
CHAPTER 5

ORDINARY DIFFERENTIAL EQUATIONS I:
INITIAL VALUE PROBLEMS

Many physics theories are expressed in various forms of ordinary differential equation(ODE). For example,
Newton’s equations of motion are written in ODE. In classical mechanics courses, we solve various example
problems analytically. In practice, however, the majority of problems cannot be solved analytically because
Newton’s equations are non-linear except for simple harmonic oscillators. The motion of a planet (Kepler
problem) is a very special case where analytical solution is possible despite of the non-linearity. We must
resort to numerical methods for almost all practical problems.

An ODE generally allows infinitely many different solutions. We want to find a solution that matches
to given conditions ODE alone cannot pick it. It is boundary conditions that determine a specific solution.
In physics there are two types of problems. When we want to find a time evolution of physical quantities,
we solve ODEs with initial conditions. Initial conditions are a kind of boundary condition given at a single
point (initial time). On the other hand, when we want to know a spatial profile of physical quantities, we
usually specify conditions at two different points. Eigenvalue problems expressed in differential equation
forms belong to the latter type of boundary conditions. The former is called initial value problem and the
latter boundary value problem. In numerical calculation, these two problems are quite different. In this
chapter we focus on initial value problems, boundary value problems are discussed in next chapter and
eigenvalue problems in the following chapter.

5.1 Standard forms of Initial Value Problems in Physics

A typical initial value problem in physics is a first order ODE expressed in a standard form,

ẋ = F (x, t) (5.1)

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

91

92 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

or a set of second order ODEs
ẍ = F (x, ẋ, t) (5.2)

where x is a function of time. The functions x and F can be vector. For example, Newton’s equation of
motion

r̈ = 1
m

F(r,v, t). (5.3)

is a standard second order ODE with r = {x, y, z}, and F = {Fx, Fy, Fz}. In other words, Eq. (5.3) is a
set of coupled ODEs. In general, the second order ODEs of this kind can be transformed to another set of
first order ODEs. Therefore, numerical methods for the first order ODEs can be used to solve the second
order ODEs as well. However, there are also algorithms specific to the second order ODEs such as the Verlet
argorithm, which can be more efficient in certain applications.

5.2 First Order Differential Equations

For simplicity, we focus on the first order ODE of a single variable x for a while. Multivariable cases will be
discussed at the end of this section. More specifically, we want to solve the following type of ODE:

ẋ = F (x, t) (5.4)

for a given initial condition x(t0) and a function F (x, t). The exact solution is a continuous function x(t) for
time period from an initial time t0 to a final time tF . However, in the computer we work with discrete time
tn = t0 +nh, n = 0, · · · , N where h is a time step defined by h = tF − t0

N
. The numerical solution is obtained

as a sequence x(t0), x(t1), x(t2), · · · , x(tN). Our goal is to develop numerical algorithms to predict x(tn+1)
knowing the previous points x(tn), x(tn−1), · · ·x(t0). We can construct the whole sequence by repeating the
procedure. In the following subsections, we use simplified expressions, xn = x(tn) and Fn = F (x(tn), tn).

To begin with, we convert the ODE (5.4) to a recursive equation involving an integral. Integrating Eq.
(5.4) from tn to tn+1, we obtain

xn+1 = xn +
∫ tn+1

tn

F [x(t), t] dt . (5.5)

This expression is still mathematically exact. However, it is not a solution since the integrand depends on
the continuous solution x(t) which we don’t know. How can we evaluate the integral without knowing x(t)
for tn < t < tn+1? Nonetheless our numerical methods are derived from this recursive equation.

5.2.1 Euler Method

Now, we try to estimate the integral in Eq. (5.5) only with known values xn and Fn. Figure 5.1a shows
what we are trying to do. Recalling that the rectangle rule of numerical integration depends only on the
single point [see Eq. (3.2a)], we use the rectangular rule to approximate the integral in Eq. (5.5):∫ tn+1

tn

F [x(t), t] dt ≈ Fn h (5.6)

which leads to the Euler method:
xn+1 = xn + Fn h . (5.7)

Starting from the initial value, x0, we first evaluate F0 = F (x0, t0). Then, we obtain x1 by Eq. (eq:euler-
rule). Using this procedure recursively, we obtain the whole sequence from x0 to xN .

FIRST ORDER DIFFERENTIAL EQUATIONS 93

t n t n+1

this curve is
not known.

F n
 ∝h2

F (xn , t n)h

F (x , t)

t

F n+1

known

not known

(a) The curve in the figure represents the integrand of
Eq. (5.5), which is unknown to us. Knowing Fn and
h, we approximate the integral by the rectangular
rule. The unaccounted area is proportional to h2.

t n t n+ 1

xn

xn+1

error

x(t)

t

exact solution
(unknwon)

slope= ẋn=F n

(b) Using the slope of the curve Fn, we extrapo-
late next point xn+1 assuming the curve is close to a
straight line within a small step h.

Figure 5.1: Illustration of the Euler method

Algorithm 5.1 Euler method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times

6. Evaluate the function Fn = F (xn, tn).

7. Calculate a new point xn+1 = xn + Fnh.

8. Increment the step: n = n+ 1.

9. Go to Step 6.

The area omitted in Fig. 5.1a) is order of h2. Therefore the local error of the Euler method is the order
of h2. After N iteration, the global error becomes Nh2 ∼ O(h). If h is small enough, we hope that this is a
good approximation. In practice, the Euler method is not good enough for most applications.

94 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

5.2.2 Predictor-Corrector Method

The higher order of error in the Euler method is due to the inaccuracy of the rectangle rule (5.6) (See
Chapter 3). We expect that the trapezoidal rule∫ tn+1

tn

F [x(t), t] dt ≈ (Fn + Fn+1)h
2 (5.8)

provides a better estimate of the integral in (5.5). Then, Eq. (5.5) becomes

xn+1 = xn + h

2 [F (xn, tn) + F (xn+1, tn + h)] + O
(
h3). (5.9)

This expression is implicit with respect to xn+1 since the right hand side also depends on it. To find xn+1,
we must use a root-finding method, which is in principle possible but too time-consuming for practical
applications. A better way is to use an approximate value of xn+1 in the right hand side. We predict xn+1
using the Euler method and then correct it by Eq. (5.9). This is the ”predictor-corrector” method. The
above procedure is summarized in Algorithm 5.2, which looks different from the above method but more
convenient when you write a program.

Algorithm 5.2 Predictor-corrector method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Predictor: k1 = F (xn, tn)

8. Corrector: k2 = F (xn + k1h, tn+1).

9. New point: xn+1 = xn + h

2 (k1 + k2).

10. Increment the step: n = n+ 1.

11. Go to Step 6.

The above algorithm uses the Euler method as predictor. The local order of the error O
(
h3) is better

than that of the Euler method. Therefore, the corrector works. Figure 5.2 illustrates the improvement.
However, even higher accuracy can be attained if a better method such as the Adams-Bashforth method is
used as predictor and a higher order corrector is used. See Ref. [1] for the detailed description of advanced
predictor-corrector methods.

FIRST ORDER DIFFERENTIAL EQUATIONS 95

t n t n+1

this curve is
not known.

F n

F (x ,t)

t

F n+1

given

not knwon

(a) Fn+1 is linearly extrapolated from two previous
points Fn−1 and Fn. Then, trapezoidal rule is used
to integrate.

t n t n+1

xn

xn+1

x(t)

t

exact
solution

slope=k1

slope=k 2slope=
k1+k2
2

(b) The linear extrapolation in the left panel is equiv-
alent to assume that the change of the slope (∆) is
the same as that in the previous step.

Figure 5.2: Illustration of the Predictor-Corrector Method

EXAMPLE 5.1 Free Falling

A particle of 1 kg is dropped from rest in uniform gravity 9.8m/s2. The drag force due to the presence
of air is −γv where v is velocity and the frictional coefficient is γ = 1.0 kg/s. The equation of motion is
given by

mv̇ = −γv −mg (5.10)
ans its solution is

v(t) = mg

γ

(
e−γt − 1

)
. (5.11)

Let us integrate the Newton equations using Euler and Predictor-Corrector methods. Program 5.1
implements the methods. We integrate from t = 0 to t = 10 using the step size h = 0.01. In Fig.
5.3, the results of the two methods and the exact solution are plotted. From naked eyes, there is no
difference between them. However, if look at the absolute errors (right panel), the difference is clear.
The predictor-corrector method is much better. Note also that the error increases at the beginning
where the velocity changes very rapidly and decreases as the velocity approaches the terminal value.

5.2.3 2nd-Order Runge-Kutta Method

If the value of x at the mid point between xn and xn+1 is available, the higher accuracy may be obtained.
The integral in Eq (5.5) can be evaluated by a single point (see Fig. 5.4.):∫ tn+1

tn

F (x(t), t)dt = hFn+1/2.+ O
(
h3) (5.12)

where Fn+1/2 ≡ F []x(tn + 1/2), tn + h/2], which is still unknown to us. We estimate it using the Euler
method and obtain

xn+1/2 = xn + h

2Fn (5.13)

96 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 2 4 6 8 10

v(
t)

-10

-8

-6

-4

-2

0
Euler
Predictor-Corrector
Exact

t
0 5 10

ab
so

lu
te

 e
rr

or
10-8

10-6

10-4

10-2

100

Figure 5.3: Output of Example 5.1. The left panel shows the velocity as a function of time. All three lines
look identical. The right panel shows the absolute errors. The error in the predictor-corrector method is
clearly square of the error in the Euler method.

t n t n+1

this curve is
not known.

F n
 ∝(Δ t)2

F (x (tn), tn) Δ t

F (x ,t)

t

F n+1

given

not knwon

t
n+

1
2

F
n+

1
2

(a) Using the Euler method, Fn+1/2 is estimated.
Then, the integral is approximated by the area of
the rectangle.

t n t n+1

xn

xn+1

x(t)

t

exact
solution

t
n+
1
2

x
n+
1
2

slope=k 2

slope=k1

slope=k 2

(b) The slop at the mid point (k2) is estimate by the
Euler method . Then the new point is predicted with
the same slope (red line).

Figure 5.4: Illustration of the second order Runge-Kutta Method.

FIRST ORDER DIFFERENTIAL EQUATIONS 97

which enables us to compute Fn+1/2 in Eq. (5.12). This is the second-order Runge-Kutta method.

Algorithm 5.3 Second-order Runge-Kutta method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Predictor: k1 = F (xn, tn)

8. Corrector: k2 = F (xn + k1h/2, tn + h/2).

9. New point: xn+1 = xn + k2h.

10. Increment the step: n = n+ 1.

11. Go to Step 6.

The 2nd order Runge-Kutta method has accuracy similar to the two-step Admas-Bashforth and Euler-
predictor-corrector methods. The two-step Adams-Bashforth method has a very good stability. If you need
to iterate many steps, the two-step Adms-Bashforth is better than the others. While the Runge-Kutta and
the Predictor corrector methods evaluate F multiple times per step, the Adams-Bashforth method evaluate
it only once per step. Therefore, the two-step Adams-Bashforth method is faster. Therefore, if the local
error O

(
h3) is sufficient, the two-step Adams-Bashforth method is superior. However, if higher accruacy

is needed, the three-steps Adams-Bashforth method is not necessarily the best. The following forth-order
Runge-Kutta is the winner.

5.2.4 4th-Order Runge-Kutta Method

The Euler and two-step Adams-Bashforth methods approximate the integral in Eq. (5.5) using the rectan-
gular and trapezoidal rule, respectively. The 2nd-order Runge-Kutta is also equivalent to the trapezoidal
rule. In order to improve accuracy, it is natural to use higher order integral methods. Here we apply the
Simpson rule: ∫ xn+h

xn

F []x(t), t] dt = h

6
(
Fn + 4Fn+1/2 + Fn+1

)
+ O

(
h5) (5.14)

Since Fn+1/2 and Fn+1 are not known, we need to estimate them. k2 in the 2nd-order Runge-Kutta method
is already an estimate of Fn+1/2. Now we need to estimate Fn+1 from Fn+1/2. However, k2 is based on the
Euler method and not accurate enough to predict next step. So, we adopt the predictor-correct method to
improve Fn+1/2:

k3 ≡ F (xn + k2h

2 , tn + h

2) (5.15)

98 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

with which we estimate the final point

k4 ≡ F (xn + k3h, tn + h) (5.16)

Now both k2 and k3 are the estimates of Fn+1/2. Which one should we use? In general k3 should be better
since the predictor-corrector method is applied. However, traditionally the mean of k2 and k3 is used. The
local error is the order of h5. Here is the complete procedure:

Algorithm 5.4 Forth-order Runge-Kutta method

1. Set the total period T and the number of steps N .

2. Calculate the step size h = T

N
.

3. Set the initial condition x0 = 0 and t0 = 0.

4. Reset the counter: n = 0.

5. Repeat the following N times.

6. Increment time: tn+1 = t0 + (n+ 1)h.

7. Euler step: k1 = F (xn, tn)

8. 2nd order Runge-Kutta step: k2 = F (xn + k1h/2, tn + h/2).

9. Predictor-corrector step: k3 = F (xn + k2h
2 , tn + h

2).

10. 4th order Runge-Kutta step: k4 = F (xn + k3h, tn + h).

11. New point: xn + h

6 (k1 + 2k2 + 2k3 + k4).

12. Increment the step: n = n+ 1.

13. Go to Step 6.

The 4th-order Runge-Kutta method is the most commonly used method in physics (or anywhere else).
Although in principle even higher order methods are possible, in practice the fourth order is the highest that
balances computing time and accuracy.

EXAMPLE 5.2 Free Falling Again

We solve the Newton’s equation in Example 5.1 using 2nd and 4th order Runge-Kutta methods.(Program
5.2) The results shown in Fig. 5.5 indicate that the 4th order Runge-Kutta is superior. Note also that the
error of the 2nd order Runge-Kutta is essentially identical to the predictor-corrector method in Example
5.1.

5.2.5 Adaptive Step: Runge-Kutta-Fehlberg Method

The solution to an ODE can be slowly changing in some parts and rapidly varying in other parts. If a constant
step h were used, it must be small enough for the rapid change. However, such a small h is not necessary in

FIRST ORDER DIFFERENTIAL EQUATIONS 99

t
0 2 4 6 8 10

v(
t)

-10

-8

-6

-4

-2

0
RK2
RK4
Exact

t
0 2 4 6 8 10

ab
so

lu
te

 e
rr

or

10-15

10-10

10-5

100

RK2
RK4

Figure 5.5: Output of Example 5.2. The left panel shows the velocity as a function of time. All three lines
look identical. The right panel shows the absolute errors. The 4th order Runge-Kutta method is clearly
more accurate than the 2nd order method.

the slowly changing region and thus we waist computer time. Furthermore, finding an appropriate step size
becomes difficult if we don’t know the rapidly changing part prior to the calculation. It is desired to have
an algorithm which automatically adjusts the step size as the solution is computed. Runge-Kutta-Felberg
method which is also known as RK45 finds appropriate step size so that the result is accurate to the given
tolerance.

Like regular Runge-Kutta method, we try to find solution xn+1 at tn+1 knowing the previous step xn at
tn where tn+1 = tn +h. Here we show the algorithm without proof. For a given h, we evaluate the following
six quantities,

k1 = hF (xn, tn) (5.17a)

k2 = hF

(
xn + 1

4k1, tn + 1
4h
)

(5.17b)

k3 = hF

(
xn + 3

32k1 + 9
32k2, tn + 3

8h
)

(5.17c)

k4 = hF

(
xn + 1932

2197k1 − 7200
2197k2 + 7296

2197k3, tn + 12
13h

)
(5.17d)

k5 = hF

(
xn + 439

216k1 − 8k2 + 3680
513 k3 − 845

4104k4, tn + h

)
(5.17e)

k6 = hF

(
xn − 8

27k1 + 2k2 − 3544
2565k3 + 1859

4104k4 − 11
40k5, tn + 1

2h
)

(5.17f)

Our first try is
xn+1 = xn + 25

216k1 + 1408
2565k3 + 2197

4101k4 − 1
5k5 (5.18)

which uses four points (k1, k3, k4, and k5). The second try is given by

x′n+1 = xn + 16
135k1 + 6656

12, 825k3 + 28, 561
56, 430k4 − 9

50k5 + 2
55k6. (5.19)

100 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

0 5 10
t

-10

-8

-6

-4

-2

0

v(
t)

RK45
Exact

0 5 10
t

10-20

10-10

100

ab
so

lu
te

 e
rr

or

Figure 5.6: Output of Example 5.3. The left panel shows the velocity as a function of time. The circles on
the top indicates the time step. The right panel shows the absolute errors which remains below the tolerance
10−3.

The second try is more accurate than the first try. Now, we estimate the error by

δ = 1
h

|x′n+1 − xn+1|. (5.20)

and

λ = 0.84
(

tol
δ

)1/4
(5.21)

where tol is a tolerance. If δ < tol, then we accept the solution and move to the next step with a new step
length λh. Since the original h gives the accurate result, we want to use a larger step size. In that case,
λ > 1. If δ > tol, then the present calculation is not accurate enough. Try again with the new step size
λh which is smaller than the original step size. Since the step size h varies as the calculation goes, tn is no
longer evenly spaced. If we need the solution with evenly spaced t, we can interpolate it from the RK45
solution.

EXAMPLE 5.3 Yet Another Free Falling

We solve the Newton’s equation in Example 5.1 using Runge-Kutta-Fehlberg Method methods. MAT-
LAB has a built-in function ode45() which uses the Runge-Kutta-Fehlberg algorithm. See Program
5.3. The result shown in Fig. 5.6 indicates that the small step size is used at the beginning and gradually
increases as the magnitude of slope decreases. The figure also shows that the error remain below the
tolerance (default value in MATLAB is 10−3.).

.

5.3 Coupled ODEs

We now consider a set of ODEs. All methods we discussed in the present section can be used. Any of
algorithms for single ODEs can be extended to coupled ODEs. As an example, we solve two coupled ODEs,

SECOND-ORDER DIFFERENTIAL EQUATIONS 101

ẋ(t) = F (x(t), y(t), t) (5.22a)
ẏ(t) = G(x(t), y(t), t) (5.22b)

using the following 4th order Runge-Kutta method:

k1 = F (xn, yn, tn) (5.23a)
ℓ1 = G(xn, yn, tn) (5.23b)

k2 = F (xn + k1h

2 , yn + ℓ1h

2 , tn + h

2) (5.23c)

ℓ2 = G(xn + k1h

2 , yn + ℓ1h

2 , tn + h

2) (5.23d)

k3 = F (xn + k2h

2 , yn + ℓ2h

2 , tn + h

2) (5.23e)

ℓ3 = G(xn + k2h

2 , yn + ℓ2h

2 , tn + h

2) (5.23f)

k4 = F (xn + k3h, yn + ℓ3h, tn + h) (5.23g)
ℓ4 = G(xn + k3h, yn + ℓ3h, tn + h) (5.23h)

xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4) (5.23i)

yn+1 = yn + h

6 (ℓ1 + 2ℓ2 + 2ℓ3 + ℓ4) (5.23j)

EXAMPLE 5.4 Two Cars

Two cars move with velocity v1 and v2. The driver of each car tries to keep its velocity the same as the
velocity of other car. Using a simple linear coupling between two cars, their equations of motion are
model as

v̇1 = +k(v2 − v1)
v̇2 = −k(v2 − v1) (5.24)

where k is a positive constant. By adjusting the unit of time, we can set k = 1. Initially, the first car was
slightly faster than the second: v1(0) = 1.2 and v2(0) = 1.0. Are they able to travel together? If so, how
soon their speed is synchronized? What is their final velocity? Since the equation is linear, this problem
can be solved analytically. The answer is ”yes”. The velocity difference decays as δv = δv0e−2t and the
final velocity is the mean of the initial velocities vf = 1

2 (v1(0) + v2(0)). Here we solve the equations
using the 2nd-order Runge-Kutta and the results are plotted in Fig. 5.7.

5.4 Second-Order Differential Equations

Many second-order ODEs in physics problems can be converted to a set of coupled first-order ODEs. The
methods discussed in the previous sections can be used to solve them without any additional steps. On the
other hand, there are algorithms specifically developed for second-order ODEs such as Newton’s equations
of motion.

102 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 1 2 3 4 5

ve
lo

ci
ty

1

1.05

1.1

1.15

1.2

v
1

v
2

t
0 1 2 3 4 5

v 1-v
2

0

0.05

0.1

0.15

0.2

Figure 5.7: Output of Example 5.4. Left: The velocity of each car. At the end two cars travel at the same
velocity. Right: The difference in velocities. The velocity difference decreases exponentially. The 2nd order
Runge-Kutta method with h = 0.02 is used.

5.4.1 Converting to a Coupled First-Order ODEs

Consider a second-order differential equation

ẍ = F (x, ẋ, t). (5.25)

Introducing a new variable y = ẋ, Eq (5.25) can be written as a set of coupled first-order differential
equations,

ẏ = F (x, y, t) (5.26)
ẋ = y, (5.27)

which can be solved by the method discussed in the previous section.
Newton’s equation of motion are this type of ODEs. For more complicated classical systems, Lagrangian

approach is often used. Euler-Lagrange equations generate the second order ODEs which can be transformed
to this type. If the system is conservative, Hamiltonian approach may be more convenient for numerical
methods since the Hamilton’s canonical equations of motion are already a set of first order ODEs.

EXAMPLE 5.5 Simple Harmonic Oscillator

A harmonic oscillator of mass m and spring constant k oscillates with frequency ω =
√

k
m . The dynamics

is determined by the Newton’s equation of motion

mẍ = −kx → ẍ = −ω2x . (5.28)

First, we convert it to coupled ODEs

v̇ = −ω2x (5.29a)
ẋ = v (5.29b)

SECOND-ORDER DIFFERENTIAL EQUATIONS 103

t
0 10 20 30

di
sp

la
ce

m
en

t

-1

-0.5

0

0.5

1

RK4
Exact

t
0 10 20 30

ab
so

lu
te

 e
rr

or

10-12

10-10

10-8

10-6

10-4

Figure 5.8: Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion is
integrated with 4th order Runge-Kutta method (h = 0.05). Right: Absolute error. The error is very small
but gradually increasing as the number of iterations increase.

and solve it with the 4th-order Runge-Kutta method. Figure 5.8 illustrates the accuracy of the method.
Note that the error gradually increases as the number of iterations increases.
Exercise 5.1 Add the friction term −gammaẋ in the program. Plot trajectories for γ2 > 4mk (weakly

damped), γ2 = 4mk (critically damped), and γ2 < 4mk (overdamped).

5.4.2 Verlet Method

Although any second order differential equation can be rewritten as a coupled first-order differential equation,
there are convenient methods that directly solves second-order differential equations. However, these methods
works only for certain types of second-order equations. Newton equations,

ẍ = 1
m
F (x, t) (5.30)

is an example. Note that the force does not depend on velocity.
Using the Taylor expansion,

x(t+ h) = x(t) + hẋ+ h2

2 ẍ+ h3

6 x
(3) +O(h4) (5.31)

x(t− h) = x(t) − hẋ+ h2

2 ẍ− h3

6 x
(3) +O(h4) (5.32)

Adding these equations cancels the odd-order terms and we obtain

x(t+ h) = 2x(t) − x(t− h) + h2ẍ+O(h4) (5.33)

= 2x(t) − x(t− h) + h2

m
F (x(t), t) + o(h4) (5.34)

which leads to a recursive equation

xn+1 = 2xn − xn−1 + Fn
h2

m + o(h4) (5.35)

104 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 10 20 30

di
sp

la
ce

m
en

t

-1

-0.5

0

0.5

1

Verlet
Exact

t
0 10 20 30

ab
so

lu
te

 e
rr

or

10-8

10-6

10-4

10-2

100

Figure 5.9: Left: Trajectory of a simple harmonic oscillator (ω = 1): The Newtons equation of motion is
integrated with Verlet method (h = 0.05). Right: Absolute error. The error is small but considerably larger
that of 4th-order Runge-Kutta method in Fig. 5.8.

This simple iteration scheme gives rise to the accuracy of o(h4), only one order worse than the 4th-order
Runge-Kutta. This simplicity is due to the fact that the force does not depend on the velocity. Since
the velocity-dependent force such as friction does not appear in microscopic picture, this method is widely
used in the molecular dynamics simulation. We need to consider not only the degree of error but also the
computation time. The Verlet method evaluates the force only once in each step whereas the 4th-order
Runge-Kutta needs to evaluate it four times. Therefore, the Verlet method is more suitable for large scale
simulation.

One problem is that this recursive equation uses two previous steps. However, the given initial condition
is x0 and v0. In order to find x1 we need to know x−1! A popular resolution is to use Euler method only for
the first step.

x1 = x0 + v0h+ F0
h2

m
. (5.36)

The velocity can be obtained by the mean value numerical derivative:

vn = ẋn = xn+1 − xn−1
2h (5.37)

EXAMPLE 5.6 Simple harmonic oscillator again

We repeat Example 5.5 but with the Verlet method (Program 5.6) The result indicates that the error
is larger than that of the 4th-order Runge-Kutta as expected. However, for many large simulation, the
degree of accuracy is good enough.
Exercise 5.2 Consider a forced harmonic oscillator with external forcing A cos(Ωt) where A and Ω

are amplitude and frequency of the external force. Calculate trajectories of the forced oscillator using
the Verlet method.

APPLICATIONS IN PHYSICS 105

t
0 50 100

co
nc

en
tr

at
io

n

0

0.5

1

1.5

2

2.5

3

3.5

x
y

x
0 1 2 3

y

1

1.5

2

2.5

3

3.5

Figure 5.10: Limit cycle in the Brusselator dynamics. Parameter values: a = 1 and b = 2.3

5.5 Applications in Physics

5.5.1 Nonlinear Chemical Dynamics: Brusselator

In order to investigate self-organization mechanisms, the following hypothetical chemical reaction (Brusse-
lator model) has been intensively investigated:

A −→ X (5.38a)

B +X −→ Y +D (5.38b)

2X + Y −→ 3X (5.38c)

X −→ E (5.38d)

where the species A and B are sources injected into the system such that their concentration is kept constant,
and the products D and E are extracted from the system at a constant rate. The species X and Y are
intermediate products. It is important to note that both X and Y are produced and consumed during the
sequence of reactions in such a way that X produces Y and in turn Y produces X.

Corresponding to the chemical equations (5.38), the time evolution of the concentration of X and Y in
the Brusselator system is determined by coupled differential equations:

ẋ = a− (b+ 1)x+ x2y (5.39a)

ẏ = bx− x2y (5.39b)

where a and b are the concentration of A and B in the Brusselator model (5.38) which are control parameters,
and x and y are the concentration of X and Y In Program 5.7 the differential equations is integrated with
the 4th-order Runge-Kutta method. Initial conditions x0 = 1 and y0=1 and parameter values a = 1 and
1.5 < b < 2.5 are used. As b is varied the type of trajectories changes (bifurcation). In an interesting case,
the solution converges to a closed loop regardless of the initial condition. This kind of dynamics is known
as limit cycle.[2] and plays important roles in biological systems.[3, 4] Figure 5.10 illustrates the limit cycle
obtained by Program 5.7 with parameter values a = 1 and b = 2.3.

106 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

Type γ1 γ2 γ3 κ1 κ2 κ3

A (γ2, γ3 ≫ γ1) 0.1 2 3 0.25 0.2 1

B (γ2 ≫ γ1, γ3) 0.1 10 0.25 1 0.5 1

C (γ1 > γ2 + γ3) 1 0.1 0.25 1 0.1 1

Table 5.1: Parameter sets for Maxwell-Bloch equation.

5.5.2 Nonlinear Dynamics in Laser: Maxwell-Bloch equation

A semiclassical model of the laser is known as Maxwell-Bloch equation[5, 6]:

Ė = −γ1E + κ1P (5.40a)

Ṗ = −γ2P + κ2ED (5.40b)
Ḋ = −γ3(D − λ) − κ3E P (5.40c)

where E, P , D are the electric field, the mean polarization of atoms, and the population inversion, respec-
tively. γ1 are the decay rates of the electric field in the laser cavity due to beam transmission. γ2 and γ3 are
the decay rates of the atomic polarization and population inversion, respectively. κi, i = 1, 2, 3 are positive
coupling constants. λ is the energy pumping parameter and may be positive, negative or zero. Unlike two-
dimensional nonlinear dynamics of the Brusselator model, this is three-dimensional nonlinear dynamics and
chaotic trajectories are possible. Depending on the parameter values, the system shows a variety of dynam-
ics. We solve the coupled ODEs using 2nd-order Runge-Kutta method from t = 0 to t = 500 (or longer) for
each parameter set given in Table 5.1. Then, we investigate the time evolution of E and two-dimensional
phase trajectory (E, D) for each of the following cases. Type C shows a particularly interesting trajectory
known as strange atractor which is confined in a finite region without repeating itself as shown in Fig. 5.11.
Such a trajectory is possible only in three or higher dimensional phase spaces.

Type A Vary λ from 3.0 to 6.0. Observe that E always converges to a constant value.
However, below a certain critical value of λ, E decays to zero. On the other hand, above it
E goes to a positive vale (lasing).

Type B Vary λ from 0.5 to 3. Observe that E always converges to a constant value. How-
ever, below a certain critical value of λ, E decays to zero. On the other hand, above it E
goes to a positive vale (lasing).

Type C Vary λ from 20 to 25. Observe that E decays to zero with oscillation below a
critical value of λ. Above the critical value, E randomly oscillates (unstable laser).

5.5.3 Frequency Entrainment and Phase Synchronization

Rhythmical oscillations are ubiquitous phenomena such as heart beat, burst of neuron, circadian rhythm
and hands clapping. Each oscillation has its own frequency, phase, and amplitude. Consider a large number
of oscillators interacting each other. Each oscillator has a slightly different frequency and phase from each
others. With an appropriate interaction, the all oscillators begin oscillating in unison with the identical
frequency and the same phase despite that individual oscillators have different natural frequencies. This is
the phenomenon of synchronization.[7] For example imagine hand clapping at the end of a ballet performance.

APPLICATIONS IN PHYSICS 107

t
0 100 200 300 400 500

E
(t

)

-5

0

5

5

E

0
-5-20

0
D

10

0

-10
20

P

Figure 5.11: Left: Erroneous oscillation in the magnitude of electric field. Right: Three–dimensional phase
plot of E, P and D showing a strange attractor. Parameter values: Type C in Table 5.1 and λ = 23

At the beginning, the clapping is not unison but soon everyone is clapping at the same frequency and phase
with others. Most spectacular phenomenon is simultaneous flashing of thousands of fireflies in Southeast
Asia.[7, 8] An example in physics is synchronization of the array of Josephson junctions.[7]

We investigate a similar phenomena using the Kuramoto model. The dynamics of phase variables θ1 and
θ2 is described by a coupled ODEs[9]:

θ̇1 = ω1 + sin(θ2 − θ1) (5.41a)
θ̇2 = ω2 − sin(θ2 − θ1) (5.41b)

where ω1 and ω2 are natural frequencies of the individual phase oscillator. When there is no coupling,
each oscillator oscillates with its own frequency. This problem is similar to the two car problem (Example
5.4). However, the coupling is now nonlinear and more dramatic phenomena such as phase entrainment
and synchronization can be seen in this model. Program 5.9 integrates Eq. (5.41) with the 2nd-order
Runge-Kutta method. The results are plotted in Fig. 5.12. Initially the oscillators are in different phases
and periods. Despite of their different natural frequencies, they oscillates in the exactly the same period
(frequency entrainment) and with a constant phase difference (phase synchronization).

Exercise 5.3 Observe that for ω1 = 1.0 and ω2 = 2.2, frequency entrainment still takes place. However,
the phase difference no longer vanishes.
Exercise 5.4 Observe that for ω1 = 1.0 and ω2 = 3.2, neither frequency entrainment nor phase synchro-

nization occur. The difference between the two oscillators is too big,

5.5.4 Period of Oscillation

In Sec 3.6.1, we discussed how to evaluate the analytical expression of the period of oscillation using numerical
integration. Here we simulate the oscillation by solving the Newton’s equation of motion numerically. We
assume that the analytical form of the force, F (x) = −U ′(x), is known. You can pick any initial condition
consistent with the given energy E. For example, the initial position x0 is chosen somewhere between two

108 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

0 10 20
t

-1

-0.5

0

0.5

1
si

n
 3

3
1

3
2

0 10 20
t

-1

0

1

2

3

3
1-3

2
Figure 5.12: Left: The trajectory of the oscillators. Each oscillator has its own natural frequency ω1 = 1.0
and ω2 = 1.2. Initially the two oscillators are out of phase. Despite of these differences, they are quickly
synchronized and oscillate at the same frequency. Left: the phase difference rapidly changes at the beginning
but settles to a constant phase difference. [The 2nd-order Runge-Kutta is used with h = 0.01.]

turning points. The initial velocity is then determined by the energy conservation law

m

2 v
2
0 + U(x0) = E → v0 = ±

√
2(E − U(x0))

m
(5.42)

The sign determines the direction of initial velocity.
To determine the period of oscillation, we measure the time the particle comes back to the starting point.

To increase accuracy, we measure the time τ the particle returns to the starting point after N oscillations.
Then, the period is T = τ/N . One problem is that the time is discrete and we don’t know the exact time
the particle returned. Suppose that the particle passes the initial position between tn and tn+1. That means
tn < τ < tn+1 and xn < x0 < xn+1 (assuming that the direction of the initial velocity is positive.) Using
the Euler method, the time to reach the starting point is τ = tn + δ where delat is a positive solution of
quadratic equation

x0 = xn + vnδ + Fn
δ2

2m (5.43)

for δ = tn+1 − τ . Choosing the smaller root, the answer is

δ = −vn ±
√
v2

n − 2(xn − x0)Fn/m

Fn/m
(5.44)

One of the solutions are positive depending on the sign of the force Fn. Since xn −x0 may be very small, we
need to take care of the bit-off error discussed in Problem 1.1. Program 5.10 evaluates the period of simple
harmonic oscillator (see Example 5.5) using the Verlet method. With h = 0.05, the Verlet method predicts
T = 6.283159, in a good agreement with the exact answer T = 2π.

5.5.5 Pendulum

A pendulum consisting of a bob of mass m and a massless rod of length ℓ exhibits two types of motion,
oscillation around a stable equilibrium and rotation in one way. Using the angular coordinate, the equation

APPLICATIONS IN PHYSICS 109

t
0 10 20 30 40 50

3

-40

-30

-20

-10

0

10

Euler
Verlet

t
0 10 20 30 40 50

E
ne

rg
y

-10

-5

0

5

10

15
Euler
Verlet

Figure 5.13: The numerical instability with the Euler method. Left: Time evolution of angular coordinate θ.
The result of the Verlet method oscillates periodically as expected. However, the output of the Euler method
oscillates with increasing amplitude and diverges at the end. Right: Mechanical energy. The energy with
the Verlet method conserves but that of the Euler method keeps increasing. Integration step size h = 0.01
is used.

of motion of a simple pendulum is
Iθ̈ = −mgℓ sin θ (5.45)

where I = mℓ2 is the moment of inertia. Simplifying the equation,

θ̈ = −Ω2 sin θ (5.46)

where Ω =
√
g

ℓ
. Let integrate this equation using two different methods, Euler and Verlet methods. We are

not only interested in the coordinate but also the mechanical energy

E = Iω2

2 −mgℓ cos θ (5.47)

where ω = θ̇ is angular velocity. For simplicity, we use parameter values m = 1 kg and ℓ = 1m. The gravity
is g = 9.8m/s2. We start the motion as θ0 = 0.5 rad and ω0 = 0. We expect the oscillatory motion.
Figure 5.13 shows clearly unrealistic trajectory. Using the time step h = 0.01, the Euler method predicts
monotonic increase in the amplitude of oscillation and rotational motion begins after a certain time. The
energy monotonically increases in violation of the energy conservation law. It is clear that the Euler method
keeps moving away from the exact solution. This kind of behavior is called numerical instability. The Verlet
method , on the other hand, correctly predicts periodic oscillation and constant energy.

Exercise 5.5 Does the Euler method produce a resonable trajectory with a smaller h, say h = 0.001?

5.5.6 Scattering Angle

In Sec. 2.3.2, the scattering angle is given as an improper integral which we integrated numerically. Here,
we directly integrate the Newton’s equation and compare the results with the previous results. Due to the

110 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

conservation of momentum, the motion is confined in a plane determined by the velocity and position vectors.
Therefore, we consider trajectories only on the xy plane where x is the direction of the initial velocity. The
potential is

U(x, y) = k

r
e−r/a (5.48)

where r =
√
x2 + y2. The corresponding force on the particle is

Fx = − d
dxU(x, y) = kx

r2

(
1
r

+ 1
a

)
e−r/a (5.49a)

Fy = − d
dyU(x, y) = ky

r2

(
1
r

+ 1
a

)
e−r/a (5.49b)

Using
√
ma3/k and a as units of time and distance, respectively, the equations of motion becomes free of

parameters as

ẍ = x

r2

(
1
r

+ 1
)

e−r (5.50a)

ÿ = y

r2

(
1
r

+ 1
)

e−r (5.50b)

In this units, the energy is measured in k/a. Now, we need to specify the initial conditions. Assuming that
the particle is impinged along x axis with impact parameter b, x0 = −10, y0 = b, vy0 = 0, and vx0 =

√
2E.

The impact parameter b and energy E uniquely determine the trajectory.
Since the force does not depend on the velocity, the Verlet method can be used to integrate the coupled

ODE. When the particle leaves the scattering region (say, r > 10), we stop the integration. Program 5.12
solves the Newton equation and calculates the scattering angle

θ = cos−1(v0 · vf/v0vf) = cos−1(v0 · vf/2E) (5.51)

where vf is the final velocity. Since energy conserves v0vf = v2
0 = 2E.

The left panel of Fig. 5.14 shows several trajectories with different impact parameters forming a shadow
cone behind the target. The right panel plots the scattering angle as a function of impact parameter.

Exercise 5.6 Calculate the trajectories and scattering angle for k < 0.

5.5.7 Double Pendulum

A double pendulum is a popular example in classical mechanics courses. The Lagrangian approach beautifully
derives the equations of motion:

(m1 +m2)L1θ̈1 +m2L2θ̈2 cos(θ1 − θ2) +m2L2θ̇
2
2 sin(θ1 − θ2)

+ (m1 +m2)g sin θ1 = 0
(5.52a)

m2L1θ̈1 cos(θ1 − θ2) +m2L2θ̈2 −m2L1θ̇
2
1 sin(θ1 − θ2) +m2g sin θ2 = 0 (5.52b)

where the angular coordinates θ1 and θ2 are defined in Fig. 5.15. These equations of motion are awfully
complicated and there is little hope to find an analytical solution. Thus we resort to a numerical method.
Since Eqs (5.52) contains both θ̈1 and θ̈2, standard numerical methods cannot be applied. They must be

APPLICATIONS IN PHYSICS 111

x
-10 -5 0 5 10

y

-10

-5

0

5

10

Impact Parameter
-4 -2 0 2 4

S
ca

tte
rin

g
A

ng
le

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.14: Scattering by a screened Coulomb force. Left: trajectories with different impact parameters.
Notice the shadow cone behind the target where the particle cannot enter. Right: Scattering angle θ
determined by the simulation.

rewritten in such a way that a standard numerical method can be applied. After complicated algebra, we
find

ω̇1 = DE −BF

AD −BC
(5.53a)

ω̇2 = AF − CE

AD −BC
(5.53b)

θ̇1 = ω1 (5.53c)
θ̇2 = ω2 (5.53d)

where

A = (m1 +m2)L1 (5.54a)
B = m2L2 cos(θ1 − θ2) (5.54b)
C = m2L1 cos(θ1 − θ2) (5.54c)
D = m2L2 (5.54d)
E = −m2L2ω

2
2 sin(θ1 − θ2) − (m1 +m2)g sin θ1 (5.54e)

F = m2L1ω
2
1 sin(θ1 − θ2) −m2g sin θ2 (5.54f)

which are even more complicated but Eqs (5.53) are written in a standard form of coupled first order ODEs.
Program 5.13 solves Eqs. (5.53) using the 4th order Runge-Kutta method. In Fig. 5.15 a chaotic motion

of the double pendulum is shown. The left panel plots the two angular coordinates θ1 and θ2. No periodic
or other kind of regular motion is observed. The right panel shows the trajectory of the bottom bob in the
xy plane. Again no sign of regularity is seen in the motion.

Exercise 5.7 Try to find a regular motion with low energy (small amplitude oscillation).

112 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

t
0 50 100 150 200

3

-60

-40

-20

0

20

40

3
1
3

2

x
-2 0 2

y

-3

-2

-1

0

1

2

3

Figure 5.15: Chaotic motion of a double pendulum. Left: Two angular coordinates are randomly drifting.
Right: The trajectory of the bottom bob shows chaotic motion. Parameter values: m1 = 2 kg, m2 = 1 kg,
L1 = 1m, L2 = 2m, h = 0.02.]

5.6 Problems

5.1 Vanishing Friction A particle of mass m = 1 kg is initially moving freely at velocity v0 = 10m/s.
At t = 0, a frictional force

−γ0 e−t/τ v (5.55)
is applied, where the friction coefficient is γ0 = 0.1 kg/s and the decay constant τ = 2s. Find the
velocity v(t) up to t = 10τ using 2nd and 4th order Runge-Kutta methods and estimate the velocity of
the particle at t >> τ . Compare the results with the exact solution

v(t) = v0 exp
[
−γ0τ

m

(
1 − e−t/τ

)]
. (5.56)

5.2 FitzHugh-Nagumo Model of Neuron When electric current stimulate a neuron, the membrane
potential generates a spike or train of spikes. A simple mathematical model for such an excitable media
or relaxation oscillation is given by the FitzHugh-Nagumo model[10]:

v̇ = v − 1
3v

3 − w + I (5.57a)

ẇ = a(v + b− cw) (5.57b)

where v is the membrane potential, w a recovery variable which activate the outgoing current. I is the
incoming current which controls the dynamics. Typical parameter values are a = 0.08, b = 0.7, c = 0.8.
Find critical I above which the neuron is excited (the membrane potential periodically oscillates).

5.3 Spring Pendulum Consider a pendulum consisting of a bob of mass m and a spring (massless) of
natural frequency ω0 and natural length L0.[11] (See Fig 5.16.) Unlike regular pendulum, length L is a
dynamical variable as well as angle θ. The equations of motion are

L̈ = Lθ̇2 − ω2
0(L− L0) + g cos θ (5.58a)

Lθ̈ = −2L̇θ̇ − g sin θ (5.58b)

PROBLEMS 113

θ

L

m

Figure 5.16: A spring pendulum for Problem 5.3.

Using L0 and ω−1
0 as units for length and time, respectively, the equations of motion are simplified to

L̈ = Lθ̇2 − (L− 1) + a cos θ (5.59a)
Lθ̈ = −2L̇θ̇ − a sin θ (5.59b)

where a = g

L0ω2
0

. Find trajectories of the bob for various different values of a.

114 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

MATLAB Source Codes

Program 5.1

%**
%* Example 5.1 *
%* filename: ch05pr01.m *
%* program listing number: 5.1 *
%* *
%* This program solves Newton equation for a falling object *
%* using Euler and predictor-corrector methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
gamma=1.0;
g=9.8;
m=1.0;

% intial condition
v_ex(1)=0.0;
v_eu(1)=0.0;
v_pc(1)=0.0;
t(1)=0.0;

% integration parameters
tmax=10; % maximum time
N=1000; % maximum steps
h=tmax/N;% time step

for i=1:N-1
t(i+1)=t(i)+h; % time increment

% Euler method
F_eu=-gamma*v_eu(i)/m-g;
v_eu(i+1)=v_eu(i)+F_eu*h;

% Predictor-Corrector method
F_pc=-gamma*v_pc(i)/m-g;
v_pc(i+1)=v_pc(i)+F_pc*h; % predictor
F_pc =-gamma/m*(v_pc(i)+v_pc(i+1))/2-g;
v_pc(i+1)=v_pc(i)+F_pc*h; % corrector

% Exact solution
v_ex(i+1)=m*g/gamma*(exp(-gamma*t(i+1))-1);

end

subplot(1,2,1);
q=plot(t,v_eu,t,v_pc,t,v_ex);
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
set(q(3),'Color','black','Linewidth',2)

PROBLEMS 115

legend(q,{'Euler','Predictor-Corrector','Exact'});
legend(q,'Location','NorthEast');

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v_eu-v_ex),t,abs(v_pc-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'Euler','Predictor-Corrector'});
legend(p,'Location','SouthWest');

▲▲▲

Program 5.2

%**
%* Example 5.2 *
%* filename: ch05pr02.m *
%* program listing number: 5.2 *
%* *
%* This program solves Newton equation for a falling object *
%* using Runge-Kutta 2nd and 4th order methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
gamma=1.0;
g=9.8;
m=1.0;

% intial condition
v_rk2(1)=0.0;
v_rk4(1)=0.0;
v_pc(1)=0.0;
t(1)=0.0;

% integration parameters
tmax=10; % maximum time
N=1000; % maximum steps
h=tmax/N;% time step

for i=1:N-1
t(i+1)=t(i)+h; % time increment

% Runge-Kutta 2nd order
k1=-gamma*v_rk2(i)/m-g;
v_mid=v_rk2(i)+k1*h/2;

k2=-gamma*v_mid/m-g;
v_rk2(i+1)=v_rk2(i)+k2*h;

116 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

% RUnge-Kutta 4th order
k1=-gamma*v_rk4(i)/m-g;
v_mid=v_rk4(i)+k1*h/2;

k2=-gamma*v_mid/m-g;
v_mid=v_rk4(i)+k2*h/2;

k3=-gamma*v_mid/m-g;
v_end=v_rk4(i)+k3*h;

k4=-gamma*v_end/m-g;
v_rk4(i+1)=v_rk4(i)+h/6*(k1+2*(k2+k3)+k4);

% Exact solution
v_ex(i+1)=m*g/gamma*(exp(-gamma*t(i+1))-1);

end

subplot(1,2,1);
q=plot(t,v_rk2,t,v_rk4,t,v_ex);
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
set(q(3),'Color','black','Linewidth',2)
legend(q,{'RK2','RK4','Exact'});
legend(q,'Location','NorthEast');

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v_rk2-v_ex),t,abs(v_rk4-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'RK2','RK4'});
legend(p,'Location','SouthWest');

▲▲▲

Program 5.3

%**
%* Example 5.3 *
%* filename: ch05pr03.m *
%* program listing number: 5.3 *
%* *
%* This program solves Newton equation for a falling object *
%* using the Runge-Kutta-Fehlberg method. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/30/2018. *
%**
clear all;

% system parameters
gamma=1.0;

PROBLEMS 117

g=9.8;
m=1.0;
% time span
tspan=[0,10];
% initial condition
y0=0;
% relative tolerence
rtol=1e-5;

% define the right hand side
f = @(t,v) -gamma*v - m*g;

% use RK45 method
opts=odeset('RelTol',rtol);
[t,v]=ode45(f,tspan,y0,opts);

% exact solution
v_ex = m*g/gamma * (exp(-gamma*t)-1);

subplot(1,2,1);
q=plot(t,v,'o',t,v_ex,'-',t,t*0,'o');
xlabel('t','fontsize',14);
ylabel('v(t)','fontsize',14);
set(q(1),'Color','red','Linewidth',2);
set(q(2),'Color','black','Linewidth',2);
set(q(3),'Color','blue');
legend(q,'RK45','Exact','time step')
legend(q,'Location','East');
hold off

subplot(1,2,2);
% Plot the absolute errors
p=semilogy(t,abs(v-v_ex));

% Plotting options
xlabel('t','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue','Linewidth',2);

▲▲▲

Program 5.4

%**
%* Example 5.4 *
%* filename: ch05pr04.m *
%* program listing number: 5.4 *
%* *
%* This program solves Newton equation for interacting two cars *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% Control parameters
tmax=8; N=400; h=tmax/N;

% initial conditions
v1(1)=1.2; v2(1)=1.0; t(1)=0;

118 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1) = t(1)+n*h;
k1 = v2(n)-v1(n);
l1 = -(v2(n)-v1(n));
mid1 = v1(n)+k1*h/2;
mid2 = v2(n)+l1*h/2;
k2 = mid2-mid1;
l2 = -(mid2-mid1);
v1(n+1)=v1(n)+k2*h;
v2(n+1)=v2(n)+l2*h;

end

subplot(1,2,1);
p=plot(t,v1,t,v2);
xlabel('t');
ylabel(texlabel('velocity'));
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{texlabel('v_1'),texlabel('v_2')});
legend(p,'Location','SouthEast');

subplot(1,2,2);
q=plot(t,v1-v2);
xlabel('t');
ylabel(texlabel('v_1-v_2'));
set(q,'Linewidth',2);

▲▲▲

Program 5.5

%**
%* Example 5.5 *
%* filename: ch05pr05.m *
%* program listing number: 5.5 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameter
omega=1;

% initial conditions
x(1)=1;
v(1)=0;
t(1)=0;
x_ex(1)=cos(0);

% control parameters
tmax=8*pi/omega;
N=500;
h=tmax/N

for n=1:N-1

PROBLEMS 119

% 4th-order Runge-Kutta
kv1=-omegaˆ2*x(n);
kx1=v(n);

v_mid = v(n)+kv1*h/2;
x_mid = x(n)+kx1*h/2;
kv2 = -omegaˆ2*x_mid;
kx2 = v_mid;

v_mid = v(n)+kv2*h/2;
x_mid = x(n)+kx2*h/2;
kv3 = -omegaˆ2*x_mid;
kx3 = v_mid;

v_end = v(n)+kv3*h;
x_end = x(n)+kx3*h;
kv4 = -omegaˆ2*x_end;
kx4 = v_end;

v(n+1)=v(n)+(kv1+2*(kv2+kv3)+kv4)*h/6;
x(n+1)=x(n)+(kx1+2*(kx2+kx3)+kx4)*h/6;
t(n+1)=t(1)+n*h;

% exact soution
x_ex(n+1)=cos(omega*t(n+1));

end

% plot trajectories
subplot(1,2,1);
q=plot(t,x,'o',t,x_ex);
xlabel('t');
ylabel('displacement');
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',1);
legend(q,{'RK4','Exact'});
legend(q,'Location','East');

% plot absolute error
subplot(1,2,2);
p=semilogy(t,abs(x-x_ex));
xlabel('t');
ylabel('absolute error');
set(p,'Color','blue','Linewidth',2);

▲▲▲

Program 5.6

%**
%* Example 5.6 *
%* filename: ch05pr06.m *
%* program listing number: 5.6 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Verlet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

120 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

% system parameter
omega=1;

% initial conditions
x(1)=1;
v(1)=0;
t(1)=0;
x_ex(1)=cos(0);

% control parameters
tmax=8*pi/omega;
N=500;
h=tmax/N;

% the first Euler step
x(2) = x(1) + v(1)*h - omegaˆ2*x(1)*hˆ2/2;

for n=2:N-1
% Verlet method
x(n+1)=2*x(n)-x(n-1) - omegaˆ2*x(n)*hˆ2;
t(n+1)=t(1)+n*h;

% exact soution
x_ex(n+1)=cos(omega*t(n+1));

end

% plot trajectories
subplot(1,2,1);
q=plot(t,x,'o',t,x_ex);
xlabel('t');
ylabel('displacement');
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',1);
legend(q,{'Verlet','Exact'});
legend(q,'Location','East');

% plot absolute error
subplot(1,2,2);
p=semilogy(t,abs(x-x_ex));
xlabel('t');
ylabel('absolute error');
set(p,'Color','blue','Linewidth',2);

▲▲▲

Program 5.7

%**
%* Section 5.5.1 *
%* filename: ch05pr07.m *
%* program listing number: 5.7 *
%* *
%* This program solves the Brusselator model *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% fixed parameter

PROBLEMS 121

a=1;

% control parameter
b=input('Enter value for b [1.5-2.5] =');

%initial conditions
x(1)=1;
y(1)=1;
t(1)=0;

% duration
tmax=100;

% number of integration steps
N=2000;

% step size
h=tmax/N;

for n=1:N-1
% 4th-order Runge-Kutta
kx1=a-(b+1)*x(n)+x(n)ˆ2*y(n);
ky1=b*x(n)-x(n)ˆ2*y(n);

x_mid = x(n)+kx1*h/2;
y_mid = y(n)+ky1*h/2;
kx2 = a - (b+1)*x_mid+x_midˆ2*y_mid;
ky2 = b*x_mid-x_midˆ2*y_mid;

x_mid = x(n)+kx2*h/2;
y_mid = y(n)+ky2*h/2;
kx3 = a - (b+1)*x_mid+x_midˆ2*y_mid;
ky3 = b*x_mid-x_midˆ2*y_mid;

x_end = x(n)+kx3*h;
y_end = y(n)+ky3*h;
kx4 = a - (b+1)*x_end+x_endˆ2*y_end;
ky4 = b*x_end-x_endˆ2*y_end;

x(n+1)=x(n)+(kx1+2*(kx2+kx3)+kx4)*h/6;
y(n+1)=y(n)+(ky1+2*(ky2+ky3)+ky4)*h/6;
t(n+1)=t(1)+n*h;

end

% plot individual trajectories
subplot(1,2,1);
p=plot(t,x,t,y);
xlabel('t');
ylabel('concentration');
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'x','y'});
legend(p,'Location','SouthEast');

% plot phase trajectory
subplot(1,2,2);
q=plot(x,y);
xlabel('x');
ylabel('y');
set(q(1),'color','blue');

▲▲▲

122 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

Program 5.8

%**
%* Section 5.5.2 *
%* filename: ch05pr08.m *
%* program listing number: 5.8 *
%* *
%* This program solves the Maxwell-Bloch model of laser dynamics *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parametes uncomment ONLY the desired set
%Type A
%gamma1=0.1; gamma2=2; gamma3=3; c1=0.25; c2=0.2; c3=1;
%Type B
%gamma1=0.1; gamma2=10; gamma3=0.25; c1=1; c2=0.5; c3=1;
%Type C
gamma1=1; gamma2=0.1; gamma3=0.25; c1=1; c2=0.1; c3=1;

lambda=input('Enter a value for lambda = ');

% Control parameters
tmax=500; N=5000; h=tmax/N;

% initial conditions
E(1)=1.0; P(1)=1.0; D(1)=1.0; t(1)=0;

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1)=t(1)+n*h;
FE_n=-gamma1*E(n)+c1*P(n);
FP_n=-gamma2*P(n)+c2*E(n)*D(n);
FD_n=-gamma3*(D(n)-lambda)-c3*E(n)*P(n);
E_mid = E(n)+FE_n*h/2;
P_mid = P(n)+FP_n*h/2;
D_mid = D(n)+FD_n*h/2;
FE_mid=-gamma1*E_mid+c1*P_mid;
FP_mid=-gamma2*P_mid+c2*E_mid*D_mid;
FD_mid=-gamma3*(D_mid-lambda)-c3*E_mid*P_mid;
E(n+1)=E(n)+FE_mid*h;
P(n+1)=P(n)+FP_mid*h;
D(n+1)=D(n)+FD_mid*h;

end

% plot the dynamics of E
subplot(1,2,1);
plot(t,E);
xlabel('t');
ylabel('E(t)');

% plot 3D phase trajectory
subplot(1,2,2);
plot3(E,D,P);
xlabel('E');
ylabel('D');
zlabel('P');
grid on

PROBLEMS 123

▲▲▲

Program 5.9

%**
%* Section 5.5.3 *
%* filename: ch05pr09.m *
%* program listing number: 5.9 *
%* *
%* This program solves the synchronization of two phase oscillators *
%* using 2nd-order Runge-Kutta methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

omega1=1.0; omega2=1.2;

% Control parameters
tmax=20; N=2000; h=tmax/N;

% initial conditions
theta1(1)=pi; theta2(1)=0; t(1)=0;

% 2nd-order Runge-Kutta method
for n=1:N-1

t(n+1) = t(1)+n*h;
k1 = omega1 + sin(theta2(n)-theta1(n));
l1 = omega2 - sin(theta2(n)-theta1(n));
mid1 = theta1(n)+k1*h/2;
mid2 = theta2(n)+l1*h/2;
k2 = omega1 + sin(mid2-mid1);
l2 = omega2 - sin(mid2-mid1);
theta1(n+1)=theta1(n)+k2*h;
theta2(n+1)=theta2(n)+l2*h;

end

% plot the trajectories of oscillators
subplot(1,2,1);
p=plot(t,sin(theta1),t,sin(theta2));
xlabel('t');
ylabel(texlabel('sin theta'));
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{texlabel('theta_1'),texlabel('theta_2')});
legend(p,'Location','SouthEast');

% plot the phase difference
subplot(1,2,2);
q=plot(t,theta1-theta2);
xlabel('t');
ylabel(texlabel('theta_1-theta_2'));
set(q,'Linewidth',2);

▲▲▲

Program 5.10

%**

124 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

%* Section 5.5.4 *
%* filename: ch05pr10.m *
%* program listing number: 5.10 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. Then, it determines the *
%* period of the oscillation. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameter
omega=1; mass=1; spring_k=mass*omegaˆ2;

% initial conditions
E=1;
t(1)=0; x(1)=0;
v(1)=sqrt(2*(E-spring_k*x(1)ˆ2/2)/mass);

% control parameters
h=0.01;
N=0; Nmax=10;
n=1;

% the first Euler step
x(2) = x(1) + v(1)*h - omegaˆ2*x(1)*hˆ2/2;

while N<Nmax
n=n+1;
% Verlet method
x(n+1)=2*x(n)-x(n-1) - omegaˆ2 * x(n) * hˆ2;
v(n) = (x(n+1)-x(n-1))/(2*h);
t(n+1)=t(1)+n*h;

% Check if it returned to the tarting point
if x(n+1)-x(1)>0 & x(n)-x(1)< 0

N=N+1;
end

end

% adjustment of the return time
Fn = -omegaˆ2*x(n)/mass;
if Fn>0

delta = (-2*(x(n)-x(1)))/(v(n)+sqrt(v(n)ˆ2-2*(x(n)-x(1))*Fn));
else

delta = (-v(n)-sqrt(v(n)ˆ2-2*(x(n)-x(1))*Fn))/Fn;
end

tau = t(n)+delta;
period = tau/N;

fprintf('Period: Verlet = %7.6f, Exact = %7.6f \n',period,2*pi);

▲▲▲

Program 5.11

%**
%* Section 5.5.5 *

PROBLEMS 125

%* filename: ch05pr11.m *
%* program listing number: 5.11 *
%* *
%* This program finds the trajectory of a pendulum using *
%* Euler and Verlet methods. Euler method shows its numerical *
%* instability and the trajectory diverges. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**

% system parameters
mass=1; L=1; g=9.8; Omega=sqrt(g/L); I=mass*Lˆ2;

% initial conditions
theta1(1)=0.5; omega1(1)=0;t(1)=0;
theta2(1)=0.5; omega2(1)=0;
E1(1) = - mass*g*L*cos(theta1(1));
E2(1) = - mass*g*L*cos(theta2(1));

% control parameters
tmax=50; N=5000; h=tmax/N;

% Euler method
for i=1:N-1

t(i+1)=t(1)+i*h;
omega1(i+1) = omega1(i) - Omegaˆ2 * sin(theta1(i)) * h;
theta1(i+1) = theta1(i) + omega1(i)*h;
E1(i+1) = I/2 * omega1(i+1)ˆ2 - mass*g*L*cos(theta1(i+1));

end

% Verlet method
theta2(2) = theta2(1) + omega2(1)*h- Omegaˆ2 * sin(theta2(1))*hˆ2/2;
for i=2:N

theta2(i+1)=2*theta2(i)-theta2(i-1)-Omegaˆ2 * sin(theta2(i))*hˆ2;
omega2(i) = (theta2(i+1)-theta2(i-1))/(2*h);
E2(i)=I/2 * omega2(i)ˆ2 - mass*g*L*cos(theta2(i));

end

subplot(1,2,1);
q=plot(t(1:N),theta1(1:N),t(1:N),theta2(1:N));
xlabel('t');
ylabel(texlabel('theta'));
set(q(1),'Color','blue','Linewidth',2);
set(q(2),'Color','red','Linewidth',2);
legend(q,{'Euler','Verlet'});
legend(q,'Location','SouthWest');

subplot(1,2,2);
p=plot(t(1:N),E1(1:N),t(1:N),E2(1:N));
xlabel('t');
ylabel('Energy');
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,{'Euler','Verlet'});
legend(p,'Location','NorthWest');

▲▲▲

Program 5.12

126 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

%**
%* Section 5.5.6 *
%* filename: ch05pr12.m *
%* program listing number: 5.12 *
%* *
%* This program calculate the trajectory of a particle scattered by *
%* Yukawa potential using he Valet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
lear all;

E=input('Enter Energy =');

% control parameter
bmax=3;
N=10;
db=bmax/N;
h=0.01;

subplot(1,2,1);

for i=1:2*N+1

% set impact parameter
b(i)=db*(i-N-1);

% initial conditions
x(1)=-10; y(1)=b(i); vx(1)=sqrt(2*E); vy(1)=0;

% first Euler step
r = sqrt(x(1)ˆ2+y(1)ˆ2);
Fx=x(1)/rˆ2 * (1/r+1) * exp(-r);
Fy=y(1)/rˆ2 * (1/r+1) * exp(-r);
x(2)=x(1)+vx(1)*h+Fx*hˆ2/2;
y(2)=y(1)+vy(1)*h+Fy*hˆ2/2;

% Verlet method
n=2;
while abs(x(n))<10

r = sqrt(x(n)ˆ2+y(n)ˆ2);
Fx=x(n)/rˆ2 * (1/r+1) * exp(-r);
Fy=y(n)/rˆ2 * (1/r+1) * exp(-r);
x(n+1)=2*x(n)-x(n-1)+Fx*hˆ2;
y(n+1)=2*y(n)-y(n-1)+Fy*hˆ2;
n=n+1;

end

% final velocity
vfx=(x(n)-x(n-2))/(2*h);
vfy=(y(n)-y(n-2))/(2*h);

% scattering angle
theta(i) = acos((vx(1)*vfx+vy(1)*vfy)/(2*E));

% plot the trajctory
plot(x(1:n),y(1:n));
hold on

end

PROBLEMS 127

% draw a target atom
p=plot(0,0,'o');
set(p,'Color','red','Linewidth',3);
hold off

axis([-10,10,-10,10]);
xlabel('x');
ylabel('y');

% plot scattering angle
subplot(1,2,2);
q=plot(b,theta);
xlabel('Impact Parameter');
ylabel('Scattering Angle theta');
set(q,'Linewidth',2);

▲▲▲

Program 5.13

%**
%* Section 5.5.7 *
%* filename: ch05pr13.m *
%* program listing number: 5.13 *
%* *
%* This program calculate the trajectory of a double pendulum by *
%* the 4th order Runge-Kutta method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
clear all;

% system parameters
global m1 m2 L1 L2 g
m1=2; m2=1; L1=1; L2=2; g=9.8;

% initial conditions
q1(1)=1.5;
q2(1)=3.0;
w1(1)=0;
w2(1)=0.0;
t(1)=0;
V = -(m1+m2)*g*L1*cos(q1(1))-m2*g*L2*cos(q2(1));
T = m1*L1ˆ2*w1(1)ˆ2/2+m2*(L1ˆ2*w1(1)ˆ2+L2ˆ2*w2(1)ˆ2 ...

+2*L1*L2*w1(1)*w2(1)*cos(q1(1)-q2(1)))/2;
E = T+V;

% control parameter
tmax=200;
N=10000;
h=tmax/N;

for n=1:N-1
% 4th-order Runge-Kutta
dotw=DP(q1(n),q2(n),w1(n),w2(n));
kw11=dotw(1);
kw21=dotw(2);
kq11=w1(n);

128 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

kq21=w2(n);

w1m = w1(n)+kw11*h/2;
w2m = w2(n)+kw21*h/2;
q1m = q1(n)+kq11*h/2;
q2m = q2(n)+kq21*h/2;

dotw=DP(q1m,q2m,w1m,w2m);
kw12 = dotw(1);
kw22 = dotw(2);
kq12 = w1m;
kq22 = w2m;

w1m = w1(n)+kw12*h/2;
w2m = w2(n)+kw22*h/2;
q1m = q1(n)+kq12*h/2;
q2m = q2(n)+kq22*h/2;

dotw=DP(q1m,q2m,w1m,w2m);
kw13 = dotw(1);
kw23 = dotw(2);
kq13 = w1m;
kq23 = w2m;

w1f = w1(n)+kw13*h;
w2f = w2(n)+kw23*h;
q1f = q1(n)+kq13*h;
q2f = q2(n)+kq23*h;

dotw=DP(q1f,q2f,w1f,w2f);
kw14 = dotw(1);
kw24 = dotw(2);
kq14 = w1f;
kq24 = w2f;

q1(n+1)=q1(n)+(kq11+2*(kq12+kq13)+kq14)*h/6;
q2(n+1)=q2(n)+(kq21+2*(kq22+kq23)+kq24)*h/6;
w1(n+1)=w1(n)+(kw11+2*(kw12+kw13)+kw14)*h/6;
w2(n+1)=w2(n)+(kw21+2*(kw22+kw23)+kw24)*h/6;

V = -(m1+m2)*g*L1*cos(q1(n+1))-m2*g*L2*cos(q2(n+1));
T = m1*L1ˆ2*w1(n+1)ˆ2/2+m2*(L1ˆ2*w1(n+1)ˆ2+L2ˆ2*w2(n+1)ˆ2 ...

+2*L1*L2*w1(n+1)*w2(n+1)*cos(q1(n+1)-q2(n+1)))/2;
E(n+1)=T+V;
t(n+1)=t(1)+n*h;

end

% plot angular coordinates
subplot(1,2,1);
p=plot(t,q1,t,q2);
xlabel('t');
ylabel(texlabel('theta'));
set(p(1),'Color','blue','Linewidth',2);
set(p(2),'Color','red','Linewidth',2);
legend(p,texlabel('theta_1'),texlabel('theta_2'));
legend('Location','SouthWest');

% trajectory of the second bob in xy coordiates
subplot(1,2,2);
axis square;
x2=L1*sin(q1)+L2*sin(q2);

PROBLEMS 129

y2=-L1*cos(q1)-L2*cos(q2);
plot(x2,y2);
xlabel('x');
ylabel('y');

Python Source Codes

Program 5.1
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.1 *
%* filename: ch05pr01.py *
%* program listing number: 5.1 *
%* *
%* This program solves Newton equation for a falling object *
%* using Euler and predictor-corrector methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/20/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=1.0
g=9.8
m=1.0

integration parameters
tmax=10 # maximum time
N=1000 # maximum steps
h=tmax/N # time step

set arrays
v_ex=np.zeros(N+1)
v_eu=np.zeros(N+1)
v_pc=np.zeros(N+1)
t=np.linspace(0,N,N+1)*h

intial condition
v_ex[0]=0.0
v_eu[0]=0.0
v_pc[0]=0.0

for i in range(0,N):
Euler method
F_eu = -gamma*v_eu[i]/m - g
v_eu[i+1] = v_eu[i] + F_eu*h

Predictor-Corrector method
F_pc = -gamma*v_pc[i]/m - g
v_pc[i+1] = v_pc[i] + F_pc*h; # predictor
F_pc = -gamma/m*(v_pc[i]+v_pc[i+1])/2 - g

130 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

v_pc[i+1] = v_pc[i] + F_pc*h # corrector

Exact solution
v_ex[i+1] = m*g/gamma*(np.exp(-gamma*t[i+1])-1)

plt.ioff()
plt.figure(figsize=(12,5))

Plot the solutions
plt.subplot(1,2,1);
plt.plot(t,v_eu,'-b',label='Euler')
plt.plot(t,v_pc,'-r',label='Predictor-Corrector')
plt.plot(t,v_ex,'-k',label='Exact')
plt.xlabel('t')
plt.ylabel('v(t)')
plt.legend(loc=1)

Plot the absolute errors
plt.subplot(1,2,2)
plt.semilogy(t,abs(v_eu-v_ex),'-b',label='Euler')
plt.semilogy(t,abs(v_pc-v_ex),'-r',label='Predictor-Corrector')

plt.xlabel('t')
plt.ylabel('absolute error')
plt.legend(loc=3)
plt.show()

▲▲▲

Program 5.2
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.2 *
%* filename: ch05pr02.m *
%* program listing number: 5.2 *
%* *
%* This program solves Newton equation for a falling object *
%* using Runge-Kutta 2nd and 4th order methods. *
%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameters
gamma=1.0
g=9.8
m=1.0

integration parameters
tmax=10 # maximum time
N=1000 # maximum steps
h=tmax/N # time step

PROBLEMS 131

set arrays
v_rk45=np.zeros(N+1)
v_ex=np.zeros(N+1)
t=

for i in range(0,N):

Runge-Kutta 2nd order
k1 = -gamma*v_rk2[i]/m - g
v_mid = v_rk2[i] + k1*h/2.0
k2 = -gamma*v_mid/m - g
v_rk2[i+1] = v_rk2[i] + k2*h

RUnge-Kutta 4th order
k1 = -gamma*v_rk4[i]/m - g
v_mid = v_rk4[i] + k1*h/2.0
k2 = -gamma*v_mid/m - g
v_mid = v_rk4[i] + k2*h/2
k3 = -gamma*v_mid/m - g
v_end = v_rk4[i] + k3*h
k4 = -gamma*v_end/m - g
v_rk4[i+1] = v_rk4[i] + (k1+2*(k2+k3)+k4)*h/6.0

Exact solution
v_ex[i+1] = m*g/gamma*(np.exp(-gamma*t[i+1])-1)

plt.ioff()
plt.figure(figsize=(12,5))

Plot the solutions
plt.subplot(1,2,1);
plt.plot(t,v_rk2,'-b',label='RK2')
plt.plot(t,v_rk4,'-r',label='RK4')
plt.plot(t,v_ex,'-k',label='Exact')
plt.xlabel('t')
plt.ylabel('v(t)')
plt.legend(loc=1)

Plot the absolute errors
plt.subplot(1,2,2)
plt.semilogy(t,abs(v_rk2-v_ex),'-b',label='RK2')
plt.semilogy(t,abs(v_rk4-v_ex),'-r',label='RK4')

plt.xlabel('t')
plt.ylabel('absolute error')
plt.legend(loc=3)
plt.show()

▲▲▲

Program 5.3
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.3 *
%* filename: ch05pr03.py *
%* program listing number: 5.3 *
%* *
%* This program solves Newton equation for a falling object *
%* using the Runge-Kutta-Fehlberg method. *

132 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

%* m = mass of the object *
%* g = acceleration due to gravity *
%* gamma = frictional coefficient *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/30/2018. *
%**
"""

import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

define the right hand side of ODE
def func(t,v):
return -gamma*v-m*g

if __name__ == "__main__":

system parameters
gamma=1.0
m=1.0
g=9.8
time span
tspan=[0,10]
initial condition (must be ndarray)
y0=[0]
#relative tolerence
rtol=1e-5

use RK45 method
sol=solve_ivp(func,tspan,y0,method='RK45',rtol=rtol)
save the results
t=sol.t
v=list(sol.y.flat)

exact solution
v_ex=m*g/gamma * (np.exp(-gamma*t)-1)

plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,v,'or',label="RK45")
plt.plot(t,v_ex,'-k',label="Exact")
plt.plot(t,t*0,'ob',label="Time step")
plt.xlabel('t')
plt.ylabel('velocity')
plt.legend(loc=0)

plt.subplot(1,2,2)
plt.semilogy(t,abs(v-v_ex),'-k')
plt.xlabel('t')
plt.ylabel("absolute error")
plt.show()

▲▲▲

Program 5.4
#!/usr/bin/env python3

PROBLEMS 133

-*- coding: utf-8 -*-
"""
%**
%* Example 5.4 *
%* filename: ch05pr04.py *
%* program listing number: 5.4 *
%* *
%* This program solves Newton equation for interacting two cars *
%* using Runge-Kutta 2nd order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

Control parameters
tmax=8; N=400; h=tmax/N;

t=np.linspace(0,tmax,N+1)
v1=np.zeros(N+1)
v2=np.zeros(N+1)

#initial conditions
v1[0]=1.2; v2[0]=1.0

2nd-order Runge-Kutta method
for n in range(0,N):

k1 = v2[n]-v1[n]
l1 = -(v2[n]-v1[n])
mid1 = v1[n]+k1*h/2
mid2 = v2[n]+l1*h/2
k2 = mid2-mid1
l2 = -(mid2-mid1)
v1[n+1]=v1[n]+k2*h
v2[n+1]=v2[n]+l2*h

plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,v1,'-b',label="v_1")
plt.plot(t,v2,'-r',label="v_2")
plt.xlabel('t')
plt.ylabel('velocity')
plt.legend(loc=1)

plt.subplot(1,2,2)
plt.plot(t,v1-v2,'-k')
plt.xlabel('t')
plt.ylabel("v_1-v_2")
plt.show()

▲▲▲

Program 5.5
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**

134 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

%* Example 5.5 *
%* filename: ch05pr05.py *
%* program listing number: 5.5 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameter
omega=1.0

control parameters
tmax=8.0*np.pi/omega
N=500
h=tmax/N

t=np.linspace(0,tmax,N+1)
x=np.zeros(N+1)
v=np.zeros(N+1)

exact soution
x_ex=np.cos(omega*t)

initial conditions
x[0]=1.0
v[0]=0.0

for n in range(0,N):
4th-order Runge-Kutta
kv1=-omega**2*x[n];
kx1=v[n];

v_mid = v[n]+kv1*h/2.0
x_mid = x[n]+kx1*h/2.0
kv2 = -omega**2*x_mid
kx2 = v_mid

v_mid = v[n]+kv2*h/2.0
x_mid = x[n]+kx2*h/2.0
kv3 = -omega**2*x_mid
kx3 = v_mid

v_end = v[n]+kv3*h
x_end = x[n]+kx3*h
kv4 = -omega**2*x_end
kx4 = v_end

v[n+1]=v[n]+(kv1+2.0*(kv2+kv3)+kv4)*h/6.0
x[n+1]=x[n]+(kx1+2.0*(kx2+kx3)+kx4)*h/6.0

plot trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)

PROBLEMS 135

plt.plot(t,x,'ob',label='RK4')
plt.plot(t,x_ex,'-r',label='Exact')
plt.xlabel('t')
plt.ylabel('displacement')
plt.legend(loc=1)

plot absolute error
plt.subplot(1,2,2)
plt.semilogy(t,abs(x-x_ex),'-k')
plt.xlabel('t');
plt.ylabel('absolute error')
plt.show()

▲▲▲

Program 5.6
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 5.6 *
%* filename: ch05pr06.py *
%* program listing number: 5.6 *
%* *
%* This program solves Newton equation for simple harmonic oscillator *
%* using Verlet method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

system parameter
omega=1;

control parameters
tmax=8.0*np.pi/omega
N=500
h=tmax/N

t=np.linspace(0,tmax,N+1)
x=np.zeros(N+1)
v=np.zeros(N+1)

exact soution
x_ex=np.cos(omega*t)

initial conditions
x[0]=1.0
v[0]=0.0

the first Euler step
x[1] = x[0] + v[0]*h - omega**2*x[0]*h**2/2.0

for n in range(1,N):
Verlet method
x[n+1]=2*x[n]-x[n-1] - omega**2*x[n]*h**2;

136 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

plot trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1)
plt.plot(t,x,'ob',label='Verlet')
plt.plot(t,x_ex,'-r',label='Exact')
plt.xlabel('t')
plt.ylabel('displacement')
plt.legend(loc=1)

plot absolute error
plt.subplot(1,2,2)
plt.semilogy(t,abs(x-x_ex),'-k')
plt.xlabel('t');
plt.ylabel('absolute error')
plt.show()

▲▲▲

Program 5.7
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 5.5.1 *
%* filename: ch05pr07.py *
%* program listing number: 5.7 *
%* *
%* This program solves the Brusselator model *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

fixed parameter
a=1.0

control parameter
b=np.float(input('Enter value for b [1.5-2.5] ='))

duration
tmax=100
number of integration steps
N=2000
step size
h=tmax/N

t=np.linspace(0,tmax,N+1)
x=np.zeros(N+1)
y=np.zeros(N+1)

#initial conditions
x[0]=1.0
y[0]=1.0

for n in range(0,N):

PROBLEMS 137

4th-order Runge-Kutta
kx1=a-(b+1)*x[n]+x[n]**2*y[n]
ky1=b*x[n]-x[n]**2*y[n]

x_mid = x[n]+kx1*h/2.0
y_mid = y[n]+ky1*h/2.0
kx2 = a - (b+1.0)*x_mid+x_mid**2*y_mid
ky2 = b*x_mid-x_mid**2*y_mid

x_mid = x[n]+kx2*h/2.0
y_mid = y[n]+ky2*h/2.0
kx3 = a - (b+1.0)*x_mid+x_mid**2*y_mid
ky3 = b*x_mid-x_mid**2*y_mid

x_end = x[n]+kx3*h
y_end = y[n]+ky3*h
kx4 = a - (b+1.0)*x_end+x_end**2*y_end
ky4 = b*x_end-x_end**2*y_end

x[n+1]=x[n]+(kx1+2.0*(kx2+kx3)+kx4)*h/6.0
y[n+1]=y[n]+(ky1+2.0*(ky2+ky3)+ky4)*h/6.0

plot individual trajectories
plt.ioff()
plt.figure(figsize=(12,5))

plt.subplot(1,2,1);
plt.plot(t,x,'-b',label='x')
plt.plot(t,y,'-r',label='y')
plt.xlabel('t');
plt.ylabel('concentration');
plt.legend(loc=1)

plot phase trajectory
plt.subplot(1,2,2)
plt.plot(x,y,'-b')
plt.xlabel('x')
plt.ylabel('y');
plt.show()

▲▲▲

Program 5.8
#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Section 5.5.2 *
%* filename: ch05pr08.py *
%* program listing number: 5.8 *
%* *
%* This program solves the Maxwell-Bloch model of laser dynamics *
%* using Runge-Kutta 4th order methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/22/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

138 ORDINARY DIFFERENTIAL EQUATIONS I:INITIAL VALUE PROBLEMS

system parametes uncomment ONLY the desired set
gamma1_set = {0: 0.1, 1: 0.1, 2: 1.0}
gamma2_set = {0: 2.0, 1: 10.0, 2: 0.1}
gamma3_set = {0: 3.0, 1: 0.25, 2: 0.25}
c1_set = {0: 0.25, 1: 1.0, 2: 1.0}
c2_set = {0: 0.2, 1: 0.5, 2: 0.1}
c3_set = {0: 1.0, 1: 1.0, 2: 1.0}

param=np.int(input('Choose a parameter set [0-2] ='))
gamma1=gamma1_set.get(param)
gamma2=gamma2_set.get(param)
gamma3=gamma3_set.get(param)
c1=c1_set.get(param)
c2=c2_set.get(param)
c3=c3_set.get(param)

lam=np.float(input('Enter a value for lambda = '))

Control parameters
tmax=500; N=5000; h=tmax/N
t=np.linspace(0,tmax,N+1)

E=np.zeros(N+1)
P=np.zeros(N+1)
D=np.zeros(N+1)

initial conditions
E[0]=1.0; P[0]=1.0; D[0]=1.0

2nd-order Runge-Kutta method
for n in range(0,N):

FE_n=-gamma1*E[n]+c1*P[n]
FP_n=-gamma2*P[n]+c2*E[n]*D[n]
FD_n=-gamma3*(D[n]-lam)-c3*E[n]*P[n]
E_mid = E[n]+FE_n*h/2.0
P_mid = P[n]+FP_n*h/2.0
D_mid = D[n]+FD_n*h/2.0
FE_mid=-gamma1*E_mid+c1*P_mid
FP_mid=-gamma2*P_mid+c2*E_mid*D_mid
FD_mid=-gamma3*(D_mid-lam)-c3*E_mid*P_mid
E[n+1]=E[n]+FE_mid*h
P[n+1]=P[n]+FP_mid*h
D[n+1]=D[n]+FD_mid*h

plot the dynamics of E
plt.ioff()
fig=plt.figure(figsize=(12,5))
ax=fig.add_subplot(1,2,1)
ax.plot(t,E)
ax.set_xlabel('t')
ax.set_ylabel('E(t)')

plot 3D phase trajectory
ax = fig.add_subplot(1,2,2,projection='3d')
ax.plot(D, E, P)
ax.set_xlabel('D')
ax.set_ylabel('E')
ax.set_zlabel('P')
plt.show()

PROBLEMS 139

▲▲▲

Bibliography

[1] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

[2] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 8.3.

[3] Albert Goldbeter. Biochemical Oscillations and Ceulluar Rhythms. Cambridge University Press, 1996.

[4] Irving R. Epstein and John A. Pojman. An Introduction to Nonlinear Chemical DynaChaos – Ocilla-
tions, Waves,Patterns. and Chaos. Oxford University Press, 1998.

[5] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 3.3.

[6] G. L. Baker and J. P. Gollub. Chaotiintroduction – an introduction. Cambridge University Press, 2nd
edition, 1996. Section 7.1.

[7] Steven Strogatz. Sync: How Order Emerges From Chaos In the Universe, Nature, and Daily Life.
Hachette Books, 2004.

[8] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 4.5.

[9] Steven H. Strogstz. Nonlinear Dynamics and Chaos. Addison Wesley, 1994. Section 8.6.

[10] Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
The MIT Press, 2007. Section 4.2.

[11] Tamás Tél and Márton Gruiz. Chaotic Dynamics: An Introduction Based on Classical Mechanics.
Cambridge University Press, 2006. Section 7.4.2.

140

