
CHAPTER 2

NUMERICAL DERIVATIVES

When we study physics, we often investigate the change of certain quantities. That is why basic calculus
plays a major role in physics. Evaluating the derivative of a function f(x) is an ubiquitous operation in
physics. However, an analytical expression of the derivative is not always available. Then, a numerical
method must be deployed to evaluate it. That is not only the reason we need numerical derivative. In
some cases an analytical expression of the function itself is not available. For example, when a function
is experimentally obtained by measurement, it is given as a set of numerical data, (xi, fi), i = 1, · · · , N .
Then, analysis of such data is always numerical. There are many algorithms for numerical derivative. In
this chapter, we study some of well-known algorithms useful for studying physics.

Numerical methods are in general not exact and involve systematic errors. Understanding the source of
errors and their magnitude is very important. It is possible to estimate the magnitude of expected errors
based on mathematical analysis and the study of numerical error is an important part of numerical analysis.
We will investigate the degrees of errors through theory and examples.

In this section, we assume that an analytical expression of function f(x) is given and that we can numer-
ically evaluate it at any point x. Furthermore, we assume that the numerical error in the evaluation of the
function is negligiblly small. In other words, the main errors occur when the derivative is evaluated.

2.1 First order derivatives

Let us look at the mathematical definition of derivative:
d

dxf(x) = lim
h↘0

f(x+ h) − f(x)
h

= lim
h↘0

f(x) − f(x− h)
h

(2.1)

First Step to Computational Physics: Edition 0.6.
Copyright © 2021 Ryoichi Kawai

23

24 NUMERICAL DERIVATIVES

x−h x+hx

exact

Figure 2.1: Illustration of various numerical derivatives. The exact derivative is the slope of the curve at x,
which is shown as the dotted line. The forward finite difference method shown in green underestimates the
slop whereas the backward finite difference method shwon in blue overestimates it. The mean finite different
method shown in red looks very close to the exact derivative.

which involves limit operation which floating point calculation cannot not perform due to the quantization
(See Chap. 1). If h = 0 is used, we have 0/0=NaN. If h=realmin is used, f(x+h)−f(x) is very inaccurate
due to round-off error as discussed in Chapter 1. If 1 ≫ h > realmin is used, the both numerator and
denominator are finite but the ratio is not exactly the limit.

It is clear that direct numerical evaluation of Eq (2.1) is not possible. However, it is expected to be close
to the limit if an appropriately small value of h is used. Based on this naive argument, we hope that the
following forward finite difference method is close to the actual derivative with a certain small value of h.

d
dxf(x) ≈ ∆Ff(x) ≡ f(x+ h) − f(x)

h
. (2.2)

where ∆F is the forward finite difference operator. Similarly, we define the backward finite difference method

d
dxf(x) ≈ ∆Bf(x) ≡ f(x) − f(x− h)

h
. (2.3)

where ∆B is the backward finite difference operator. Unlike the exact limit (2.1) the forward and backward
finite difference methods do not agree each other due to the finite h. As illustrated in Fig. 2.1, one of them
overestimates and the other underestimates.

Now, we investigate how accurate the forward and backward finite difference methods are. We estimate
the order of error using Taylor expansion[1],

f(x+ h) = f(x) + h f ′(x) + h2

2 f
′′(x) + h3

3! f
(3)(x) + O

(
h4) (2.4a)

f(x− h) = f(x) − h f ′(x) + h2

2 f
′′(x) − h3

3! f
(3)(x) + O

(
h4) (2.4b)

FIRST ORDER DERIVATIVES 25

where O
(
h4) mean that the remaining terms with h4 and higher order.

Substituting the expansions (2.4) to Eqs. (2.2) and (2.3)), we find

∆Ff(x) = f ′(x) + h

2 f
′′(x) + O

(
h2) (2.5a)

∆Bf(x) = f ′(x) − h

2 f
′′(x) + O

(
h2) (2.5b)

where f ′ and f ′′ indicate the first and second order derivatives of f . The leading term in the error ∆F,Bf(x)−
f ′(x) is ± h

2 f
′′(x), which is the order of h. This means that if h is small enough, the numerical methods

agree with the exact derivative. However, the error decreases only linearly with h. We need to remember
that if h is too small, the round-off error kills the accuracy. Hence, h cannot be too small. Error at the order
h is in general not acceptable and these methods are not accurate enough for practical applications.

There is a better method. Noting that the error in the forward and backward finite difference method is
exactly the same in magnitude but has opposite sign, we can get rid of the error at the order of h. Taking
the mean of the two approximations, we obtain

∆Mf(x) ≡ ∆Ff(x) + ∆Bf(x)
2 = f(x+ h) − f(x− h)

2h . (2.6)

where ∆M is a mean finite difference operator.
Substituting the expansions (2.4) to (2.6), we find

∆Mf(x) = f ′(x) + h2

3! f
(3)(x) + O

(
h4) (2.7)

Now, the error is at the order of h2 which is smaller than the previous error at h. The improvement is clearly
visible in Fig. 2.1.

Mathematically speaking, the small error in the mean finite difference method is related to the mean value
theorem[2] which states that there is at least one number c between a and b such that

f ′(c) = f(b) − f(a)
b− a

(2.8)

Let b = x+h and a = x−h, the right hand side of Eq (2.8) mathces to ∆Mf(x). Therefore, the mean finite
different method gives the slope of the curve at some point c between x+ h and x− h. When h is small, c
is apprximately x. Then, we obtain the mean finite difference formula (2.6).

The mean finite element method (2.6) is good enough for most application. If even a higher degree of
accuracy is needed, use the symmetric four-point method[3]

∆S4f(x) ≡ f(x+ 2h) − 8f(x+ h) + 8f(x− h) − f(x− 2h)
12h . (2.9)

Its error is at the order of h4.

Exercise 2.1 Using the Taylor expansion, verify that the error of symmetric four-point method is order
of h4.

How do we find an appropriate value of h? Considering the definition of derivative (2.1), one might expect
that smaller h provides more accurate result. However, when h is too small, the finite different methods
suffer from the round-off error. Therefore, we must choose the value of h carefully, not too big and not too
small. Noting that x+ h = x(1 + x/h), it is pointless to use h < ϵm x where ϵm is the machine epsilon. (See
Section 1.6). Example 2.1 illustrates that the finite difference method fails when h is too small.

26 NUMERICAL DERIVATIVES

h
10 -20 10 -15 10 -10 10 -5 100

D
er

iv
at

iv
e

0

0.5

1

1.5

2

2.5
Numerical Derivative

forward

backward

mean

h
10 -20 10 -15 10 -10 10 -5 100

ab
so

lu
te

 e
rr

or

10 -20

10 -15

10 -10

10 -5

100

105
Errors in the finite difference methods

forward
backward
mean
h
h2

Figure 2.2: Output of Example 2.1. The left panel shows numerical derivatives for wide ranges of h. As h
decreases from h = 1 to h = 0.01, the derivative converges to 1 (at least in our eyes). As h further decreases,
the values of all methods remain the same until h ≈ ϵm. Below it, the derivative abruptly goes to 0. The
numerical method fails due to round-off error. To see more details, the right panel plots the error. As h
decreases, the error of the forward and backward finite difference methods decreases in the same way as h
until h ≈ 10−8 but the error increases when h is further reduced. The mean finite difference method shows
smaller error than the two other methods and the error decreases as h2 up to h ∼ 10−5. The best result is
given by the mean finite difference method with h ≈ 10−5.

EXAMPLE 2.1 Round-off errors in finite difference methods

Let’s numerically evaluate the derivative of f(x) = 1
3x

3 at x = 1 and compare the results with the
exact value. The analytic form of derivative is f ′(x) = x2 and thus the exact value is f ′(1) = 1.
Program 2.1 computes the derivative using the forward, backward and mean finite difference methods
for h = 1, 0.1, 0.01, · · · , 10−19. The error is measured by δ = |f ′(1) − ∆f(1)|. The results are plotted
in Fig. 2.2. The error of forward and backward methods is almost the same and decreases in the same
way as h. However, the improvement stop at h ∼ 10−8 and the error increases for smaller h due to the
round-off error. The best answer is obtained with h = 10−8. The mean difference method shows much
better result. The error decreases with h2. The best value is obtained at h = 10−5 and the result is
better than the best value obtained by the forward or backward method. It is quite clear that the mean
difference method is much better than the two others.

In practice, we don’t know the actual error and therefore we cannot use a plot like the right panel of Fig. 2.2
to find an appropriate value for h. However, the left panel of Fig. 2.2 shows that the numerical derivative
approaches a certain value and the output does not change much when h is smaller than a certain value
until it hits the limit of round-off error. Suppose that we calculate the derivative using h and h′ = h/2.
We expect that the output is more accurate with h′ than h. Using Eq. (2.7), the change of the mean finite

FIRST ORDER DERIVATIVES 27

difference is given by

|∆Mf(x) − ∆′Mf(x)| = |f (3)|
3!

3
4h

2 = 3
4 × [error in ∆Mf(x)] (2.10)

which suggests that the error is estimated by

Error in ∆Mf(x) ≈ |∆Mf(x) − ∆′Mf(x)| (2.11)

. Note that the exact value of f ′(x) is not needed to find the error. Now we have an algorithm to find
numerical derivative with a desired accuracy using this error estimate.

Algorithm 2.1 Numerical derivative with tolerance

1. Set a value of tolerance (allowed error).

2. Set a reference step size h1 and evaluate a reference derivative g1 = ∆Mf(x) using h1.

3. Set a new step size h2 = h1/2 and evaluate a new derivative g2 = ∆Mf(x) using h2.

4. Evaluate error δ = |g2 − g1|.

5. If δ < tolerance, g2 is the desired result. Stop the loop.

6. If not, let g1 = g2 and h1 = h2 (previous g2 and h2 are now the reference).

7. Go back to Step 3.

Here the absolute error is used. We can also use a relative error
∣∣∣∣g2 − g1

g1

∣∣∣∣ instead. Then, the tolerance
specifies a desired relative error.

EXAMPLE 2.2 Automatic adjustment of the step size h.

We numerically evaluate the derivative of f(x) = 1
3x

3 at x = 1 again. This time, we do not specify the
step length h. Instead we specify a tolerance and the program will automatically find an appropriate h
for the given tolerance. Program 2.2 implements Algorithm 2.1. When the tolerance is 0.001, we obtain
the following output. It appears that h = 0.03125 is good enough for this problem.

Enter tolerance =0.001
h derivative error

5.000e-01 1.0833333333e+00 2.5000000000e-01
2.500e-01 1.0208333333e+00 6.2500000000e-02
1.250e-01 1.0052083333e+00 1.5625000000e-02
6.250e-02 1.0013020833e+00 3.9062500000e-03
3.125e-02 1.0003255208e+00 9.7656250000e-04
Tolerance is OK.

28 NUMERICAL DERIVATIVES

Exercise 2.2 Evaluate of the derivative of sin(x) at x = π/4 using the mean finite difference method. The
first three digits of the answer should be correct.

2.2 Second order derivatives

We can evaluated the second order derivative using the mean value method twice. First, we pretend that
the first order derivative is given. Using the mean value method with step size h/2, we obtain

f ′′(x) ≈ ∆Mf ′(x) =
f ′(x+ h

2) − f ′(x− h
2)

h
(2.12)

Then, we replace the first order derivatives with approximated ones using the mean value method again.

f ′(x+ h

2) → ∆Mf(x+ h

2) = f(x+ h) − f(x)
h

(2.13a)

f ′(x− h

2) → ∆Mf(x− h

2) = f(x) − f(x− h)
h

. (2.13b)

The result is

f ′′(x) ≈ ∆(2)
M f(x) ≡ f(x+ h) + f(x− h) − 2f(x)

h2 . (2.14)

where ∆(2)
M is the second order mean finite difference operator. Substituting Eqs. (2.4a) and (2.4b) into

(2.14), we find that the error of this approximation is order of h2.

Exercise 2.3 The second order derivative of sin(x) is − sin(x). Evaluate the second order derivative of
sin(x) at x = 2nπ/N where n = 0, 1, · · · , N . Use N = 100 and plot the result. Verify that it is − sin(x) at
least within the accuracy of the numerical method.

If a higher accuracy is needed, use the symmetric five-point method

f ′′(x) ≈ ∆(2)
S5f(x) ≡ −f(x+ 2h) + 16f(x+ h) − 30f(x) + 16f(x− h) − f(x− 2h)

12h2 (2.15)

whose error is the order of h4.[4]

Exercise 2.4 Using the Taylor expansion, verify that the error of symmetric five-point method is order of
h4.

Problems

2.1 Evaluate the first order derivative of sin(x) for interval (0, 2π) with tolerance 0.0001. What value of h is
needed to satisfy the tolerance? Compare the numerical derivative with the exact one cos(x) and check
if the tolerance is indeed satisfied.

SECOND ORDER DERIVATIVES 29

2.2 Evaluate the second order derivative of f(x) = 1
12x

4 at x = 1 using h = 1, 0.1, 0.01, · · · , 10−10. Plot the
error as a function of h. Plot also the theoretical error h2 for the three-point method (2.14). [Optional:
Try also the five-point method (2.15) and check how the error increases. Unexpectedly, the larger h gives
better answer. The symmetric five-point formula takes into account up to the fourth order derivative.
The fifth and higher order derivative of x4 vanishes and thus the five-point formula is theoretically exact
for x4. Nevertheless, you encounter numerical errors due to the loss of significance. Therefore, the larger
h is better for this particular function. Try the same calculation with f(x) = 1

20x
5. You will see the

usual error profile.]

MATLAB Source Codes

Program 2.1

%**
%* Example 2.1 *
%* filename: ch02pr01.m *
%* program listing number: 2.1 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the three finite difference methods. *
%* Errors in forward, backward and mean value methods are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 12/25/2013. *
%**
clear all;

% define the function
func = @(x) xˆ3/3;

x=1; % the point at which derivative is evaluated.
imax=20; % number of different displacements

% title and headers
display('Absolute Errors')
fprintf('%4s %16s %18s %20s\n','h','forward','backward','mean value')

for i=1:imax

% Small displacement
h(i)=10ˆ(-i+1);

% Evaluation of numerical derivative
d_f(i)=(func(x+h(i))-func(x))/h(i); % Forward diffrence
d_b(i)=(func(x)-func(x-h(i)))/h(i); % Backward diffrence

30 NUMERICAL DERIVATIVES

d_m(i)=(func(x+h(i))-func(x-h(i)))/(2*h(i)); % Mean value

% Errors
err_f(i)=abs(1-d_f(i));
err_b(i)=abs(1-d_b(i));
err_m(i)=abs(1-d_m(i));

% Display the errors
fprintf('%6.1e %18.10e %18.10e %18.10e\n',...

h(i),err_f(i),err_b(i),err_m(i));
end

hh = h.*h; % hˆ2 (the error of the mean value formula is order of hˆ2)

% Plot data
subplot(1,2,1) % left panel
q=semilogx(h(1:imax),d_b(1:imax),'-o',...

h(1:imax),d_f(1:imax),'-d',...
h(1:imax),d_m(1:imax),'-s');

title('Numerical Derivative');
xlabel('h','fontsize',14);
ylabel('Derivative','fontsize',14);
set(q(1),'Color','blue');
set(q(2),'Color','green');
set(q(3),'Color','red');
legend(q,{'forward','backward','mean'});
legend(q,'Location','NorthWest');

subplot(1,2,2) % right panel
p=loglog(h(1:imax),err_b(1:imax),'o',...

h(1:imax),err_f(1:imax),'d',...
h(1:imax),err_m(1:imax),'s',...
h(1:imax/2),h(1:imax/2),'--',h(1:imax/2),hh(1:imax/2),'--');

title('Errors in the finite difference methods');
xlabel('h','fontsize',14);
ylabel('absolute error','fontsize',14);
set(p(1),'Color','blue');
set(p(2),'Color','green');
set(p(3),'Color','red');
set(p(4),'Color','blue','LineWidth',2);
set(p(5),'Color','red','LineWidth',2);
legend(p,{'forward','backward','mean','h','hˆ2'});
legend(p,'Location','SouthWest');

▲▲▲

Program 2.2

%**
%* Example 2.2 *
%* filename: ch02pr02.m *
%* program listing number: 2.2 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the mean finite difference method with the accuracy *
%* specified by tolerance. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
clear all;

SECOND ORDER DERIVATIVES 31

% define the function
func = @(x) xˆ3/3;

% Read tolerance from keyboard.
tol=input('Enter tolerance ='); %

x=1; % point where derivative is evaluated
h=1; % initial interval
diff_old=(func(x+h)-func(x-h))/(2*h); % initial numerical derivative

% any value bigger than tol is OK here.
delta = tol+1;

fprintf('%5s %18s %14s\n','h','derivative','error')

% Repeat until error is smaller than tolerance.
while delta>tol

h=h/2;
diff_new=(func(x+h)-func(x-h))/(2*h);
delta=abs(diff_new-diff_old);
fprintf('%10.3e %16.10e %16.10e\n',h,diff_new,delta)
diff_old=diff_new;

end
fprintf('Tolerance is OK.\n')

▲▲▲

Python Source Codes

Program 2.1

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 2.1 *
%* filename: ch02pr01.py *
%* program listing number: 2.1 *
%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the three finite difference methods. *
%* Errors in forward, backward and mean value methods are plotted. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
"""
import numpy as np
import matplotlib.pyplot as plt

def func(x):
return x**3/3

def main():

32 NUMERICAL DERIVATIVES

x=1.0
imax=20
h=np.zeros(imax)
d_f=np.zeros(imax)
d_b=np.zeros(imax)
d_m=np.zeros(imax)
err_f=np.zeros(imax)
err_b=np.zeros(imax)
err_m=np.zeros(imax)
i=0
print("{0:ˆ62}".format('Absolute Errors'))
print("{0:ˆ6} {1:ˆ18} {2:ˆ18} {3:ˆ20}"

.format('h','forward','backward','mean value'))
while(i<imax):
Small displacement

h[i]=10**(-i)

Evaluation of numerical derivative
d_f[i]=(func(x+h[i])-func(x))/h[i] # Forward diffrence
d_b[i]=(func(x)-func(x-h[i]))/h[i] # Backward diffrence
d_m[i]=(func(x+h[i])-func(x-h[i]))/(2*h[i]) # Mean value

Errors
err_f[i]=abs(1.-d_f[i])
err_b[i]=abs(1.-d_b[i])
err_m[i]=abs(1.-d_m[i])
print("{0:6.1e} {1:18.10e} {2:18.10e} {3:18.10e}"

.format(h[i],err_f[i],err_b[i],err_m[i]))
i=i+1

Plot data
plt.ioff()
plt.figure(figsize=(12,5))
plt.subplot(1,2,1)
plt.semilogx(h,d_f, '--ob', label='forward')
plt.semilogx(h,d_b, '--dg', label='backword')
plt.semilogx(h,d_m, '--sr', label='mean')
plt.legend(loc=2)
plt.xlabel('h')
plt.ylabel('Derivative')

plt.subplot(1,2,2)
plt.loglog(h,err_f, '--ob', label='forward')
plt.loglog(h,err_b, '--dg', label='backword')
plt.loglog(h,err_m, '--sr', label='mean')
plt.legend(loc=3)
plt.xlabel('h')
plt.ylabel('Absolute error')
plt.show()

if __name__ == "__main__":
main()

▲▲▲

#!/usr/bin/env python3
-*- coding: utf-8 -*-
"""
%**
%* Example 2.2 *
%* filename: ch02pr02.py *
%* program listing number: 2.2 *

%* *
%* This program evaluates the derivative of a given function func(x) *
%* at x=1 using the mean finite difference method with the accuracy *
%* specified by tolerance. *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course. *
%* Last modification: 01/01/2017. *
%**
"""

import numpy as np
import matplotlib.pyplot as plt

def func(x): # define a function
return x**3/3

def main():
tol=input("Enter tolerance =") # Read a tolerabce from the console
tol=np.float(tol)
x=1.0
h=1.0 # initial interval
diff_old=(func(x+h)-func(x-h))/(2.0*h) # derivative first try
delta=np.finfo(float).max # any value bigger than tol is OK.

print("{0:ˆ10} {1:ˆ16} {2:ˆ16}"
.format('h','derivative','error'))

while (delta>tol):
h=h/2.0
diff_new=(func(x+h)-func(x-h))/(2.0*h) # improved derivative
delta=np.abs(diff_new-diff_old)
print("{0:10.3e} {1:16.10e} {2:16.10e}"

.format(h,diff_new,delta))
diff_old=diff_new

print("Tolerance is OK.")

if __name__ == "__main__":
main()

Bibliography

33

34 BIBLIOGRAPHY

[1] Mary L. Boas. Mathematical Methods in the Physical Sciences. Wiley, 3rd edition, 2006.

[2] James Stewart. Essential Calculus. Cengage Learning, 2nd edition, 2012. Section 3.2.

[3] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.

[4] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. Dover Publications, 1970. Table 25.2.

