
CHAPTER 3

NUMERICAL INTEGRATION

Like derivatives, integrals are also common mathematical tools used in physics. Derivatives involve subtrac-
tion of similar values and suffer from bit-off errors. Integration is essentially addition and thus numerical
integration is a bit more robust than numerical derivative. However, lots of addition incur significant round-
off errors. A good algorithm uses less addition without the expense of accuracy. First, a simple method
(rectangle rule) is used to demonstrate a basic idea of numerical integration. Like forward finite difference
method of numerical derivative, this method is not accurate enough for practical use. However, a simple
modification (trapezoidal rule), similar to mean finite difference method of numerical derivative, improves
the accuracy. More advanced methods (Simpson rule) will be introduced.

Improper integral needs special attention. For example, when integral limits involve infinity like
∫ ∞

0
f(x) dx,

most numerical integration methods require infinitely many addition, which cannot be done. Another exam-
ple is the case where integrand has integrable singularities like 1√

x
. Since we cannot evaluate the function

value at x = 0, the common numerical methods fail. There is no systematic resolution to these problems. We
need to deal with them on case-by-case basis. Several common practices will be introduced in this chapter.
In addition, a magic method called Gaussian quadrature, which gives rather accurate results for certain
types of integrals just by computing several points, will be discussed.

3.1 Rectangular rule

We want to integrate a function f(x) from a to b. Similarly to the numerical derivative problems, there are
two different cases. In one case, a closed form expression of the function is known and we can evaluate the

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

35

36 NUMERICAL INTEGRATION

a x1 x2 x3 b

f (x)

h

x

(a) Forward rectangular method. The large errors
are clearly visible.

a x1 x2 x3 b

f (x)

h

x

(b) Trapezoidal method. The errors are much smaller
than those in the rectangular method.

Figure 3.1: Illustration of simple numerical integration methods

function value at any point of x ∈ [a, b]. In the other case, the function values are given as a finite sequence
fn = f(xn), n = 0, · · · , N and the analytical expression of the function is unknown. In this section, we focus
on the former case and the latter case will be discussed in a later chapter.

We begin with the Rieman’s definition of integral:

∫ b

a

f(x) dx = lim
N→∞

N−1∑
n=0

f(xn)h = lim
N→∞

N∑
n=1

f(xn)h (3.1)

where h = (b− a)/N and xn = a+ nh. Note that h depends on N . Numerical methods do not understand
this kind of limit since it ends up with ∞ × 0. Beside, summing infinitely many terms costs infinite CPU
time. We hope that sufficiently large N (i.e., sufficiently small h > 0) gives a value close to the exact integral.
This is the rectangular rule:

∫ b

a

f(x) dx ≈ ÎFf(x) ≡
N−1∑
n=0

f(xn)h (3.2a)

∫ b

a

f(x) dx ≈ ÎBf(x) ≡
N∑

n=1
f(xn)h (3.2b)

where ÎF and ÎB are forward and backward rectangular rule operator, respectively.

TRAPEZOIDAL RULE 37

Algorithm 3.1 Integration by the forward rectangular rule

The following steps evaluate Eq. 3.2a.

1. Set the step length: h = b− a

N

2. Set s = 0.0 where s should be double (float64).

3. Repeat steps 4-6 for n = 0 to n = N − 1:

4. x = a+ n ∗ h.

5. s = s+ f(x). [where f(x) can be inline function or funtion subprogram.]

6. Go back to step 4 and repeat with new n.

7. The integral is given by s ∗ h.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

The forward rectangular rule is illustrated in Fig 3.1a. The integral [the area below the curve f(x)]
is approximated by the sum of many small rectangles. However, the large errors are clearly seen in the
illustration where the slope of curve is steep.

To investigate the error in the rectangular rule, we consider the small integral interval from xn to xn+1 =
xn + h. Expanding the integral with respect to h (See Appendix 3.I), the integral is expressed as power
series of h: ∫ xn+h

xn

f(x) dx = f(xn)h+ f ′(xn)h
2

2 + f ′′(xn)h
3

3! + +f (3)(xn)h
4

4! + O
(
h5). (3.3)

Then, the whole integral in the forward scheme is expressed as∫ b

a

f(x) dx =
N−1∑
n=0

∫ xn+h

xn

f(x) dx =
N−1∑
n=0

[
f(xn)h+ f ′(xn)h

2

2 + O
(
h3)] (3.4)

By neglecting h2 and higher orders, we obtain the rectangular rule. Therefore, the error of the rectangular
rule is the order of h2 per segment. Since there are N segments, the total error is order of h2N = (b− a)h.
Hence, the total error is the order of h. You might think that if a very small value of h is used the error
is negligible. Unfortunately, the round-off error gets too large when N is too large (See Example 1.8). In
practice, this method is rarely used.

3.2 Trapezoidal rule

It is better to approximate the area using trapezoids as shown in Fig 3.1b.∫ b

a

f(x) dx ≈ ÎT f(x) ≡
N−1∑
n=0

f(xn+1) + f(xn)
2 h (3.5)

= h

2 [f(a) + f(b)] +
N−1∑
n=1

f(xn)h (3.6)

38 NUMERICAL INTEGRATION

The trapezoidal rule is equivalent to the mean of the forward and backward rectangular rules, i.e., ÎTf(x) =
1
2

[
ÎF + ÎB

]
f(x). Note also that the difference between the trapezoidal rule and the rectangular rule is only

how the end points f(a) and f(b) are treated:

ÎTf(x) = ÎFf(x) + h

2 [f(a) − f(b)] = ÎBf(x) − h

2 [f(a) − f(b)] (3.7)

Nevertheless, this simple modification improve the accuracy significantly.
Let us find the order of error by substituting the forward finite difference method, f ′(xn) = f(xn + h) − f(xn)

h
+

O(h) into Eq. (3.3):∫ xn+h

xn

f(x) dx = f(xn)h+ f ′(xn)h
2

2 + O
(
h3) = f(xn) + f(xn+1)

2 h+ O
(
h3). (3.8)

If h3 and higher orders is ignored, we obtain the trapezoid rule. Hence, the trapezoidal rule is locally
accurate up to h2, better than the rectangular rule. The total error is the order of h3N = (b − a)h2. The
trapezoidal method is commonly used due to its simplicity and reasonable accuracy. Interestingly, if the
function vanishes at the integral limits, f(a) = f(b) = 0, then the rectangular rule produces exactly the
same result as the trapezoidal rule.

Algorithm 3.2 Integration by the trapezoidal rule

The following steps evaluate Eq. 3.5.

1. Set the step length: h = b− a

N

2. Set s = 0.5 ∗ (f(a) + f(b)) where s should be double (float64).

3. Repeat steps 4-6 for n = 1 to n = N − 1:

4. x = a+ n ∗ h.

5. s = s+ f(x). [where f(x) can be inline function or funtion subprogram.]

6. Go back to step 4 and repeat with new n.

7. The integral is given by s ∗ h.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

3.3 Simpson method

There is an even better method. In Eq. (3.3) the rectangular method ignored f ′(x) and all higher order
derivatives. That means the function f(x) is approximated by piece-wise constant functions (no slope). Note
that you need only one function value f(xn) to calculate the area of the rectangle. To increase the accuracy,
the slope of the function, f ′(x) in Eq. (3.3), is taken into account in the trapezoidal method. That means
two function values f(xn) and f(xn−1) are needed to compute the area of the individual segment. Natural
extension to this line of approximation is to take into account the curvature or f ′′(x). Noting that the
evaluation of f ′′(x) requires three data points, we utilize the another expansion similar to Eq. (3.3),∫ xn−h

xn

f(x) dx = −f(xn)h+ f ′(xn)h
2

2 − f ′′(xn)h
3

3! + +f (3)(xn)h
4

4! + O
(
h5) (3.9)

SIMPSON METHOD 39

Using the expansions (3.3) and (3.9), we find the integral from xn−1 to xn+1 as∫ xn+h

xn−h

f(x) dx = 2f ′(xn)h+ 2f ′′(xn)h
3

3! + O
(
h5) (3.10)

Note that the fourth order term is canceled out, which makes this approximation accurate. Substituting the
finite difference formula of the second order derivative [Eq (2.14) in Chapter 2] into Eq. (3.10), we find the
integral ∫ xn+1

xn−1

f(x) dx =
[

1
3f(xn−1) + 4

3f(xn) + 1
3f(xn+1)

]
h+ O

(
h5), (3.11)

which leads to local error at the order of h5. Repeating this formular, we obtain the Simpson rule

∫ b

a

f(x) dx ≈ ÎS ≡
N/2−1∑

j=0
[f(x2j) + 4f(x2j+1) + f(x2j+2)] h3 + O

(
h4) (3.12)

The error of the Simpson rule is the order of h5 per segment and thus h4 for the whole integral which is two
orders of magnitude better than that of the trapezoidal rule.

Algorithm 3.3 Integration by the Simpson rule

The following steps evaluate Eq. 3.12.
The number of points N should be even.

1. Set the step length: h = b− a

N

2. Set s = −f(a) − f(b) where s should be double (float64).

3. Repeat steps 4-6 for j = 0 to j = N/2 − 1:

4. x = a+ 2 ∗ j ∗ h.

5. s = s+ 2.0 ∗ f(x) + 4.0 ∗ f(x+ h).

6. Go back to step 4 and repeat with new j.

7. The integral is given by s ∗ h/3.0.

Steps 3-6 can be simplified using linspace and sum functions. See sample codes.

EXAMPLE 3.1 Errors in various numerical integration methods

Let’s integrate sin(x) from x = 0 to x = π/2. The exact answer is cos(0) − cos(π/2) = 1. Program 3.1
computes the integral using the rectangular, trapezoidal, and Simpson rules. The error of each rule is
plotted in Fig. 3.2. As h decreases, the error also decreases with all methods. The Simpson rule has
small errors even at h = 0.1.

Exercise 3.1 Numerically integrate f(x) = sin(x)
1 + x2 from x = 0 to x = π.

40 NUMERICAL INTEGRATION

Analytical solution by Mathematica is∫ π

0

sin(x)
1 + x2 dx = e

4 [−2Ci(i) + Ci(i− π) + Ci(i+ π) + 2Shi(1) + iSi(i− π) + iSi(i+ π)]

+ 1
4e [2Ci(i) − Ci(i− π) − Ci(i+ π) + 2Shi(1) + iSi(i− π) + iSi(i+ π)] (3.13)

where Ci, Si, and Shi are trigonometric integral functions. The answer should be real but Eq. 3.13 con-
tains imaginary unit. It is not obvious that the imaginary parts are canceled out. This expression is too
complicated to see the answer. Analytical solution is not always useful. Furthermore, these trigonometric
integrals must be numerically evaluated. So, why don’t we evaluate the original integral numerically from
the beginning?

3.3.1 Adaptive quadrature

As demonstrated above, the accuracy of numerical integration depends on the choice of the grid interval
h. In practice, finding an appropriate value for h is tedious. Especially when the integrand f(x) changes
rapidly in some region and smooth in other region (stiff function), a small value of h is necessary only for
the rapidly changing region. If a constant h is used for the whole region, we may be wasting computer time.
Technically speaking, it is possible to use different h but it is quite cumbersome to do it manually. Therefore,
we ask computer to find the best value of h at each point, which is known as adaptive grid method.

The basic idea is simple. First, we integrate the function using three grid points x1 and x2 with interval
h(0). Here the index (0) indicates the depth of adaptivity. Let us call the result of the integration I(0). Then,
we integrate the function between x1 and x2 again using the interval h(1) = h(0)/2 and obtain a new result
I(1). If the difference between I(0) and I(1) is smaller than a specified tolerance, we accept I(1) as accurate
result and move on to the next segment. If not, we reduce the interval again as h(2) = h(1)/2. We repeat
this until the error becomes small enough.

10−3 10−2 10−1 100
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100 Absolute errors in the various integration methods

h

ab
so

lu
te

 e
rr

or

rectangular
trapezoidal
simpson
h

h2

h4

Figure 3.2: Output of Example 3.1.

IMPROPER INTEGRALS 41

EXAMPLE 3.2 Adaptive Quadrature

Let us numerically calculate the integral

I =
∫ 5

0
(4x− x2)e−2x dx

whose exact value is 3
4 + 17

4 e
−10 ∼ 0.75019294970149056062. The integrand rises very rapidly and

decreases to zero slowly. We will evaluate it using the adaptive quadrature. MATLAB has built-in
function integral(func,xmin,xmax) which uses adaptive quadrature with a default error tolerance
(Absolute error = 10−10 and relative error = 10−6). Instead of writing our own code, we will use it this
time.

>> fprintf('%24.16e\n',integral(@(x) (4*x-x.ˆ2).*exp(-2*x),0,5))
7.5019294970149075e-01

3.4 Improper Integrals

When the integral limit involves infinity, the numerical methods we discussed above won’t work since the
number of grid points become infinity. If the integrand is singular at a point within the integral limit, again
the regular method fails. We need special methods. In the following, we discuss some of simple ways to
avoid such difficulty.

3.4.1 Improper Integrals: ∞ in Limits

If the upper limit is ∞ or the lower limit is −∞, for example,
∫ ∞

0
f(x) dx, all the methods we discussed so

far cannot be used. One way to overcome this problem is to split the integral to two parts∫ ∞
0

f(x) dx =
∫ a

0
f(x) dx+

∫ ∞
a

f(x) dx (3.14)

where a is a positive constant. The first term in the right hand side can be integrated by the trapezoidal or
simpson rule. The second term needs to be transformed to a numerically computable form by introducing a
new variable t = 1

x
. Then, the integral we need to compute is∫ ∞

a

f(x) dx =
∫ 1/a

0

1
t2
f

(
1
t

)
dt (3.15)

The integral in the right hand side can be integrated by a standard method. However, the new form is not
necessarily trouble free since the integrand is not defined at the lower bound (divided-by-zero error). If we
can evaluate limt→0 1/t2f(1/t) analytically by hand, then standard methods such as the Simpson method
works.

The following types of improper integral:∫ ∞
0

e−xf(x) dx Use Gauss-Laguerre quadrature. (3.16)∫ ∞
−∞

e−x2
f(x) dx Use Gauss-Hermite quadrature. (3.17)

42 NUMERICAL INTEGRATION

1
(x+1)√ x

1

√ x

1

√ x
−

1
(x+1)√ x

Figure 3.3: Due to the divergence at x = 0, it is difficult integrate the original function (black line). The
blue line has the same singularity at x = 0 but can be analytically integrate. The difference (red line) does
not have a singularity and hence common numerical integration works fine.

can be evaluated by the Gaussian quadrature which we will discuss in Section 3.5.

3.4.2 Improper Integrals II: Integrable Singularities

If the integrand has integrable singularities such as 1√
x

within the integral limits, the standard methods
fail. Such improper integrals are ubiquitous in physics. A common method is to isolate the singularity and
integrate it analytically. Then, we integrate the remaining part by a numerical method.

EXAMPLE 3.3 Removal of Integral Singularity

Consider an improper integral

∫ a

0

1
(1 + x)

√
x

dx = π − 2 arctan
(

1√
a

)
(3.18)

where a is a positive constant. This integral is finite despite that the integrand diverges at x = 0. For
x = ϵ ≪ 1, the integrand can be expanded as

1
(1 + ϵ)

√
ϵ

∼ 1 − ϵ√
ϵ

∼ 1√
ϵ

(3.19)

GAUSSIAN QUADRATURE 43

Hence, the singularity is 1√
ϵ
. We split the integral in two parts as follows:

∫ a

0

1
(1 + x)

√
x

dx =
∫ a

0

1√
x

dx+
∫ a

0

[
1

(1 + x)
√
x

− 1√
x

]
dx

= 2
√
a−

∫ a

0

√
x

1 + x
dx (3.20)

The last integral is not improper and thus can be integrated by a standard method. Indeed, Fig. 3.3
shows that the new integrand has no singularity at x = 0 and the curve is very smooth. In addition the
integral of this function is small compared with the integral of the singular part. Hence, numerical error
is reduced.

Program 3.2 computes integral (3.18). The proper part of the integral is done with the trapezoidal
rule. The result is compared with the analytic solution. Using a = 1, h = 0.01, the program produces
the output

Numerical = 1.571003957326e+00
Exact = 1.570796326795e+00

Only the first three figures are correct, but which is acceptable in most cases.

3.5 Gaussian Quadrature

The Gaussian quadrature magically evaluates improper integrals utilizing the properties of orthogonal poly-
nomials such as Legendre and Laguerre polynomials. Despite the integral limit is infinity, you need to
evaluate the integrand only at several points. The theoretical justification of the Gaussian quadrature needs
knowledge of special functions. Here we show only the formulas. See Appendix 3.II for the theory behind
the Gaussian quadrature.

Gaussian-Laguerre Quadrature ∫ ∞
0

f(x)e−x dx =
N∑

i=1
wif(xi) (3.21)

where weight wi and abscissa xi are given in Table 3.1.

Gaussian-Hermite Quadrature ∫ ∞
−∞

f(x) e−x2
dx =

N∑
i=1

wif(xi) (3.22)

where weight wi and abscissa xi are given in Table 3.2.

Gaussian-Legendre Quadrature ∫ 1

−1
f(x) dx =

N∑
i=1

wif(xi) (3.23)

where weight wi and abscissa xi are given in Table 3.3.

These formula work well if f(x) behaves like a polynomial as x → ∞. It fails if f(x) behaves like an
exponential function.

44 NUMERICAL INTEGRATION

EXAMPLE 3.4 Magical Gaussian Quadrature

The energy density of blackbody radiation at temperature T is given by

u(T) = 8π(kT)4

(hc)3 J (3.24)

where h, c, and k are Plank constant[1], speed of light, and Boltzmann constant[2]. The factor J is a
dimensionless constant determined by integral:

J =
∫ ∞

0

x3

ex − 1 dx = π4

15 (3.25)

Let us try to integrate it numerically and compare the result with the exact value. Since the integral
bounds are 0 and ∞, we use the Gaussian-Laguerre quadrature. To use the Gaussian-Laguerre quadra-
ture, the integrand must have e−x. We can always create e−x by multiplying ex e−x to the integrand.
Now we have the desired exponential function e−x, but as a penalty another exponential function ex is

introduced in the integrand which is now f(x) = x3ex

ex − 1 . We need to make it sure that the extra ex does
not cause a problem. Since f(x) → x3 as x → ∞, f(x) behaves like a polynomial and thus the Gaus-
sian quadrature is expected to give a good result. Program 3.3 calculate J using the Gauss-Laguerre
quadrature. The output is

8 points Gaussian Laguerre Quadrature
Exact= 6.493939402267e+00
Gauss= 6.493935665353e+00
Error= 3.736914144348e-06

Despite that we evaluated the integrand only at 8 points, the agreement with the exact value is remark-
able.

3.6 Applications in Physics

3.6.1 Period of Classical Oscillation I.

A classical particle with energy E is confined in a potential U(x). (See Fig 3.4.) The particle oscillates
between turning points x1 and x2. The period of oscillation[3] is given by

T = 2
∫ x2

x1

1
v(x) dx (3.26)

where the speed of the particle at x is given by

v(x) =
√

2(E − U(x))
m

(3.27)

The integral bounds are determined by solving v(x) = 0, which requires numerical root finding discussed in
next Chapter.

APPLICATIONS IN PHYSICS 45

U (x)

x

E

x1 x2

Figure 3.4: Classical Oscillation

The integral in Eq. (3.26) is improper since v(x1) = v(x2) = 0. We need to remove the integral
singularities. First we expand the potential around the turning points:

U(x) = U(xi) + U ′(xi)(x− xi) + o(x2) = E + U ′(xi)(x− xi) + o(x2), i = 1, 2 (3.28)

If the potential is approximated by Ui(x) = E + U ′(xi)(x− xi), the speed becomes

vi(x) =
√

−2U ′(xi)(x− xi)
m

(3.29)

Note that this approximated speed approaches to the correct speed as x → xi. Utilizing it, we remove the
singularities as follows. ∫ x2

x1

1
v(x) dx =

∫ x0

x1

[
1

v(x) − 1
v1(x)

]
dx+

∫ x0

x1

1
v1(x) dx (3.30)

+
∫ x2

x0

[
1

v(x) − 1
v2(x)

]
dx+

∫ x2

x0

1
v2(x) dx (3.31)

(3.32)

where x0 is any point between x1 and x2. A good choice would be a point where the potential is minimum.
The integrands inside the square brackets have no singularity and thus can be integrated using a common
numerical method. The remaining integral can be easily evaluated analytically:∫ x0

x1

1
v1(x) dx =

√
m

−2U ′(x1)

∫ x0

x1

1√
x− x1

dx =
√

2mx0
|U ′(x1)| (3.33)

∫ x2

x0

1
v2(x) dx =

√
m

2U ′(x2)

∫ x2

x0

1√
x2 − x

dx . =
√

2mx0
|U ′(x2)| (3.34)

3.6.2 Scattering by Yukawa Potential: Part 1

A particle of mass m1 elastically collides with another particle of mass m2 through a spherical potential
U(r) where r is the distance between the particles. The scattering angle θ defined in Fig. 3.5 depends on

46 NUMERICAL INTEGRATION

r0

Figure 3.5: Geometry of scattering in relative coordinate.

0 0.2 0.4 0.6 0.8
u

0

2

4

6

8

in
te

gr
an

d

0 0.2 0.4 0.6 0.8
u

-0.25

-0.2

-0.15

-0.1

-0.05

0

in
te

gr
an

d

u
0u

0

Figure 3.6: The left panel shows the original integrand. The green area need to be numerically integrated.
The right panel shows the integrand after the singularity is removed. The blue area need to be integrated.
Note the difference in scale between two plots. The blue area is much smaller than the green area. Parameter
values k = a = E = 1 are used.

the impact parameter b and the energy of the system E. For mathematical convenience, we introduce a new
angle ϕ as shown in Fig. 3.5. Note that θ = π − 2ϕ. This scattering problem can be analytically solved up
to the following integral[4]:

ϕ =
∫ ∞

r0

b

r2
1√

1 − b2

r2 − U(r)
E

dr . (3.35)

The lower integral limit r0 is the closest distance between two particles determined by the equation

1 − b2

r2
0

− U(r0)
E

= 0 . (3.36)

APPLICATIONS IN PHYSICS 47

For the Coulomb potential this integral can be analytically carried out.(Rathurford scattering).[4] We want
to find the scattering angle for Yukawai potential (screened Coulomb potential):

U(r) = k

r
e−r/a

where k and a > 0 are constant.
This integral is improper in two reasons. One is that the upper integral limit is infinity. The other is that

the integrand diverges at r = r0. See the singularity in Fig. 3.6. The first difficulty can be easily resolved.
Introducing a variable u = 1

r
. Eqs. (3.35) and (3.36) are respectively transformed to

ϕ =
∫ u0

0

b√
1 − b2u2 − U(1/u)

E

du (3.37)

and
1 − b2u2

0 − U(1/u0)
E

= 0 . (3.38)

Removing the singularity is a bit more difficult. The method used in Example 3.3 is helpful. Noting
that the Rutherford scattering can be solved analytically, we consider scattering by Coulomb potential

UC(r) = ke−r0/a

r
. Expressing in variable u, the scattering angle by UC is analytically obtained:

ϕC =
∫ u0

0
du

b√
1 − b2u2 − c u

(3.39)

= sin−1
(

2b2u0 + c√
c2 + 4b2

)
− sin−1

(
c√

c2 + 4b2

)
. (3.40)

where c = ke−r0/a

E
. Now the scattering angle by the Yukawa potential is given by ϕ = ϕC + ∆ϕ where

∆ϕ = ϕ− ϕC (3.41)

=
∫ u0

0
du

[
b√

1 − b2u2 − c u e−(1/u−1/u0)/a
− b√

1 − b2u2 − c u

]
(3.42)

The integrand in the square bracket is no loner singular at u = u0 because the singularity in the two terms
is exactly canceled. Hence, ∆ϕ can be evaluated by a standard numerical integral. Figure 3.6 shows that
the integrand of Eq. (3.42) does not have the divergence any more. We can use simple numerical integration
algorithms such as the trapezoidal or the Simpson rule to integrate Eq. (3.42). One issue is that the
integrand has sharp change near u0. Try N=100, 500, 1000 in the Simpson rules. If the results do not
change significantly, you have sufficiently accurate results.∗

We are still not ready to write a program yet. We must find r0 by solving Eq. (3.36) or (3.38). Unfortu-
nately, there is no analytical solution for the Yukawa potential. We need a numerical root finding method,
which we will discuss in next chapter.

3.6.3 Debye Model of Heat Capacity

Based on Debye theory, the heat capacity of a solid at temperature T is given by

CV = 9kBN

(
T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2 dx (3.43)

∗We investigate the same problem with a different method in Chapter 4

48 NUMERICAL INTEGRATION

where θD is the Debye temperature, N is the number of atoms, and kB is Boltzmann’s constant.[5] Since
the upper limit of the integral depends on temperature, we may need to use different numerical methods for
different temperature.

(1) Before going to calculation, first we normalize quantities. The heat capacity of ideal gas consisting of N
particles is 3

2kBN . Using this as a unit of heat capacity, the heat capacity of the material is C̃V = 2Cv/3kBN .
We measure temperature using the Debye temperature as unit. The normalized temperature is T̃ = T/θD.
Now, the original expression is written as

C̃V = 6T̃ 3
∫ 1/T̃

0

x4ex

(ex − 1)2 dx (3.44)

which does not include very large number. More importantly, this expression does not depend on the actual
material (neither N nor θD). Therefore, the result is universal.

(2) When the temperature is similar or larger than the Debye temperature (T̃ ≳ 1), the upper limit of the
integral is about 1 or smaller. There is no numerical difficulty to integrate it numerically. The Simpson or
trapezoidal rule is sufficient.

(3) When the temperature is exactly zero, the upper limit of the integral is infinity. As x → ∞, the
integrand behaves as x4e−x. Hence, the integral is finite and the Gaussian-Laguerre quadrature should work
well. However, it is not necessary to calculate the integral since the factor T̃ 3 in front of the integral vanishes.
Thus, C̃V = 0.

(4) When the temperature is much lower than Debye temperature but still above zero, the upper limit of
the integrals can very large. The direct integration using the Simpson rule may fail. As we learned in part
(3), the Gaussian quadrature works well if the upper limit is infinity. Utilizing it we split the integral in two
parts. ∫ 1/T̃

0

x4ex

(ex − 1)2 dx =
∫ ∞

0

x4ex

(ex − 1)2 dx−
∫ ∞

1/T̃

x4ex

(ex − 1)2 dx (3.45)

= 4π4

15 −
∫ T̃

0

e1/s

s6(e1/s − 1)2 ds (3.46)

where s = 1/x is used in the second line. The first integral in the lhs is analytically calculated. In the second
integral, the upper limit is T̃ ≪ 1 and the Simpson rules is sufficient. Note that when s → 0, the integrand
vanishes.

3.6.4 Heat Capacity of Free Electron Gas

The heat capacity of free electron gas is given by

Ce = 3
2kBN

kBT

εF

∫ ∞
−εF /kBT

x2ex

(ex + 1)2 dx (3.47)

where εF is Fermi energy.[6] See Section 3.6.3 for the meaning of other symbols. Expressing the above
equation using the normalized heat capacity C̃ = 2C/3kBN and T̃ = kBT/εF . (see Section 3.6.3), Equation
(3.47) is simplied to

C̃

T̃
=
∫ ∞
−1/T̃

x2ex

(ex + 1)2 dx (3.48)

APPLICATIONS IN PHYSICS 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T

C
or

re
ct

io
n

T
er

m

Figure 3.7: Correction term, the integral in Eq. (3.50).

This integral is simpler than Eq. (3.44) since there is no singularity. On the other hand, the upper bound
is infinity. For a typical metal at a room temperature or lower, T̃ ≪ 1 and thus the lower limit is often
replaced with −∞. Then, we find an analytical solution

C̃

T̃
≈
∫ ∞
−∞

x2ex

(ex + 1)2 dx = π2

3 (3.49)

If we want to know the heat capacity at a higher temperature we need to integrate the original equation
numerically. However, we don’t have to evaluate the whole integral. We just need to find the deviation from
the low temperature limit (3.49).

C̃

T̃
= π2

3 −
∫ −1/T̃

−∞

x2ex

(ex + 1)2 dx

= π2

3 −
∫ −1/T̃

−∞

x2ex

(ex + 1)2 dx

= π2

3 +
∫ T̃

0

e1/s

(e1/s + 1)2 ds

= π2

3 +
∫ T̃

0

e−1/s

(e−1/s + 1)2 ds (3.50)

In the last line, exp(−2/s) is multiplied to both the numerator and denominator so that no large number
appears. The integral in the last line can be estimated by a standard numerical method.

Figure 3.47 shows that the correction becomes significant only for T̃ > 0.2. The Fermi energy of a typical
material is about 1 eV to 10 eV , which corresponds to temperature 104 K to 105 K. Hence, the correction
term is not necessary until T = 2000K to 20000K. At this temperature, the metal is melt. Thus, the
correction term may be safely ignored.

50 NUMERICAL INTEGRATION

Problems

3.1 Integrate x cosx from x = 0 to x = π using Trapezoidal and Simpson rules. Compare the results with
the exact solution

∫
x cosxdx = cosx+ x sin x.

3.2 Plot the molar heat capacity of copper (θD = 309K) from T = 0K to T = 1083K using the Debye
theory shown in Section 3.6.3.

3.3 Write a code to produce Fig. 3.7.

APPLICATIONS IN PHYSICS 51

Appendix

3.I Expansion of Integral with h

Consider the integral as a function of h as

F (h) =
∫ xn+h

xn

f(x) dx (3.51)

and expand it in a McLaughlin series

F (h) = F (0) + F ′(0)h+ 1
2F
′′(0)h2 + 1

3!F
(3)(0)h3 + 1

4!F
(4)(0)h4 + o(h5) . (3.52)

Obviously, F (0) = 0. The first derivative of F (x) can be computed as

F ′(h) = d
dh

∫ xn+h

xn

f(x) dx = d
dz

∫ z

xn

f(x) dx = f(z) = f(xn + h) (3.53)

where z = xn + h. Higher order derivatives are now simply F (k)(h) = f (k−1)(xn + h). Substituting these
results into the expansion (3.52), we obtain Eq, (3.3).

3.II Justification of Gaussian Quadrature
To be written.

52 NUMERICAL INTEGRATION

3.III Gaussian Quadrature: Weights and Abscissas

Table 3.1: Weights and Abscissas for Gaussian-Laguerre quadrature

N x w

2 5.8578 6437 6269 0495×10−1 8.5355 3390 5932 7376×10−1

3.4142 1356 2373 0950 1.4644 6609 4067 2624×10−1

4 3.2254 7689 6193 9231×10−1 6.0315 4104 3416 3360×10−1

1.7457 6110 1158 3466 3.5741 8692 4377 9969×10−1

4.5366 2029 6921 1280 3.8887 9085 1500 5384×10−2

9.3950 7091 2301 1331 5.3929 4705 5613 2745×10−4

6 2.2284 6604 1792 6069×10−1 4.5896 4673 9499 6359×10−1

1.1889 3210 1672 6230 4.1700 0830 7721 2099×10−1

2.9927 3632 6059 3141 1.1337 3382 0740 4498×10−1

5.7751 4356 9104 5105 1.0399 1974 5314 9075×10−2

9.8374 6741 8382 5899 2.6101 7202 8149 3206×10−4

1.5982 8739 8060 1702×10+1 8.9854 7906 4296 2124×10−7

8 1.7027 9632 3051 0100×10−1 3.6918 8589 3416 3753×10−1

9.0370 1776 7993 7991×10−1 4.1878 6780 8143 4296×10−1

2.2510 8662 9866 1307 1.7579 4986 6371 7181×10−1

4.2667 0017 0287 6588 3.3343 4922 6121 5652×10−2

7.0459 0540 2393 4657 2.7945 3623 5225 6725×10−3

1.0758 5160 1018 0995×10+1 9.0765 0877 3358 2131×10−5

1.5740 6786 4127 8005×10+1 8.4857 4671 6272 5315×10−7

2.2863 1317 3688 9264×10+1 1.0480 0117 4871 5104×10−9

APPLICATIONS IN PHYSICS 53

Table 3.2: Weights and Abscissas for Gaussian-Hermite Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative abscissas are
shown.

N ±x w

2 0.7071067811 0.8862269254

3 0 1.1816359006

1.2247448713 0.2954089751

4 0.5246476232 0.8049140900

1.6506801238 0.0813128354

5 0 0.9453087204

0.9585724646 0.3936193231

2.0201828704 0.0199532420

6 0.4360774119 0.7246295952

1.3358490740 0.1570673203

2.3506049736 0.0045300099

7 0 0.8102646175

0.8162878828 0.4256072526

1.6735516287 0.0545155828

2.6519613568 0.0009717812

8 0.3811869902 0.6611470125

1.1571937124 0.2078023258

1.9816567566 0.0170779830

2.9306374202 0.0001996040

54 NUMERICAL INTEGRATION

Table 3.3: Weights and Abscissas for Gaussian-Legendre Quadrature. Abscissas are symmetric with respect
to x = 0. Therefore, for every positive abscissa x there is negative one −x. Only non-negative abscissas are
shown.

N ±x w

2 0.5773502692 1

3 0 0.8888888889

0.7745966692 0.5555555556

4 0.3399810436 0.6521451549

0.8611363116 0.3478548451

5 0 0.5688888889

0.5384693101 0.4786286705

0.9061798459 0.2369268851

6 0.2386191861 0.4679139346

0.6612093865 0.3607615730

0.9324695142 0.1713244924

7 0 0.4179591837

0.4058451514 0.3818300505

0.7415311856 0.2797053915

0.9491079123 0.1294849662

8 0.1834346425 0.3626837834

0.5255324099 0.3137066459

0.7966664774 0.2223810345

0.9602898565 0.1012285363

APPLICATIONS IN PHYSICS 55

MATLAB Source Codes

Program 3.1

%**
%* Example 3.1 *
%* filename: ch03pr01.m *
%* program listing number: 3.1 *
%* *
%* This program integrate sin(x) from x=0 to x=pi using rectangular, *
%* trapezoidal and simpson methods. Absolute errors are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2019. *
%**

clear all;

% Set the lower and upper bound of the integration
a=0;
b=pi/2;

% Header of the output
display(' Absolute error in various numrical integration')
fprintf(' %3s %21s %24s %24s\n','N','Rectangular','Trapezoidal','Simpson');

% loop over different N
for k=1:10

N=2ˆk;
h(k)=(b-a)/N;

% evaluate the variable and function
for i=0:N

x(i+1)=a+i*h(k);
f(i+1)=sin(x(i+1));

end

% Rectangular rule
rect=sum(f(1:N))*h(k);

% Trapezoidal rule
trap=sum(f(2:N))*h(k) + (f(1)+f(N+1))*h(k)/2;

% Simpson rule
simp=(2*sum(f(1:2:N-1))+4*sum(f(2:2:N))-f(1)+f(N+1))*h(k)/3;

% Evaluation of errors (the exat answer is 1)
err_rect(k)=abs(1-rect);
err_trap(k)=abs(1-trap);
err_simp(k)=abs(1-simp);

%print out the results
fprintf(' %5d %24.16e %24.16e %24.16e \n',...

N,err_rect(k),err_trap(k),err_simp(k));
end

% Order of the errors
h2=h.ˆ2;
h3=h.ˆ3;
h4=h.ˆ4;

56 NUMERICAL INTEGRATION

% Plot the results
subplot(1,1,1)
p=loglog(h,err_rect,'d',h,err_trap,'o',h,err_simp,'s',...

h,h,'--',h,h2,'--',h,h4,'--');

% Format the plot
title('Absolute errors in the various integration methods');
xlabel('h');
ylabel('absolute error');
set(p(1),'Color','green');
set(p(2),'Color','blue');
set(p(3),'Color','red');
set(p(4),'Color','green','LineWidth',2);
set(p(5),'Color','blue','LineWidth',2);
set(p(6),'Color','red','LineWidth',2);
legend(p,{'rectangular','trapezoidal','simpson','h','hˆ2','hˆ4'});
legend(p,'Location','SouthEast');

▲▲▲

Program 3.2

%***
%* Example 3.3 *
%* filename: ch03pr02.m *
%* program listing number: 3.2 *
%* *
%* This program integrates 1/(sqrt(x)*(1+x)) from x=0 to x=1 *
%* by removing singularity at x=0. Trapezoidal rule is used *
%* for the proper part of integral. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 01/07/2014. *
%***

clear all;
a = 1.0; % upper bound
N = 100; % number of segments
h = a/N; % width of segments

% integration of sqrt(x)/(1+x) with trapezoidal rule
S = sqrt(a)/(1+a)/2; %bundary value devided by 2
for i=1:N-1

x = i*h;
f = sqrt(x)/(1+x);
S = S +f;

end
proper = S*h; % integral of proper part

singular = 2*sqrt(a); % singular part

total = singular - proper;
exact = pi - 2*atan(1/sqrt(a));

fprintf('Numerical = %18.12e\n',total);
fprintf(' Exact = %18.12e\n',exact);

▲▲▲

APPLICATIONS IN PHYSICS 57

Program 3.3

%**
%* Example 3.4 *
%* filename: ch03pr03.m *
%* program listing number: 3.3 *
%* *
%* This program numerically integrates xˆ3*exp(x)/(exp(x)-1) from *
%* x=0 to infinity using 8-point Gaussian Laguerre Quadrature. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/06/2014. *
%**
clear all;

N=8;

x=[1.7027963230510100e-1, 9.0370177679937991e-1,...
2.2510866298661307, 4.2667001702876588, ...
7.0459054023934657, 1.0758516010180995e+1,...
1.5740678641278005e+1, 2.2863131736889264e+1];

w=[3.6918858934163753e-1, 4.1878678081434296e-1,...
1.7579498663717181e-1, 3.3343492261215652e-2,...
2.7945362352256725e-3, 9.0765087733582131e-5,...
8.4857467162725315e-7, 1.0480011748715104e-9];

for i=1:N
f(i)=x(i)ˆ3*exp(x(i))/(exp(x(i))-1);

end

Gauss=sum(w.*f);
Exact=piˆ4/15;
fprintf('%i points Gaussian Laguerre Quadrature\n',N);
fprintf(' Exact=%18.12e\n Gauss=%18.12e\n Error=%18.12e\n',...
Exact,Gauss,abs(Exact-Gauss));

Examples in Python

EXAMPLE 3.2 Adaptive Quadrature

A Python package called SciPy has built-in function quad(func,xmin,xmax) which uses adaptive
quadrature with a default error tolerance.

>>> import numpy as np
>>> import scipy.integrate as spint
>>> y=spint.quad(lambda x: (4.0*x-x**2)*np.exp(-2.0*x),0.0,5.0)
>>> print(y)

You can create a function and pass it to a subprogram by ’lambda x: (4.0*x-x**2)*np.exp(-2.0*x)’. This
is a unique capability of Python.

58 NUMERICAL INTEGRATION

Python Source Codes

Program 3.1

-*- coding: utf-8 -*-
"""
%**
%* Example 3.1 *
%* filename: ch03pr01.py *
%* program listing number: 3.1 *
%* *
%* This program integrate sin(x) from x=0 to x=pi using rectangular, *
%* trapezoidal and simpson methods. Absolute errors are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/14/2019. *
%**
"""

import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt

opt=input("Use SciPy [y/n] ")
if opt=='y':
print("SciPy integrate will be used.\n")
else:
print("SciPy will not be used.\n")

Set the lower and upper bound of the integration
a=0.
b=np.pi/2.
Header of the output
print("{0:ˆ75}".format('Absolute error in various numrical integration'))
print("{0:ˆ6} {1:ˆ23} {2:ˆ24} {3:ˆ24} \n"
.format('N','Rectangular','Trapezoidal','Simpson'))

kmax=10
h=np.zeros(kmax+1)
err_rect=np.zeros(kmax+1)
err_trap=np.zeros(kmax+1)
err_simp=np.zeros(kmax+1)

for k in range(0,kmax):
N=2**(k+1)
h[k]=(b-a)/N

x = a + np.linspace(a,b,N+1)
f = np.sin(x)

rect=f[0:N].sum()*h[k]

if opt=='y':
trap=integrate.trapz(f,x)
simp=integrate.simps(f,x)
else:
trap=f[1:N].sum()*h[k]+(f[0]+f[N])*h[k]/2.
simp=(2.0*f[0:N-1:2].sum()+4.0*f[1:N:2].sum()-f[0]+f[N])*h[k]/3.

err_rect[k]=abs(1.-rect)

APPLICATIONS IN PHYSICS 59

err_trap[k]=abs(1.-trap)
err_simp[k]=abs(1.-simp)

print("{0:5d} {1:24.16e} {2:24.16e} {3:24.16e}"
.format(N,err_rect[k],err_trap[k],err_simp[k]))

del x
del f

Plot data
h2=h**2
h3=h**3
h4=h**4

plt.ioff()
plt.figure(figsize=(6,5))
plt.loglog(h,err_rect, 'og', label='rectangular')
plt.loglog(h,err_trap, 'ob', label='trapezoidal')
plt.loglog(h,err_simp, 'or', label='simpson')
plt.loglog(h,h,'--g',label='h')
plt.loglog(h,h2,'--b',label='$hˆ2$')
plt.loglog(h,h4,'--r',label='$hˆ4$')
plt.legend(loc=4)
plt.xlabel('h')
plt.ylabel('Integral')
plt.show()

▲▲▲

Program 3.2
#!/usr/bin/env python3
"""
%**
%* Example 3.3 *
%* filename: ch03pr02.py *
%* program listing number: 3.2 *
%* *
%* This program integrates 1/(sqrt(x)*(1+x)) from x=0 to x=1 *
%* by removing singularity at x=0. Trapezoidal rule is used *
%* for the proper part of integral. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/11/2017. *
%**
"""
import numpy as np

a = 1.0 # upper bound
N = 100 # number of segments
h = a/N # width of segments
integration of sqrt(x)/(1+x) with trapezoidal rule
S = np.sqrt(a)/(1.0+a)/2.0; # bundary value devided by 2
for i in range(1,N):

x = i*h
f = np.sqrt(x)/(1+x)
S = S +f

proper = S*h # integral of proper part
singular = 2*np.sqrt(a)
singular part
total = singular - proper

60 NUMERICAL INTEGRATION

exact = np.pi - 2*np.arctan(1/np.sqrt(a))
print("Numerical = {0:18.12e}".format(total))
print(" Exact = {0:18.12e}".format(exact))

▲▲▲

Program 3.3

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 3.4 *
%* filename: ch03pr03.py *
%* program listing number: 3.3 *
%* *
%* This program numerically integrates xˆ3*exp(x)/(exp(x)-1) from *
%* x=0 to infinity using 8-point Gaussian Laguerre Quadrature. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/12/2019. *
%**
"""
import numpy as np

def f(x):
return x**3*np.exp(x)/(np.exp(x)-1.)

if __name__ == "__main__":
N=8

evaluation points and weights for 8 point Gaussian quadrature
x=np.array([1.7027963230510100e-1, 9.0370177679937991e-1,

2.2510866298661307, 4.2667001702876588,
7.0459054023934657, 1.0758516010180995e+1,
1.5740678641278005e+1, 2.2863131736889264e+1])

w=np.array([3.6918858934163753e-1, 4.1878678081434296e-1,
1.7579498663717181e-1, 3.3343492261215652e-2,
2.7945362352256725e-3, 9.0765087733582131e-5,
8.4857467162725315e-7, 1.0480011748715104e-9])

gauss=(w*f(x)).sum() #Gaussian quadrature
exact=np.pi**4/15.
print("{0:3d} point Gaussian Laguerre Quadrature".format(N))
print(" Exact={0:18.12e}\n Gauss={1:18.12e}\n Error={2:18.12e}"

.format(exact, gauss, abs(exact-gauss)))

Bibliography

[1] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005.

[2] Stephen J. Blundell and Katherine M. Blundell. Concepts in Thermal Physics. Oxford University Press,
2nd edition, 2010.

[3] John R. Taylor. Classical Mechanics. University Science Books, 2005.

[4] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics. Addison Wesley, 3rd edition,
2002.

[5] Charles Kittel. Introduction o Solid State Physics. Wiley, 8th edition, 2004. Chapter 5.

[6] Charles Kittel. Introduction o Solid State Physics. Wiley, 8th edition, 2004. Chapter 6.

61

