exact')
plt.xlabel('Iteration')
plt.ylabel('$v_0$')
plt.legend(loc=4)
plt.show()

Program 6.2

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 6.2 *
%* filename: ch06pr02.py *
%* program listing number: 6.2-1 *
%* *
%* This program solves one-dimensional Poisson equation using *
%* Numerov integration and secant root finding methods. *
%* Use function: numerov_poisson(y,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
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%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf

def S(x):
return -2.0*x*np.exp(-x**2)

def numerov_poisson(y1,L,N):
# control parameters

h=L/N
x=np.linspace(0,L,N+1)
y=np.zeros(N+1) # field phi(x)
s=np.zeros(N+1)

# initial conditions
# due to symmetry phi(0)=0
y[0]=0.0
s[0]=S(y[0])

# we guess phi(h)=phi_1
y[1]=y1
s[1]=S(x[1])

# shoot out to x=L by the Numerov method
n=1
while n < N :

s[n+1]=S(x[n+1])
y[n+1] = 2.0*y[n]-y[n-1]+(s[n+1]+10.0*s[n]+s[n-1])*h**2/12.0
n+=1

return x, y

if __name__ == "__main__":
# set the boundary conditions
L=10.0
N=10000
# tolerance
tol=1.0e-16
# control variable
found = False

y1=np.zeros(101)
y2=np.zeros(101)
n=1
# first guess of phi_1
y1[0] = 0.1

# get the potential phi(x)
x, y = numerov_poisson(y1[0],L,N)

# derivative of phi(x) at the end point.
y2[0] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[0]) < tol:

found = True

if not(found):
# second guess of phi_1
y1[1] = y1[0]+0.01
# get the potential phi(x)
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x, y = numerov_poisson(y1[1],L,N)
# derivative of phi(x) at the end point.
y2[1] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[1]) < tol:

found = True

# secant iteration
n=1
while not(found):

# guess phi_1 by secant method
y1[n+1] = y1[n] - (y1[n]-y1[n-1])/(y2[n]-y2[n-1])*y2[n]
# derivative of phi(x) at the end point.
x, y = numerov_poisson(y1[n+1],L,N)
# derivative of phi(x) at the end point.

y2[n+1] = (y[N]-y[N-1])/(x[N]-x[N-1])
if np.abs(y2[n+1]) < tol:

found = True

n+=1
print("Itertation ={0:5d}, y2={1:15.5e}".format(n,y2[n]))

# construct the whole curve from x=-L to x=L.
X=np.zeros(2*N+1)
Y=np.zeros(2*N+1)
X[0:N] = -x[N:0:-1]; X[N:2*N+1]=x[0:N+1]
Y[0:N] = -y[N:0:-1]; Y[N:2*N+1]=y[0:N+1]

#plot charge density
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(X,2*X*np.exp(-X*X),'-g',label=r"$\rho(x)$")

# plot the numerical potential
plt.plot(X,Y,'-r',linewidth=2.0,label="Numerical")
# plot the analytic potential
plt.plot(X,np.sqrt(np.pi)/2.0*erf(X),'-b',label="Exact")
plt.plot([-L,L],[0.0,0.0],'--k')
plt.xlabel('x')
plt.ylabel(r"$\phi(x)$")
plt.legend(loc=4)

plt.subplot(1,2,2)
# plot the improvment of the first point.
plt.semilogy(np.linspace(0,n,n+1),abs(y2[0:n+1]),'-o')
plt.xlabel('iteration')
plt.ylabel("$\phi'(L)$")
plt.show()

Program 6.3

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Section 6.3.1 *
%* filename: ch06pr03.py *
%* program listing number: 6.3 *
%* *
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%* This program finds the wave function of freely falling particle. *
%* to reach height yf in travel time tf. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import airy

# define w(x) in Numerov method
def W(x):

return -x

# control parameters
xmax = 5.0
xmin = -15.0

# Integrating from xmax to 0
N = 200
h = (xmin-xmax)/np.float(N)
x = np.linspace(xmax,xmin,N+1)
y = np.zeros(N+1)
w = np.zeros(N+1)

# initial conditions
y[0] = 0
w[0] = W(x[0])

# we guess next value
y[1] = y[0]+0.1
w[1] = W(x[1]);

# shoot left by the Numerov method
for n in range(1,N):

w[n+1] = W(x[n+1]);
y[n+1] = 2.0*(1.0-5.0*h**2*w[n]/12.0)*y[n] - (1.0+h**2*w[n-1]/12.0)*y[n-1]
y[n+1] = y[n+1]/(1.0+h**2*w[n+1]/12.0)

# normalization
N0 = np.int(-xmax/h) # find the location of x=0
y[:] = y[:]/y[N0]

plt.figure(figsize=(6,5))
plt.plot(x,y,'-r',label="Numerov",linewidth=2.5)
plt.plot(x,airy(x)[0]/airy(0)[0],'-b',label="Exact")
plt.xlabel('x')
plt.ylabel(r'$\psi(x)$')
plt.legend(loc=4)
plt.plot([-15, 5],[0,0],'--k',[0,0],[-1.5,2],'--k')
plt.show()

Program 6.4

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Section 6.3.2 *
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%* filename: ch06pr04.py *
%* program listing number: 6.4-1 *
%* *
%* This program solves one-dimensional heat equation and finds *
%* temperature profile and heat energy transaction using *
%* Numerov integration. *
%* Use function: numerov_heat(TL,delta,L) *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt

def numerov_heat(TL,delta,L):
global mu
# control parameters
N=10000; h=L/N
x=np.linspace(0,L,N+1)
u=np.zeros(N+1)

# define w(x) in Numerov method
w=mu

# initial conditions
u[0]=TL

# we guess u(h)
u[1]=u[0]-delta

# shoot out to x=L by the Numerov method
for n in range(1,N):

u[n+1] = 2.0*(1.0-5.0*h**2*w/12.0)*u[n] - (1.0+h**2*w/12.0)*u[n-1]
u[n+1] = u[n+1]/(1+h**2*w/12.0)

return [x,u]

if __name__ == "__main__":

# parameters
global mu
mu = -10.0
TL=10.0; TR=0.0; L=1.0

# tolerance
tol=1.0e-9

# control variable
found = False

y1 = np.zeros(1000)
y2 = np.zeros(1000)
# first guess of delta
y1[0] = 1
# get the u(x)
[x, u] = numerov_heat(TL,y1[0],L)
N = u.size-1 # check how many grid points are used.
y2[0]=(u[N]-TR)**2
if abs(y2[0]) < tol:
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found = True

if not(found):
#second guess of delta
y1[1] = y1[0]+0.01
# get u(x)
[x,u] = numerov_heat(TL,y1[1],L)
y2[1] =(u[N]-TR)**2
if abs(y2[1]) < tol:

found = True

# secant iteration
n=1
while not(found):

# guess delta by secant method
y1[n+1] = y1[n] - (y1[n]-y1[n-1])/(y2[n]-y2[n-1])*y2[n]
# derivative of phi(x) at the end point.
[x,u] = numerov_heat(TL,y1[n+1],L)
y2[n+1]=(u[N]-TR)**2
if abs(y2[n+1]) < tol:

found = True

n+=1

# Energy conservation
Q_in = -(u[1]-u[0])/(x[1]-x[0])
Q_out= +(u[n]-u[n-1])/(x[n]-x[n-1])
Q_diss = mu*sum(u[0:n-1:2]+4.0*u[1:n:2]+u[2:n+1:2])*(x[1]-x[0])/3.0
print('Q_in={0:10.6f}, Q_out={1:10.6f}, Q_diss={2:10.6f}, Q_net={3:10.6f}'

.format(Q_in, Q_out, Q_diss, Q_in+Q_out+Q_diss))

# plot heat source
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.plot(x,u,'-r')
plt.plot([0,L],[0,0],'--k')
plt.xlabel(r'$s$')
plt.ylabel(r'$u(s)$')

plt.subplot(1,2,2)
# plot the error after each iteration.
plt.semilogy(np.linspace(0,n,n+1),abs(y2[0:n+1]),'-o')
plt.xlabel('iteration')
plt.ylabel(r'$T_R$')

plt.show()

▲▲▲
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