
CHAPTER 4

ROOT FINDING

Finding roots of a function is a ubiquitous mathematical procedure in physics. For example, an equilibrium
position of a particle in a potential field is determined as the place where the net force is zero, i.e., U ′(x) = 0.
In many cases, the equation is transcendental and no analytical solution is available. Even when analytical
solutions are known, numerical evaluation of them may suffer from the round-off error. In this chapter, we
discuss how to find a root of a given equation f(x) within acceptable error ϵ (tolerance). There are various
methods depending on available information. If the derivative of the function is known, some methods
definitely utilize it. Other methods do not require the derivative and use other information. We need to
choose a good algorithm for a given situation.

4.1 Quadratic, Cubic, and Quartic Polynomials

The roots of quadratic, cubic and quartic polynomials can be expressed in analytic expressions and we just
evaluate them numerically. However, in some extreme cases, numerical errors become too large and a special
care must be taken.

4.1.1 Quadratic Polynomials

The roots of quadratic equation:
ax2 + bx+ c = 0, a ̸= 0 (4.1)

are well known as
x1,2 = −b∓

√
b2 − 4ac

2a (4.2)
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Figure 4.1: A root of the quadratic equation ϵx2 + x+ 1/4 = 0 is evaluated with two different methods with
ϵ < 1. The left hand side of Eq. (4.4) is initially approaching to the correct limit as ϵ decreases. However,
it goes erroneous below ϵ = 10−5. On the other hand, the right hand side steadily converges to the right
answer.

However, when ac ≪ b2, one of the solution suffers from the bit-off error as discussed in Chapter 1. Instead,
the use of the following formula is recommended:

x1 = −b− sgn(b)
√
b2 − 4ac

2a (4.3a)

x2 = 2c
−b− sgn(b)

√
b2 − 4ac

= c

ax1
(4.3b)

where the signum function sgn(x) is defined by

sgn(x) =
{

+1 x > 0
−1 x < 0

As demonstrated in Example 4.1, these expressions do not suffer from the round-off error.

EXAMPLE 4.1 Root of quadratic polynomials

In Eq. (4.3a), we used the equality.

−b+
√
b2 − 4ac

2a = −2c
b+

√
b2 − 4ac

(4.4)

When |ac| ≪ b2, the left hand side becomes numerically inaccurate. On the other hand, the right hand
side has no such problem. We want to know how bad the left hand side is. Evaluate the both sides of
the equality for ϵx2 + x+ 1

4 = 0 where ϵ = 0.1, 0.01, · · · . Reduce the value of ϵ until it hits the machine

epsilon. Note that the exact answer for ϵ = 0 is x = −1
4 . Which side of Eq. (4.4) approaches to the

correct limit? Program 4.1 evaluate the both sides of Eq. (4.4). The results are plotted in Fig. 4.1.
The left hand side of Eq. (4.4) is initially approaching to the correct limit as ϵ decreases. However, it
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goes erroneous below ϵ = 10−5. On the other hand, the right hand side steadily converges to the correct
answer. (This example is a solution to Problem 1.1.)

4.1.2 Cubic Polynomials

The roots of cubic polynomial
ax3 + bx2 + cx+ d = 0, a ̸= 0 (4.5)

can be obtain analytically. There are various mathematical descriptions of the solutions but most of them
are not convenient for numerical calculations. The following procedure is simple and does not use complex
numbers.[1] Without losing generality, we can assume a = 1. [The roots do not change if Eq (4.5) is divided
by a.]

First, we evaluate the following quantities:

F = 3c− b2

3 , G = 2b3 − 9bc+ 27d
27 , H = G2

4 + F 3

27 (4.6)

where H is a discriminant for Eq. (4.5). If H < 0, then there are three real roots:

x1 = P + 2JM, x2 = P − J(M +N), x3 = P − J(M −N) (4.7)

where

I =
√
G2

4 −H, J = 3
√
I, K = arccos(−G/2I)

M = cos(K/3), N =
√

3 sin(K/3), P = − b

3 . (4.8)

If H = 0, the above solutions are still valid but two of solutions are degenerate. If H > 0, then there is one
real root and two others are complex:

x1 = S + U − b

3 , x2,3 = −S + U

2 − b

3 ± i
(S − U)

√
3

2 (4.9)

where

S = 3

√
√
H − G

2 , U = − 3

√
√
H + G

2 (4.10)

In some cases, we don’t get a good result due to the round-off error. Use an iterative method explained in
Section 4.2 to see if the round-off error is small enough. Since the numerical results obtained by the present
method is already close to the exact one, the iterative method should converge quickly (a few iterations are
enough for most cases).

EXAMPLE 4.2 Cubic Polynomials

Let’s try to find all roots of x3 − 9x2 + 23x+ 15 = 0 using the formula given above. It can be factorized
to (x − 1)(x − 3)(x − 5) = 0 and thus the exact solution is x = 1, 3, and 5. Program 4.2 finds them
correctly.

Answer = 1.00000, 3.00000, 5.00000
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4.1.3 Quartic Polynomials

The roots of quartic polynomial
ax4 + bx3 + cx2 + dx+ e = 0 (4.11)

can be also solved analytically. Assuming a = 1 as before, we evaluate the following quantities:

F = −3b2

8 + c, G = b3

8 − bc

2 + d, H = − b4

256 + b2c

16 − bd

4 + e (4.12)

If G = 0, then the four roots are

x1,2,3,4 = − b

4 ±

√
−F ±

√
F 2 − 4H
2 (4.13)

If G ̸= 0, then

x1,2 = − b

4 +
W ±

√
−
(
3F + 2Y + 2G

W

)
2 (4.14a)

x3,4 = − b

4 −
W ±

√
−
(
3F + 2Y − 2G

W

)
2 (4.14b)

where

Y =


−5F

6 + U − P

3U if U ̸= 0

−5F
6 − 3

√
Q if U = 0

, W =
√
H + 2Y (4.15)

P = −F 2

12 −H, Q = − F 3

108 + FH

3 − G2

8 , U =
3

√
−Q

2 ±
√
Q2

4 + P 3

27 (4.16)

Similar to quadratic and cubic equations, sever round-off error can happen, for example, when H ≪ F in
Eq (4.13). Use an iterative method to improve the results.

4.2 Iterative Methods

In this section, we solve f(x) = 0 for x where f(x) is a continuous function. There may be multiple solutions.
Any root finding method needs a rough idea of the location of root you are looking for. The first step is to
bracket the target root x∗ between xl and xu such that xl < x∗ < xu. It is important that there is only
one root between xl and xu. It turns out that this is not an easy task for computer. Searching is something
difficult even for computers to accomplish. On the other hand, human eyes can find the bracket easily if you
are able to plot the function. Computers do not have an eye to view the whole curve. Therefore, the best
practice is to plot the function and bracket the target root by visual inspection. However, in some cases it is
desirable to have a robust numerical method to find the bracket. For example, when root finding is required
many times during long computer simulation, you can’t stop the simulation to visually inspect the bracket.
There are simple algorithms of finding the bracket[2] but unfortunately no method guarantees the outcome.
In this chapter, we assume that the bracket is done by direct visual inspection.

Any iterative method needs a criteria to stop the iteration. Ultimately, we stop it when the error is smaller
than the tolerance. However, in practice we never know the exact error. If we knew it, we have the exact
root! Therefore, we must carefully choose an ending criteria.
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Figure 4.2: Bisection method. Starting with ini-
tial bracket (x0, x1), the bracket is at each iteration
halved to (x2, x1), (x2, x3), (x2, x4), (x5, x4), · · · .
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Figure 4.3: Newton-Raphson method. Starting
with initial guess x0, the line tangent to the curve
at the current point xn is used to find a new im-
roved root xn+1. If the initial guess x0 is close
enough to the true root, this procedure rapidly con-
verges to it.

4.2.1 Bisection method

Suppose we evaluate the function at two different points xl and xu. If f(xl)f(xu) < 0, then we are sure that
there is at least one root between the two points. This is a sufficient condition but not a necessary condition.
When there is no root between the bracket, f(xl)f(xu) > 0. However, when there are even number of roots
in the bracket, the same inequality is valid. In the following we assume that a good bracket is found by
visual inspection or other means so that there is only one root within the bracket.

Consider a mid point xm between xl and xu. If f(xl)f(xm) < 0, the root must be between xl and xm. Now
we have a new bracket xl and xm. Otherwise, the root must be between xm and xu, which is the new bracket.
Repeating this procedure, the root is isolated in a small region. The error must be smaller than xu − xl
and thus the iteration is terminated when xu − xl < tolerence. This is the method of bisection. Figure 4.2
demonstrate how the bisection method works. The procedure of this iterative method is as follows.

Algorithm 4.1 Bisection method
1. Get a initial bracket xl and xu and a tolerance ϵ.

2. Make it sure that f(xl)f(xu) < 0. Otherwise, stop and check the initial bracket.

3. Evaluate the function at the mid point xm = 1
2 (xl + xu).

4. If xu − xl < ϵ, xm is the root and stop here. Otherwise continue.

5. If f(xl)f(xm) < 0, then the root is between xl and xm. Let xu = xm and go to step 3.
Otherwise continue.

6. The root must be between xm and xu. Let xl = xm and go to Step 3.

This method is generally robust and steadily approaches to the root. However, it is not a smart one
and iterates many times before reaching the root. This method fails when the root is located at the edge
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of support since the root cannot be bracketed. For example, the bisection method is not able to solve√
x− a = 0 simply because the function cannot be evaluated for x < a. It turns out that not only the

bisection method but many other methods also fail for this function.

EXAMPLE 4.3 Bisection Method

Find a root of x3 − 9x2 + 23x+ 15 = 0 between x1 = 1.5 and x2 = 4. Program 4.3 implement the above
Bisection algorithm. With tolerance 10−6, the bisection method converges to a root after 20 iterations.
The root agrees with the exact answer. (See Example 4.2.)

Answer = 3.00000 (iteration= 20)

Exercise 4.1 Find two other roots.

Exercise 4.2 Find all roots using xU − xL as the measure of error.

4.2.2 Newton-Raphson method

If the derivative of the function is known, there are faster methods utilizing it. Newton-Raphson method is
one of those. Starting with an initial guess x0, we approximate the function using Taylor expansion

f(x) = f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2 + · · · (4.17)

If x0 is close to the root, we can ignore the higher order terms. Keeping only the first order term, the original
equation f(x) = 0 is replaced by

f(x0) + f ′(x0)(x− x0) = 0 (4.18)

and the root of this approximted equation is

x1 = x0 − f(x0)
f ′(x0) (4.19)

which should be closer to the root than x0. Repeating this procedure, we have a recursive equation

xn+1 = xn − f(xn)
f ′(xn) (4.20)

We stop the iteration when |xn+1 −xn| < ϵ (tolerance). Is this a reasonable criteria? Using Taylor expansion
around xn,

f(x∗) = f(xn) + (x∗ − xn)f ′(xn) (4.21)

where x∗ is the exact root. By definition, f(x∗) = 0. Then, the error is given by |x∗ − xn| =
∣∣∣∣ f(xn)
f ′(xn)

∣∣∣∣ =

|xn+1 − xn|. As long as xn is close to x∗, the criteria measures the error correctly.
Note that this method does not require initial bracketing. However, this method works great only if

the initial point is sufficiently close to the root. Otherwise it is not guaranteed to converge to the target
root. It might reach another root which you are not looking for. In order to avoid this failure, find a
reasonably accurate root using the bisection method and switch to the Newton-Raphson method for the
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further improvement. While the bisection method is relatively robust many iterations are needed. On the
other hand, the Newton-Raphson method converges faster. Therefore, such a hybrid method make a sense.

Algorithm 4.2 Newton-Raphson method
1. Set a tolerance ϵ.

2. Choose an initial guess x0 and let n = 0.

3. Estimate a new candidate by xn+1 = xn − f(xn)
f ′(x) .

4. If |xn+1 − xn| < ϵ, then xn+1 is the root. Stop the iteration.

5. If not, increment n and go to step 3.

Exercise 4.3 The solution to
√
x− a = 0 is x = a. Can we find it by the Newton-Raphson method?

Starting with x0 > a, try to find x1 and x2. Verify that x2 does not exist.

4.2.3 Secant method

The Newton-Raphson method requires the analytic expression of the first order derivative, which limits the
range of applications. However, the same idea can be used without the analytic expression. If we replace
the analytic derivative with the numerical derivative, the Newton-Raphson procedure still works. Using the
backward finite difference method [Eq. (2.3)], the recursive equation (4.20) becomes

xn+1 = xn − xn − xn−1
f(xn) − f(xn−1)f(xn) (4.22)

This method is commonly known as the secant method. Use the bisection method before starting the secant
method to ensure the convergence.

One problem is that this method needs two points to start the iteration. However, this is not a big issue
since we can pick any point close to the initial guess. If the root is already bracketed between a and b, use
x1 = x0 +∆ with ∆ ≪ b−a. If the secant method is preceded by the bisection method, use the final bracket
from the bisection calculation. Then, ∆ = (b− a)/10 is good enough.

Algorithm 4.3 Secant method
1. Find bracket a and b. Set a tolerance ϵ.

2. Choose two initial points x0 and x1 = x0 + b− a

10 and let n = 1

3. Estimate a new candidate by xn+1 = xn − xn − xn−1
f(xn) − f(xn−1)f(xn).

4. If |xn+1 − xn| < ϵ, then xn+1 is the root. Stop the iteration.

5. If not, increment n and go to step 3.
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Figure 4.4: The function used in Example 4.4. The smallest positive root is bracketed between 0.2 and 0.8
(between the dashed lines) by visual inspection.

EXAMPLE 4.4 Multiple roots

Find the smallest positive root of f(x) = cos 3x sin x. Since this function has infinitely many roots, we
have to be careful about choosing an initial guess. Figure 4.4 plots the function. By visual inspection, it
is safe to say that the smallest positive root is between 0.2 and 0.8. We seek the solution with tolerance
ϵ = 10−8. If only the bisection method were used, it takes 24 iterations and the answer is 0.52359877.

Program 4.4 runs 10 iterations of the bisection method and the Newton-Raphson and Secant meth-
ods follow. The output is shown below. The bisection method gets 0.52373047 which is close but not
sufficient. Subsequent Newton-Raphson method iterates only two times and obtained 0.52359878. Sim-
ilarly, the secant method also iterates twice and reaches the same answer as the Newton-Raphson. The
exact answer is π

6 ≈ 0.52359878. All methods arrive the correct answer. However, the total number of
iterations is 12 if the combination of the bisection and Newton-Raphson/secant methods is used, which
is a half of the steps needed by the bisection method only. For complicated equations, the time saving
can be significant.

Bisection = 0.52373047 (iteration= 10)
Newton-Raphson = 0.52359878 (iteration= 2)
Secant = 0.52359878 (iteration= 2)

Exercise 4.4 Find the second smallest positive root.
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4.3 Applications in Physics Problems

4.3.1 Magnetic Phase Transition

The Ising model explains the ferromagnetic phase transition.[3] Using the mean field approximation, the
magnetization per atom satisfies the following transcendental equation

m = µ tanh
(
Cm

kBT

)
(4.23)

where C is a positive constant determined by the spin interaction between atoms, T is temperature, and µ
is the magnetic moment each spin carries. We want to know the magnetization as a function of temperature
by solving Eq. (4.23). By direct inspection m = 0 is always a solution. However, depending on temperature,
there are more solutions. We want to plot all roots as functions of temperature. First, we simplify the
expression by introducing normalized magnetization m̃ = m/µ and normalized temperature T̃ = kBT

µC . The
normalized quantities are dimensionless and various constants disappear. We omit tilde in the normalized
quantities to avoid cluttering. Then, we solve

f(m) ≡ m− tanh(m/T ) = 0 (4.24)

utilizing its derivative

f ′(m) = 1 − sech2(m/T )
T

(4.25)

To use the Newton-Raphson method, we need to start with a good initial guess. As Fig 4.5 shows,
tanh(m) → 1 for m ≫ 1. Therefore, the root must be below m = 1. As T approaches zero, the root
approaches one. Therefore, m = 1 is a good starting point for low temperature case. As temperature
increases, the root gradually decreases toward zero. Therefore, when temperature is lowered a little bit, the
previous root can be a very good starting point of the next root finding process. We don’t have to bracket
the root in this case. The results are shown in Fig. 4.5b.

EXAMPLE 4.5 Bifurcation of magnetization

Program 17.2 finds the roots of Eq. (4.23) by Newton-Raphson method and plots them. The result is
shown in Fig. 4.5b. Above the critical temperature SC = 1, there is only one root and the magnetization
vanishes. Below SC, positive and negative magnetization spontaneously appear. The root at m = 0 still
exists but it is no thermodynamically not stable.

Exercise 4.5 Spontaneous vs induced magnetization
When external magnetic field H is applied, the mean-field equation becomes

m = µ tanh
(
µH + Cm

kBT

)
. (4.26)

Modify Program 17.2 and plot the magnetization as a function of temperature with a fixed value of H ̸= 0.
Try various different values of H. How is the spontaneous magnetization shown in Fig. 4.5b modified by the
magnetic field? [Use the normalized magnetic field H̃ = H/C.]
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(b) Bifurcation of magnetization. For T > 1 there is
only one magnetic state m = 0. When temperature
is lowered below a critical temperature TC = 1, two
stable states, one with positive m and the other with
negative m. m = 0 is still a solution but unstable
one. At T = 0, the magnetization reaches the maxi-
mum possible value m = ±1 where all electrons have
the same spin state.

Figure 4.5: Ferromagnetic Phase Transition

4.3.2 Energy of a Quantum Particle in a Square Potential

A particle of mass m is trapped in a square well potential of depth V0 and width 2a. Energy eigenvalue E
is determined by Schödinger equation[

− ℏ2

2m
d2

dx2 + V (x)
]
ψ(x) = Eψ(x) (4.27)

Analytical calculation ends up with the following transcendental equations[4]

z tan(z) −
√
z2

0 − z2 = 0 for symmetric states (4.28a)

z cot(z) +
√
z2

0 − z2 = 0 for anti-symmetric states (4.28b)

where

z =
√

2ma2E

ℏ2 (4.29a)

z0 =
√

2ma2V0
ℏ2 (4.29b)

The roots of Eqs (4.28) determines the energy eigenvalues. WE want to know all eigenvalues. However, the
number of roots depends on the system parameters, which makes it difficult to bracket a root. We need to
inspect the location of the roots. In Fig. the left hand side of Eq (4.28a) is plotted. First of all, we note that
the function is defined for z ∈ (0, z0) and thus all roots must be between 0 and z0. Considering tan x diverges
at 2π(n± 1/4), each root must be between the diverging points. Hence, we bracket the roots in (0, π

2 − δ),
( π

2 + δ, 3π
2 − δ), · · · , 2π(n+ 1

4 )+ δ, z0). Here δ is a small positive quantity to avoid the singularities. Program
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(b) The left hand side of Eq (4.28a) is plotted for
z0 = 6. There are two roots. Clearly the root is
bracketed by the dashed lines at x = π
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Figure 4.6: Quantum particle in a finite suare well

4.6 finds all roots for given z0. Ten iterations of the bisection methods followed by the secant method find
two roots.

root=1.34475105
root=3.98582621

4.3.3 Classical Turning Points

In Section 3.6.1, we tried to calculate the period of oscillation but we were not quite ready at that time
because we did not know how to find the turning points. Now we can find them using a numerical root
finding method. Suppose that a particle is bound in a potential

U(x) = U0

[
sin
(

2πx
L

)
− 1

4 sin
(

4πx
L

.

)]
(4.30)

We want to find the period of the bound motion using the formula (3.26). The turning points are the roots
of U(x) = E. The potential is simple and we can find the analytic expression of its derivative. Hence, the
Newton-Raphson method can be used to find the roots.

Exercise 4.6 Modify Program 4.4 and find a pair of the classical turning points of the potential (18.39).
Using the results, find the period of oscillation.

4.3.4 Closest Approach in Scattering

In Section 3.6.2, we discussed how to evaluate the scattering angle (3.35). In order to carry out the integral,
we still have to find the closest approach r0 determined by Eq. (3.36). For the screened Coulomb potential,
we are able to calculate the first order derivative of the equation. The Newton-Raphson method seems a
good choice.
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Exercise 4.7 Solve Eq. (3.36) for the Yukawa potential. Then, calculate the scattering angle, Eq. (3.35),
using the method discussed in Section 3.6.2.

4.4 Problems

4.1 The interaction energy between two atoms is often described by the Morse potential[5]

U(r) = De

[
e−2(r−r0)/a − 2e−α(r−r0)/a

]
(4.31)

where r is the distance between the atoms. The parameters, De. r0, and a are, dissociation energy,
equilibrium distance, and the range of interaction, respectively. To simplify numerical calculation, we
normalize energy and distance by De and a. In addition, we use the displacement from the equilibrium
position as the coordinate. Then, the potential is simply

U(x) = e−2x − 2e−x . (4.32)

were x = (r − r0)/a. Find the classical turning points for E = −0.5 (This means the actual energy is
E = −De/2 since we use De as the unit of energy.) Do not forget to plot the potential and visually
inspect the turning point before using numerical root finding methods.

4.2 Find the eigenvalue of all asymmetric state by solving Eq. (4.28b) for z0 = 6.

4.3 A quantum ball of mass m is bouncing on a hard floor under a uniform gravity g.[6] Schrödinger equation
for the particle is

− ℏ2

2m
d2ψ(y)

dy2 +mgy ψ(y) = Eψ(y). (4.33)

The wavefunction ψ must vanish at the floor (boundary condition). To find the energy eigenvalue, we
first simplify the Schrödinger equation. Introducing a new variable z = α(y − E/mg) where

α =
(

2m2g

ℏ2

)1/3

(4.34)

Eq. (4.33) is rewritten as
d2ψ(z)

dz2 = zψ(z) (4.35)

This equation is known as Airy equation and its solution is Airy function Ai(z). Hence, the energy
eigenfunction is ψ(z) = N Ai(z) where N is a normalization constant. Now, we apply the boundary
condition. At y = 0. z = −αE/mg and thus Ai(−αE/mg) = 0. This boundary condition indicates that
the energy E is determined by the roots of the Airy function. Denoting the n-th root as zn, the energy
is En = −mgzn/α. The bouncing quantum ball has discrete energy! Find the smallest root of the Airy
function and corresponding energy E1. Use the built-in Airy function airy() in MATLAB. For C or
Fortran, GNU Scientific Library (GSL)∗ provides Airy function.

∗You can find GSL at https://www.gnu.org/software/gsl/.
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MATLAB Source Codes

Program 4.1

%**************************************************************************
%* Example 4.1 *
%* filename: ch04pr01.m *
%* program listing number: 4.1 *
%* *
%* This program finds roots of a quadratic equation *
%* a xˆ2 + x + 1/4 = 0 *
%* for which the quadratic equation formula *
%* x = (-1 + sqrt(1 - a))/(2a) *
%* fails for small value of a. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
clear all;

b=1; % fixed parameters
c=0.25;

n=1;
a(1)=1;
while (a>eps())

d = bˆ2-4*a(n)*c;
x1(n) = (-b+sqrt(d))/(2*a(n));
x2(n) = -2*c/(b+sqrt(d));
fprintf('a= %22.16e, lhs=%22.16e, rhs=%22.16e \n',a(n),x1(n),x2(n));
n=n+1;
a(n)=a(n-1)/10;

end

% plot the results
p=loglog(a(1:n-1),abs(x2+0.25),'o',a(1:n-1),abs(x1+0.25),'s');
set(p(1),'Linewidth',2,'Color','red')
set(p(2),'Linewidth',2,'Color','blue')
xlabel('a','Fontsize',14)
ylabel(texlabel('|x - x_0|'),'Fontsize',14) % x_0 = root at a=0
legend('lhs','rhs')
legend('Location','Southeast')

▲▲▲

Program 4.2
%**************************************************************************
%* Example 4.2 *
%* filename: ch04pr02.m *
%* program listing number: 4.2 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
clear all;
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% coefficients
b=-9; c=23; d=-15;

% formula for cubic polynomials
F=(3*c-bˆ2)/3;
G=(2*bˆ3 - 9*b*c + 27*d)/27;
H=Gˆ2/4 + Fˆ3/27;

yes = false;

if H>0
S= (sqrt(H)-G/2)ˆ(1./3.);
U=-(sqrt(H)+G/2)ˆ(1./3.);
x = S+U-b/3;
fprintf('Answer = %.5f\n',x);

else
I=sqrt(Gˆ2/4-H);
J=Iˆ(1./3.);
K=acos(-G/(2*I));
M=cos(K/3);
N=sqrt(3)*sin(K/3);
P=-b/3;
x(1) = P-J*(M+N);
x(2) = P-J*(M-N);
x(3) = P+2*J*M;
fprintf('Answer = %.5f, %.5f, %.5f \n',x);

end

▲▲▲
Program 4.3

%**************************************************************************
%* Example 4.3 *
%* filename: ch04pr03.m *
%* program listing number: 4.3 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* using the bisection method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/24/2018. *
%**************************************************************************
clear all;

% define a cubic equation
b = -9;
c = 23;
d =-15;

f = @(x) xˆ3+b*xˆ2+c*x+d;

% tolerance
epsilon=input('Enter tolerance =');

% initial bracket
x1=1.5;
x2=4;
f1 = f(x1);
f2 = f(x2);
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% iteration counter
n=0;

% mid point
xm = (x1+x2)/2;
fm = f(xm);
while abs(fm) > epsilon

if f1*fm < 0 % root in the lower half
x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;

end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

fprintf('Answer = %.5f (iteration= %i)\n',xm,n);

▲▲▲

Program 4.4
%**************************************************************************
%* Example 4.4 *
%* filename: ch04pr04.m *
%* program listing number: 4.4 *
%* *
%* This program seeks the root of *
%* cos(3*x)*sin(x)=0 *
%* between x=0.2 and 0.8 using bisection, Newton-Raphson, and *
%* secant methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************
clear all;

% define function and its derivative
f=@(x) cos(3*x)*sin(x);
df=@(x) -3*sin(3*x)*sin(x) + cos(3*x)*cos(x);

% initial bracket
x1=0.2;
x2=0.8;
f1=f(x1);
f2=f(x2);
if f1*f2 > 0

error('Bracket is incorrect');
end

% tolerance
epsilon=1e-8;

% bisection 10 iterations

% iteration counter
n=0;
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% Bisection method (10 iterations)
xm = (x1+x2)/2;
fm = f(xm);
while n<10

if f1*fm < 0 % root in the lower half
x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;

end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

fprintf('Bisection = %.8f (iteration= %i)\n',xm,n);

% Newton-Raphson method
x = xm;
fx = fm;
n = 0;
while abs(fx)> epsilon

dfx = df(x);
x = x - fx/dfx;
fx = f(x);
n = n+1;

end

fprintf('Newton-Raphson = %.8f (iteration= %i)\n',x,n);

% Secant method
dx = (x2-x1)/10;
x1 = xm;
f1 = fm;
x2 = x1 + dx;
f2 = f(x2);
n = 0;
while abs(f2)> epsilon

x = x2 - (x2-x1)/(f2-f1)*f2;
x1 = x2;
f1 = f2;
x2 = x;
f2 = f(x);
n = n+1;

end

fprintf('Secant = %.8f (iteration= %i)\n',x,n);

▲▲▲

Program 4.5
%**************************************************************************
%* Example 4.5 *
%* filename: ch04pr05.m *
%* program listing number: 4.5 *
%* *
%* This program calculates magnetization as a function of *
%* temperature using the mean field Ising model: *
%* x = x tan(x/S) *
%* where the variables are normalized as *
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%* x = m/m_0 and S=k*T/(C*m_0) . *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************
clear all;
N=101; % number of data points
tol=10ˆ(-6); % tolerance

dS = 2/(N-1); % step size in temperature

for i=1:N
S=(i-1)*dS; % temperature
a=1/S;
f=@(x) x - tanh(a*x); % function
df=@(x) 1 - a*sech(a*x)ˆ2; % derivative
% Newton-Raphson method
x=2; % initial guess
fx=f(x);
while fx>tol

x=x-fx/df(x);
fx=f(x);

end
% store the magnetization and temperature
m(i)=x;
t(i)=S;

end

p=plot(t,m,t,-m,[0,1],[0,0]);
xlabel('T','fontsize',14);
ylabel('m','fontsize',14);
set(p(1),'linewidth',2,'color','blue');
set(p(2),'linewidth',2,'color','blue');
set(p(3),'linewidth',2,'color','red');
axis([0 2 -1.1 1.1]);

▲▲▲

Program 4.6 (a)
%**************************************************************************
%* Secion 4.6. *
%* filename: ch04pr06.m *
%* program listing number: 4.6(a) *
%* *
%* Require: rootfinding.m *
%* *
%* This program finds trhe energy eigenvalues of a pqrticle *
%* in a finite square well potential using the secant root *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************
clear all;

z0=6; %system parameter

f=@(z) z*tan(z) - sqrt(z0*z0-z*z); %define function

%control parameters
N=100;
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K=ceil(z0/pi); %The number of roots

% initial bracket
z1=0;
z2=pi/2;

for k=1:K
dz = (z2-z1)/N; % small shit
z = rootfinding(f,z1+dz,z2-dz,10,10ˆ(-6));
fprintf('root=%.8f\n',z);
z1 = z2;
z2 = min([z0,z1 + pi]);

end

Program 4.7 (b)
%**************************************************************************
%* Secion 4.6. *
%* filename: rootfinding.m *
%* program listing number: 4.6(b) *
%* *
%* Inputs *
%* f = function name *
%* x1, x2 = bracket *
%* N = interations of bisection *
%* tol = tolerance for scant method *
%* Output: *
%* x = root *
%* *
%* This program find a root of a given funcion f(x)=0 *
%* using the bisection and secant root finding method *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************

function x=rootfinding(f,x1,x2,N,tol)

% check if the initial bracket satisfies the necessary condition.
f1=f(x1);
f2=f(x2);
if f1*f2 > 0

error('Bracket is incorrect');
display(x1,x2,f1,f2);

end

% Bisection method (N iteration)
n=0; % iteration counter

% mid point
xm = (x1+x2)/2;
fm = f(xm);
n=0;

while n<N
if f1*fm < 0 % root in the lower half

x2=xm;
f2=fm;

else % root in the upper half
x1=xm;
f1=fm;
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end
xm = (x1+x2)/2; % new mid point
fm = f(xm);
n=n+1;

end

% Secant method
dx = (x2-x1)/10;
x1 = xm;
f1 = fm;
x2 = x1 + dx;
f2 = f(x2);
n = 0;
while abs(f2)> tol

x = x2 - (x2-x1)/(f2-f1)*f2;
x1 = x2;
f1 = f2;
x2 = x;
f2 = f(x);
n = n+1;

end

Python Source Codes

Program 4.1
#!/usr/bin/env python3
"""
%**************************************************************************
%* Example 4.1 *
%* filename: ch04pr01.py *
%* program listing number: 4.1 *
%* *
%* This program finds roots of a quadratic equation *
%* a xˆ2 + x + 1/4 = 0 *
%* for which the quadratic equation formula *
%* x = (-1 + sqrt(1 - a))/(2a) *
%* fails for small value of a. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/07/2017. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt

b=1.0
c=0.25
a=1.0
x=np.zeros(50)
y1=np.zeros(50)
y2=np.zeros(50)
n=0
while a > np.finfo(float).eps:

x[n]=a
d=b**2-4*a*c
y1[n]=(-b+np.sqrt(d))/(2.0*a)
y2[n]=-2*c/(b+np.sqrt(d))
print("a={0:22.16e}, regular={1:22.16e}, smart={2:22.16e}"
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.format(x[n],y1[n],y2[n]))
n+=1
a=a/10.

plt.ioff()
plt.figure(figsize=(6,5))
plt.loglog(x[0:n],abs(y2[0:n]+0.25), 'ob', label='smart')
plt.loglog(x[0:n],abs(y1[0:n]+0.25), 'or', label='regular')
plt.legend(loc=4)
plt.xlabel('a')
plt.ylabel('x')
plt.show()

▲▲▲

Program 4.2
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 4.2 *
%* filename: ch04pr02.py *
%* program listing number: 4.2 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2017. *
%**************************************************************************
"""
import numpy as np
# coefficients
b=-9.0; c=23.0; d=-15.0
k=0

# formula for cubic polynomials
F=(3.0*c-b**2)/3.0
G=(2.0*b**3 - 9.0*b*c + 27.0*d)/27.0
H=G**2/4.0 + F**3/27.0

yes = False

if H>0.0:
S= (np.sqrt(H)-G/2.0)**(1./3.)
U=-(np.sqrt(H)+G/2.0)**(1./3.)
x1 = S+U-b/3.0
print("Answer = {0:10.5f}".format(x1))

else:
I=np.sqrt(G**2/4.0-H)
J=I**(1./3.)
K=np.arccos(-G/(2.0*I))
M=np.cos(K/3.0)
N=np.sqrt(3)*np.sin(K/3.0)
P=-b/3.0
x3=np.zeros(3)
x3[0] = P-J*(M+N)
x3[1] = P-J*(M-N)
x3[2] = P+2.0*J*M
print("Answer = {0:10.5f}, {1:10.5f}, {2:10.5f}"
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.format(x3[0],x3[1],x3[2]))

▲▲▲

Program 4.3
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 4.3 *
%* filename: ch04pr03.m *
%* program listing number: 4.3 *
%* *
%* This program finds roots of a cubic equation *
%* a*xˆ3 + b*xˆ2 + c*x + d = 0 *
%* using the bisection method. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 10/13/2013. *
%**************************************************************************
"""
import numpy as np

# define a cubic equation
def f(x):

return x**3-9.0*x**2+23.0*x-15

if __name__ == "__main__":

tol=input("Enter tolerance =") # Read a tolerabce from the console
epsilon=np.float(tol)

# initial bracket
x1=1.5
x2=4.0
f1 = f(x1)
f2 = f(x2)

# iteration counter
n=0

# mid point
xm = (x1+x2)/2.0
fm = f(xm)

while x2-x1 > epsilon:
if f1*fm < 0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

print("Answer = {0:7.5f}, (iteration = {1:3d})"
.format(xm,n))

▲▲▲
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Program 4.4

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 4.4 *
%* filename: ch04pr04.m *
%* program listing number: 4.4 *
%* *
%* This program seeks the root of *
%* cos(3*x)*sin(x)=0 *
%* between x=0.2 and 0.8 using bisection, Newton-Raphson, and *
%* secant methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/14/2017. *
%**************************************************************************
"""
import sys
import numpy as np

# define function and its derivative
def f(x):

return np.cos(3.0*x)*np.sin(x)

def df(x):
return -3.0*np.sin(3*x)*np.sin(x) + np.cos(3.0*x)*np.cos(x);

if __name__ == "__main__":
# initial bracket
x1, x2 = input("Initial blacket (a pair o numbers) = ").split()
x1, x2 = [np.float(x1), np.float(x2)]

f1=f(x1)
f2=f(x2)
if f1*f2 > 0:

sys.exit('Bracket is incorrect')

# tolerance
epsilon = input("Tolerance = ")
epsilon = np.float(epsilon)

# bisection 10 iterations
n=0 # iteration counter

xm = (x1+x2)/2.0
fm = f(xm)

while n<10:
if f1*fm < 0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

print("Bisection = {0:12.8f} (iteration= {1:4d})"
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.format(xm,n))

# Newton-Raphson method
x = xm
fx = fm
n = 0
while abs(fx)> epsilon:

dfx = df(x)
x = x - fx/dfx
fx = f(x)
n+=1

print("Newton-Raphson = {0:12.8f} (iteration= {1:4d})"
.format(x,n))

# Secant method
dx = (x2-x1)/10.
x1 = xm
f1 = fm
x2 = x1 + dx
f2 = f(x2)
n = 0
while abs(f2)> epsilon:

x = x2 - (x2-x1)/(f2-f1)*f2
x1 = x2
f1 = f2
x2 = x
f2 = f(x)
n+=1

print("Secant = {0:12.8f} (iteration= {1:4d})"
.format(x,n))

▲▲▲

Program 4.5
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Example 4.5 *
%* filename: ch04pr05.py *
%* program listing number: 4.5 *
%* *
%* This program calculates magnetization as a function of *
%* temperature using the mean field Ising model: *
%* x = x tan(x/S) *
%* where the variables are normalized as *
%* x = m/m_0 and S=k*T/(C*m_0) . *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/14/2017. *
%**************************************************************************
"""
import numpy as np
import matplotlib.pyplot as plt

def f(x,a):
return x - np.tanh(a*x)

def df(x,a):
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return 1.0 - a/np.cosh(a*x)**2

if __name__ == "__main__":
N=100 # number of data points
tol=1.0e-6 # tolerance

m=np.zeros(N+1)
t=np.zeros(N+1)
dS = 2.0/N # step size in temperature

for k in range(0,N):
S=(k+1)*dS # temperature
a=1.0/S
# Newton-Raphson method
x=2.0 # initial guess
fx=f(x,a)
while fx>tol:

x=x-fx/df(x,a)
fx=f(x,a)

# store the magnetization and temperature
m[k]=x
t[k]=S

plt.ioff()
plt.figure(figsize=(12,5))
plt.plot(t,m, '-r')
plt.plot(t,-m, '-r')
plt.plot([0,1],[0,0],'--w')
plt.ylim([-1.2,1.2])
plt.xlabel('T')
plt.ylabel('m')
plt.savefig('ch04r05.pdf')
plt.show()

▲▲▲

Program 4.6 (a)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Secion 4.6. *
%* filename: ch04pr06.py *
%* program listing number: 4.6-1 *
%* *
%* Require: rootfinding.py *
%* *
%* This program finds trhe energy eigenvalues of a pqrticle *
%* in a finite square well potential using the secant root *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************
"""

import numpy as np
import rootfinding as rf
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def f(z):
global z0
return z*np.tan(z) - np.sqrt(z0*z0-z*z)

if __name__ == "__main__":
global z0
z0=6 #system parameter
#control parameters
N=100
K=np.int(np.ceil(z0/np.pi)) #The number of roots

# initial bracket
z1=0.0;
z2=np.pi/2.0

for k in range(1,K+1):
dz = (z2-z1)/N # small shit
z = rf.findaroot(f,z1+dz,z2-dz,10,1.0e-6)
print("root={0:12.8f}".format(z))
z1 = z2
z2 = min([z0,z1 + np.pi])

Program 4.7 (b)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
%**************************************************************************
%* Secion 4.6. *
%* filename: rootfinding.py *
%* program listing number: 4.6-2 *
%* *
%* Inputs *
%* f = function name *
%* x1, x2 = bracket *
%* N = interations of bisection *
%* tol = tolerance for scant method *
%* Output: *
%* x = root *
%* *
%* This program find a root of a given funcion f(x)=0 *
%* using the bisection and secant root finding method *
%* finding methods. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%**************************************************************************
"""
def findaroot(f,x1,x2,N,tol):

f1=f(x1)
f2=f(x2)
if f1*f2 > 0:

exit('Bracket is incorrect')

# Bisection method (N iteration)
n=0 # iteration counter

# mid point
xm = (x1+x2)/2.0
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fm = f(xm)

while n<N+1:
if f1*fm < 0.0: # root in the lower half

x2=xm
f2=fm

else: # root in the upper half
x1=xm
f1=fm

xm = (x1+x2)/2.0 # new mid point
fm = f(xm)
n+=1

# Secant method
dx = (x2-x1)/10.0
x1 = xm
f1 = fm
x2 = x1 + dx
f2 = f(x2)
n = 0
while abs(f2)> tol:

x = x2 - (x2-x1)/(f2-f1)*f2
x1 = x2
f1 = f2
x2 = x
f2 = f(x)
n+=1

return x

▲▲▲
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