
CHARACTERS 3

Table 1.2: The range of unsigned and signed integers in MATLAB

unsigned signed
bits min max min max

8 0 255 -128 +127
16 0 65535 -32768 +32767
32 0 4294967295 -2147483648 +2147483647
64 0 18446744073709551615 -9223372036854775808 9223372036854775807

If a signed integer is needed, one bit of the binary string is used to specifies the sign, 0 for + and 1 for
−, and remaining bits are used for the magnitude. An 8-bit binary string spans from −128 to +127. Table
1.2 shows the range of other integer types. The default size of signed integer is 32 bit in most computer
languages. However, 64-bit integer is used for large scale calculation. Mots common CPUs cannot handle
integer larger than 64 bit. If more than 64 bit is needed, you must use a special numerical library.

MATLAB has 4 classes of unsigned integer, uint8, uint16, uint32, and uint64. Similarly, there are 4
classes of signed integer, int8, int16, int32, and int64. Functions intmax() and intmin() return
the smallest and largest integer values for a specified class. See Example 1.2.

EXAMPLE 1.1 Maximum and minimum of integers

>> intmax('int16')
ans =

32767
>> intmin('int16')
ans =

-32768

Exercise 1.1 Verify the data given in Table 1.2 using intmax and intmin.

If you don’t remember the type of variable, you can use MATLAB function class() to find it out. In
MATLAB the default type is real64.

EXAMPLE 1.2 Identify the type

>> y=int32(2);
>> class(y)
ans =

int32

1.3 Characters

In English or most of western languages, the number of alphanumeric characters is less than 256. Hence, all
characters can be encoded in one byte (8-bit) binary string. In US, the encoding map is known as ASCII

4 NUMERICAL VALUES AND QUANTIZATION ERRORS

(American Standard Code for Information Interchange)[1] and lower and upper cases of all letters and various
symbols are encoded in 7-bit strings. For example, ’A’=1000001B and ’a’=1100001B. (B at the end indicates
that the string is a binary code.) Note that integer 1=00000001B and character ’1’=00110001B in ASCII
are two different things. Sending 00000001B to a printer does not print 1. You need to convert number to
character string. When you type ’1’ on a keyboard, you are sending character ’1’ to computer. You need to
convert it to integer. I/O functions do that automatically. If you want to convert manually, use num2str()
and str2num. See Example 1.3.

Some languages use a lot more characters than 256. For example, Chinese uses a few thousand characters.
Therefore, 8-bit string is not large enough. Two-byte (16-bit) strings can encode 65536 characters, which
seems long enough for all languages.

EXAMPLE 1.3 Character-number conversion

>> num2str(12)
ans =

'12'
>> str2num('12')
ans =

12

1.4 Floating Point Numbers

There is no way to express real numbers in discrete systems. For example, we cannot express any irrational
number using a finite number of letters 0-9. Therefore, we express real number approximately using scientific
notation such as 1.32567 × 1012. Similarly digital computers use so-called floating point representation. A
single precision floating point stores a real number in a 32-bit string, of which 24 bits are used for mantissa.
The corresponding significant figure is log10 224 ≈ 7. The exponent part is 227 = 2−128 to 227−1 = 2127 which
is approximately 10−38 to 10+38. Usually, the single precision is not accurate enough for computational
physics. A double precision floating point uses a 64-bit string, 54 bits for mantissa and 10 bits for exponent.
The largest value the mantissa can express is 253 = 9007, 199, 254, 740, 992, which corresponds to significant
figure 16. The maximum exponent part is between 2−29 = 2−512 ≈ 10−308 and 229−1 = 2511 ≈ 10308.‡
Floating point encoding uses two different zeros, −0 ̸= +0.

Since the floating point numbers are quantized, there is always a gap between the nearest two floating
point numbers. Any values inside the gap cannot be expressed in standard computer languages, which may
causes inaccurate results due to quantization error.[2] The positive value next to zero is 1.1754944 × 10−38

for single precision. If we try to use a number between zero and the smallest floating point value, underflow
error occurs. We will discuss it in the next section.

Another gap we should pay attention to is the machine epsilon ϵ, the gap between 1 and next number
1 + ϵ (see Fig. 1.2). We will write a code to find the machine epsilon in the later section.

Some of floating point values are assigned to special meaning ±Inf = ±∞ and NaN = ”Not a Number”.
See Example 1.5.

‡The actual smallest value in many languages is 4.9406564584124654 × 10−324 for double and 1.401298 × 10−45 for single
because there is a better way (denormalized float) to handle small values. We do not discuss it here.

FLOATING POINT NUMBERS 5

sign exponent mantissa

b63 b52 b0

Figure 1.1: 64-bit string for floating point expression. The last bit is used for the sign and 11 bits from b52
to b62 express the exponent. The remaining 52 bits express the mantissa.

1

Figure 1.2: Discreteness of floating point numbers. ϵ is the machine epsilon discussed in Sec. 1.6.

EXAMPLE 1.4 Range of floating point numbers

% Print the smallest and largest double precision value.
>> fprintf('%25.16e, %25.16e\n',realmin(),realmax());
2.2250738585072014e-308, 1.7976931348623157e+308

Exercise 1.2 Find the largest and smallest values of single precision floating point numbers.

EXAMPLE 1.5 Special floating point numbers, Inf and NaN

Anyhing bigger than realmax is Inf (”infinity”) in the computer world. Undefined number such as
0/0 is NaN (”Not a Number”).

>> realmax * 10
ans =

Inf
>> 0/0
ans =

NaN

Exercise 1.3 Evaluate 1/0 and 1/Inf. Are the outputs consistent with common mathematics?

6 NUMERICAL VALUES AND QUANTIZATION ERRORS

1.5 Overflow/Underflow

If we try to use a value bigger than the computer can understand, what will happen? It results in Overflow
error. For example, if you try to store 1.0 × 1060 into a single precision floating point variable, the value is
replaced by Inf. Similarly, if the value is too small, it is replaced with 0. For example, 1.0 × 10−60 is too
small for a single precision floating point. The zero may cause a problem later such as divided by zero.

In most cases, we can avoid the range errors at least for physics problems. Many quantities have dimension
and their values depend on the choice of units. Fortunately, dimensionless constants in physics are usually
order of 1 or close to it. Therefore, we can avoid the range error using appropriate units. However, there are
problems which contain intrinsically large numbers without units. For example, in statistical mechanics we
often evaluate N ! where N=number particles at the order of Avogadro constant NA = 6.02214129 × 1023.
There is no way to compute N ! directly. Even then there are tricks to calculate such large values (with help
of mathematics).

We can avoid the range error in the following ways:

1. Change the order of calculation so that large values do not appear during the
calculation.

2. Use different units so that numbers are not very large or small. For example,
if atomic unit is used, ℏ = e = m = 1, and ϵ0 = 1

4π . The Bohr radius is simply
a0 = 1!. In the atomic world, it is better to measure distance using the radius of
hydrogen atom as a unit. See Example 1.6 for the calculation of a0 in SI units.

3. If x is too large, evaluate y = ln(x). Then, x = ey or if base 10 is used, x = 10y.
See Example 1.7.

EXAMPLE 1.6 Evaluation of Bohr radius

Evaluate the Bohr radius (the radius of a hydrogen atom)[3] in SI unit. The Bohr radius is given by

a0 = 4πϵ0ℏ2

me2 where

ϵ0 (vacuum permittivity) = 8.854187817 × 10−12F/m

ℏ (Planck constant) = 6.62606957 × 10−34/2π,m2 kg/s

m (electron mass) = 9.10938291 × 10−31 kg

e (elementary charge) = 1.602176565 × 10−19C

If you evaluate the numerator and denominator independently, each values may cause overflow error.
By grouping the numbers in an appropriate way, you can avoid the overflow error.

OVERFLOW/UNDERFLOW 7

>> epsilon=single(8.854187817e-12);
>> hbar=single(6.62606957e-34/(2*pi));
>> mass=single(9.10938291e-31);
>> e=single(1.602176565e-19);
>> a=4*pi*epsilon*hbarˆ2/(mass*eˆ2)
a =

NaN

>> a=4*pi*(epsilon/mass)*(hbar/e)ˆ2
a =

5.2918e-11

Exercise 1.4 Evaluate the Bohr radius using double precision. Confirm that even the dumb method
causing the range error in the example is OK with double precision.

EXAMPLE 1.7 Factorial of large number

Factorial of a large integer is astronomically large. It is obviously an integer but too long to write it
down. For example, 1000! is as long as

4023872600770937735437024339230039857193748642107146325437999104299385123986290205920442084869694048004799886101971960586316668729948085589013238
2966994459099742450408707375991882362772718873251977950595099527612087497546249704360141827809464649629105639388743788648733711918104582578364784
9977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731
7461360853795345242215865932019280908782973084313928444032812315586110369768013573042161687476096758713483120254785893207671691324484262361314125
0878020800026168315102734182797770478463586817016436502415369139828126481021309276124489635992870511496497541990934222156683257208082133318611681
1553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837
6153071277619268490343526252000158885351473316117021039681759215109077880193931781141945452572238655414610628921879602238389714760885062768629671
4667469756291123408243920816015378088989396451826324367161676217916890977991190375403127462228998800519544441428201218736174599264295658174662830
2955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769
9586526822728070757813918581788896522081643483448259932660433676601769996128318607883861502794659551311565520360939881806121385586003014356945272
2420634463179746059468257310379008402443243846565724501440282188525247093519062092902313649327349756551395872055965422874977401141334696271542284
5862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021
1712298459016419210688843871218556461249607987229085192968193723886426148396573822911231250241866493531439701374285319266498753372189406942814341
1852015801412334482801505139969429015348307764456909907315243327828826986460278986432113908350621709500259738986355427719674282224875758676575234
4220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748
9980942547421735824010636774045957417851608292301353580818400969963725242305608559037006242712434169090041536901059339838357779394109700277534720
000
000

which is practically useless. In fact, MATLAB retuns Inf for 1000!. Therefore, we want to write it
approximately in scientific notation a× 10b.

In order to find the mantissa a and exponent b, first we evaluate logN ! as follows.

y = log(N !) = log(1 · 2 · 3 · · ·N − 1 ·N)
= log(1) + log(2) + log(3) + · · · + log(N − 1) + log(N) (1.1)

Once you found y, n! = ey. However, it is still not in scientific notation. First we change the base from
e to 10 as ey = 10z, where z = y log10(e). Then, n! = 10z. Next we split z to the floor k=⌊z⌋ and the
residual δ = z− ⌊z⌋. Now, we have n! = 10k+δ = 10δ × 10k and thus the mantissa is 10δ and power is k.
Using this method, 1000! ≈ 4.0239 × 102567. The mantissa and the power are obtained in the following
way.

8 NUMERICAL VALUES AND QUANTIZATION ERRORS

>> factorial(1000)
ans =

Inf

>> y=sum(log(1:1000))
y =

5.9121e+03

>> z=log10(exp(1))*y
z =

2.5676e+03

>> power=floor(z)
power =

2567

>> mantissa=10ˆ(z-power)
mantissa =

4.0239

Exercise 1.5 Express 10000! in scientific notation.

1.6 Machine Epsilon

Although a double precision number covers from a small number 2.2250738585072014 × 10−308 to a large
number 1.7976931348623157 × 10+308, it can distinguish only 18446744073709551616 values. There is a gap
between two closest floating point numbers. A floating point number next to 1 is 1 + ϵ where ϵ is called
machine epsilon, whose value depends on the systems. If you add a half of ϵ to 1, there is no floating point
expression to the answer. So what will happen if you try to calculate 1 + ϵ

2 . The computer thinks 1 + ϵ

2 = 1.
In the following example, you can find the machine epsilon of your computer.

EXAMPLE 1.8 Machine epsilon built in computer language

Most of computer languages have a function which returns the value of machine epsilon. Confirm that
1 + ϵ

2 = 1 using MATLAB command eps().

>> fprintf('%25.16e\n%25.16e\n%25.16e\n', eps(), 1+eps(), 1+eps()/2);
2.2204460492503131e-16
1.0000000000000002e+00
1.0000000000000000e+00

ROUND-OFF ERRORS 9

EXAMPLE 1.9 Machine epsilon appears even in a simple arithmetic calculation

It is easy to see that 5
3 − 2

3 − 1 and 7
3 − 4

3 − 1 are both exactly zero. However, computers don’t think
so. The former vanishes as expected but the latter equals to the machine epsilon.

]
>> 5/3-2/3-1
ans = 0
>> 7/3-4/3-1
ans = 2.2204e-16

EXAMPLE 1.10 Finding machine epsilon

To find machine epsilon, we check if 1 + 2−n is bigger than 1 for positive integer n. As n increases, 2−n

gets smaller and smaller. At a certain value of n, it becomes too small and computer thinks 1+2−n = 1.
Then, the machine epsilon is ϵ = 2−(n−1). Program 1.1§ finds the machine epsilon using this method.
The output is

32 bit floating point
Stopped after 24 iterations
machine epsilon by computation = 1.1920929e-07
machine epsilon by MATLAB = 1.1920929e-07
1 + epsilon = 1.00000012e+00
1 + epsilon/2 = 1.00000000e+00

The value agrees with the machine epsilon obtained by MATLAB command eps().

Exercise 1.6 Modify Program 1.1 and find the machine epsilon for double precision floating point.

1.7 Round-off Errors

When you apply some operation to two numbers such as addition, the resulting number may not exist in
floating point expression. The machine picks a nearest number. Therefore, every operation induces some
error called round-off error. Such an error is small but accumulates over many operations and significant
figures decreases after many operations. Such an error causes a fatal error when you subtract a number from
a very similar number. Suppose that two single floating point numbers have exactly the same first 5 digits.
The last two digits are not reliable due to the round-off error. Now you subtract one from the other, only
the last two digits remain in the outcome. Therefore, the outcome is not reliable at all. You must avoid the
such subtraction.

The round-off error is an serious issue for digital computers. On February 25, 1991, during the Gulf War,
an American Patriot Missile battery in Dharan, Saudi Arabia, failed to track and intercept an incoming

§Example codes are listed at the end of each chapter.

10 NUMERICAL VALUES AND QUANTIZATION ERRORS

Iraqi Scud missile. The Scud struck an American Army barracks, killing 28 soldiers and injuring around 100
other people. Patriot missile. Round-off error is suspected to have caused this tragedy.[4]

EXAMPLE 1.11 Accumulation of Round-off Error

For x = 1.2, add x 100000 times and compare the result with 100000 × x. Mathematically speaking the
two calculation should give the same answer. See what your computer says.

>> x=single(1.2);
>> xsum=single(0);
>>for i=1:100000
xsum=xsum+x;
end
>>xmul=single(100000)*x;
>> fprintf('Iteration=%14.7e, Multiplication=%14.7e\n',xsum,xmul);
Iteration= 1.2011162e+05, Multiplication= 1.2000001e+05

Exercise 1.7

(a) Repeat Example 1.11 with x = 2. The error disappears. Why?

(b) Repeat Example 1.11 using double precision. Do you still see the round-off error?

1.8 Loss of Significance

Since the floating point expression of real numbers can keep only finite digits, we need to pay attention to the
significant figures like we do for hand calculation with approximate numbers. The error can be very severe
particularly when two similar numbers are subtracted from one another (known as catastrophic cancellation).
Foe examp,e let us calculate 0.123456789 × 10−5 − 0.123456700 × 10−5 using 32-bit floating point. The exact
value is 0.89 × 10−12. Here is the MATLAB output:

>> x=single(0.123456789e-5)-single(0.123456700e-5);
>> fprintf('%16.7e',x)
9.0949470e-13

The significant figure is only one. The other digits ’949470’ has no significance but MATLAB prints them
out as if they are a part of the answer. If you use this number for other calculation, significant figures may
be reduces to none. The number you get may have no significance. We need to try to avoid subtraction of
similar numbers to keep the significant figures. Note that addition has no such problem.

EXAMPLE 1.12 Catastrophic cancellation

LOSS OF SIGNIFICANCE 11

Evaluate (x+ 1)2 − 1
x

for x from 10−1 to 10−17. Compare the numerical results with the exact solution,
x+ 2, which is always bigger than 2 for positive x. When x is smaller than machine epsilon, computer
thinks that x+ 1 = 1 and thus the result is zero!

Script:
for i=1:17
y(i)=((x(i)+1)ˆ2-1)/x(i);
z(i)=x(i)+2;
fprintf('x=%8.1e, direct=%10.7f, exact= %10.7f\n', x(i),y(i),z(i));
end

Output:

x= 1.0e-01, direct= 2.1000000, exact= 2.1000000
x= 1.0e-02, direct= 2.0100000, exact= 2.0100000
x= 1.0e-03, direct= 2.0010000, exact= 2.0010000
x= 1.0e-04, direct= 2.0001000, exact= 2.0001000
x= 1.0e-05, direct= 2.0000100, exact= 2.0000100
x= 1.0e-06, direct= 2.0000010, exact= 2.0000010
x= 1.0e-07, direct= 2.0000001, exact= 2.0000001
x= 1.0e-08, direct= 2.0000000, exact= 2.0000000
x= 1.0e-09, direct= 2.0000002, exact= 2.0000000
x= 1.0e-10, direct= 2.0000001, exact= 2.0000000
x= 1.0e-11, direct= 2.0000002, exact= 2.0000000
x= 1.0e-12, direct= 2.0001778, exact= 2.0000000
x= 1.0e-13, direct= 1.9984015, exact= 2.0000000
x= 1.0e-14, direct= 1.9984015, exact= 2.0000000
x= 1.0e-15, direct= 2.2204460, exact= 2.0000000
x= 1.0e-16, direct= 0.0000000, exact= 2.0000000
x= 1.0e-17, direct= 0.0000000, exact= 2.0000000

Exercise 1.8 Repeat Exercise 1.12 using double precision. Reduce the value x until the result deviate
significantly from the exact value.

EXAMPLE 1.13 Roots of Quadratic Equation

The solutions to quadratic equation ax2 + bx+ c = 0 are well-known:

x1 = −b−
√
b2 − 4ac

2a (1.2a)

x2 = −b+
√
b2 − 4ac

2a (1.2b)

For simplicity, we assume b > 0. Solution x1 does not cause a serious round-off error. However, when
b2 ≫ ac, the other solution x2 involves subtraction of two similar numbers and thus it is vulnerable to
catastrophic cancellation. The error is especially severe when a ≪ b because the denominator is very
small and the situation is close to 0/0. Fortunately, there is a simple way to avoid this loss of significance.

12 NUMERICAL VALUES AND QUANTIZATION ERRORS

Using the equality

x2 = −b+
√
b2 − 4ac

2a = −2c
b+

√
b2 − 4ac

= c

ax1
(1.3)

the subtraction causing catastrophic cancellation disappears. Similarly for b < 0, Eq. (1.2a) which may
cause catastrophic cancellation can be evaluated by

x1 = −b−
√
b2 − 4ac

2a = −2c
−b+

√
b2 − 4ac

= c

ax2
. (1.4)

There are many pitfalls with the floating point numbers. See more examples in Ref. [5].

Algorithm 1.1 Roots of Quadratic Equation

Roots of ax2 + bx+ c = 0 (a ̸= 0 and b ̸= 0).

x1 = −b− sgn(b)
√
b2 − 4ac

2a (1.5)

x2 = c

ax1
(1.6)

where

sgn(b) =
{

+1 b > 0
−1 b < 0

Problems

1.1 Evaluate the roots of ax2 + x+ 1
4 = 0 using the original formula Eqs. (1.2) and Algorithm 1.1. Reduce

the value of a as 0.1, 0.01, 0.001, · · · until it hits the machine epsilon. Note that the exact answer for
a = 0 is x = −1

4 . Observe that the original formula fails but the improved one works.

1.2 In statistical mechanics, factorial n! of huge integer n such as the Avogadro number often appears. It is
difficult to manage such a huge number even analytically. A common method to deal with such problem
is to use the Stirling formula[6]:

ln(n!) ≈ n ln(n) − n+ 1
2 ln(2πn) (1.7)

Then, the factorial can be approximated by

n! ≈
√

2πn
(n

e

)n

. (1.8)

To verify the accuracy of this formula, compute the ratio R = n!√
2πn

(
n
e
)n for n = 10, 100, and 1000.

Verify that formula (1.8) approaches the exact value as n increases. Note that direct calculation of R is
hard but lnR can be easily evaluated.

LOSS OF SIGNIFICANCE 13

Examples in Python

The core of Python does not have much of mathematical capabilities. It relies on modules. Here we use a
popular mathematical module, NumPy. You need to load the module before using mathematical objects. In
this lecture note, it is assumed that NumPy is loaded in the following way.

>>> import numpy as np

Hereafter it is assumed that numpy is imported as np.

1.2 Integer

Python has 4 classes of unsigned integer, uint8, uint16, uint32, and uint64. Similarly, there are
4 classes of signed integer, int8, int16, int32, and int64. In NumPy functions iinfo().max and
iinfo().min return the smallest and largest integer values of the specified class.

EXAMPLE 1.1 Maximum and minimum of integers

In: np.iinfo(np.int16).max
Out: 32767
In: np.iinfo(np.int16).min
Out: -32768

EXAMPLE 1.2 Identify the type

In: y=2
In: type(y)
Out: int

In: y=2.
In: type(y)
Out: float

1.3 Characters

EXAMPLE 1.3 Character-number conversion

In: str(12)
Out: '12'
In: int('12')
Out: 12

14 NUMERICAL VALUES AND QUANTIZATION ERRORS

1.4 Floating Point Numbers

Python has 4 classes of floating point number. float16, float32, float64 and float128. The true
float128 is not available on common computers. If it is used, float128 is actually mapped to 80-bit float
on common 64-bit hardware. (Math co-processor on Intel 64-bit CPU uses 80-Bit floating point number.)
In NumPy functions finfo().max and finfo().min return the smallest and largest integer values of the
specified class.

EXAMPLE 1.4 Range of floating point numbers

Print the smallest and largest double precision value.
In: print("{0:25.16e},{1:25.16e}".format(np.finfo(float).min),np.finfo(float).max)
Out: -1.7976931348623157e+308, 1.7976931348623157e+308

LOSS OF SIGNIFICANCE 15

EXAMPLE 1.5 Special floating point numbers, Inf and NaN

If numpy is not used, Python returns an error message instead of inf.

In: x=np.finfo(float).max
In: x*10
__main__:1: RuntimeWarning: overflow encountered in double_scalars
Out: inf

In: np.float64(1.0)/0.0
__main__:1: RuntimeWarning: divide by zero encountered in double_scalars
Out: inf

In: np.float64(0.0)/0.0
__main__:1: RuntimeWarning: invalid value encountered in double_scalars
Out: nan

In: 1.0/0.0
Traceback (most recent call last):
File "<ipython-input-34-0dda708f6d03>", line 1, in <module>
1.0/0.0
ZeroDivisionError: float division by zero

1.5 Overflow/Underflow

EXAMPLE 1.6 Evaluation of Bohr radius

Python behaves quite differently from other languages. The product of two numbers in float32 is usually
again a number in float32. In most languages this is a strict rule. Python observes the same rule unless
the outcome causes underflow error. When the underflow happened, Python automatically switches to
float64. This may be a convenient feature but it is also annoying as well since the programmer cannot
control it. In the following, we force output to the float32 type.

16 NUMERICAL VALUES AND QUANTIZATION ERRORS

Script:
import numpy as np

Set the parameter values
pi=np.float32(np.pi)
epsilon=np.float32(8.854187817e-12)
hbar=np.float32(6.62606957e-34/(2*pi))
mass=np.float32(9.10938291e-31)
e=np.float32(1.602176565e-19)

Evaluate the denominator and numerator separately.
y=np.float32(mass*e**2)
x=np.float32(4.*pi*epsilon*hbar**2)
print("a=",np.float32(x/y))

Output:

a= nan

Script:

Evaluate them in a different order
>>> x=4.*pi*(epsilon/mass)
>>> y=np.float32((hbar/e)**2)
>>> print("a=",np.float32(x*y))

Output:

a= 5.29177e-11

LOSS OF SIGNIFICANCE 17

EXAMPLE 1.7 Factorial of large number

In: np.float(np.math.factorial(1000))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

OverflowError: int too large to convert to float

In: y=np.log(np.arange(1,1001)).sum();y
Out: 5912.128178488163

In: z=np.log10(np.exp(1))*y; z
Out: 2567.6046442221327

In: power=np.int(np.floor(z)); power
Out: 2567

In: mantissa=10**(z-power); mantissa
Out: 4.0238726007697423

Hence, 1000! ≈ 4.0238726008 × 102567.

1.6 Machine Epsilon

EXAMPLE 1.8 Machine epsilon built in computer language

>>> print("{0:25.16e}\n{1:25.16e}\n{2:25.16e}".format(np.finfo(float).eps,
... 1+np.finfo(float).eps,1+np.finfo(float).eps/2))

2.2204460492503131e-16
1.0000000000000002e+00
1.0000000000000000e+00

EXAMPLE 1.9 Machine epsilon appears even in a simple arithmetic calculation

In: 5./3.-2./3.-1.
Out: 0.0
In: 7./3.-4./3.-1.
Out: 2.220446049250313e-16

EXAMPLE 1.10 Finding machine epsilon

Output from example code: ch01pr01.py.

18 NUMERICAL VALUES AND QUANTIZATION ERRORS

Machine epsilon for 64 bit floating point
Stopped after 53 itersations
machine epsilon by computation = 2.2204460e-16
machine epsilon by Numpy = 2.2204460e-16
1+epsilon = 1.00000000000000022204e+00
1+epsilon/2 = 1.00000000000000000000e+00

1.7 Round-off Error

EXAMPLE 1.11 Accumulation of Round-off Error

Script:
x=np.float32(1.2)
xsum=np.float32(0.0)
for i in range(1,100001):
xsum=xsum+x

xmul=np.float32(100000.)*x
print("Iteration={0:14.7e}, Multiplication={1:14.7e}".format(xsum,xmul))

Output:

Iteration= 1.2011162e+05, Multiplication= 1.2000001e+05

1.8 Loss of Significance

In: np.float32(0.123456789e-5)-np.float32(0.123456700e-5)
Out: 9.094947e-13

LOSS OF SIGNIFICANCE 19

EXAMPLE 1.12 Catastrophic cancellation

Script:
x=np.float32(10**(-i))
y=((x+1)**2-1)/x
z=x+2
print("x={0:8.1e}, direct={1:10.7f}, exact={2:10.7f}".format(x,y,z))

Output:

x= 1.0e-01, direct= 2.1000000, exact= 2.1000000
x= 1.0e-02, direct= 2.0100000, exact= 2.0100000
x= 1.0e-03, direct= 2.0010000, exact= 2.0010000
x= 1.0e-04, direct= 2.0001000, exact= 2.0001000
x= 1.0e-05, direct= 2.0000100, exact= 2.0000100
x= 1.0e-06, direct= 2.0000010, exact= 2.0000010
x= 1.0e-07, direct= 2.0000001, exact= 2.0000001
x= 1.0e-08, direct= 2.0000000, exact= 2.0000000
x= 1.0e-09, direct= 2.0000002, exact= 2.0000000
x= 1.0e-10, direct= 2.0000001, exact= 2.0000000
x= 1.0e-11, direct= 2.0000002, exact= 2.0000000
x= 1.0e-12, direct= 2.0001778, exact= 2.0000000
x= 1.0e-13, direct= 1.9984015, exact= 2.0000000
x= 1.0e-14, direct= 1.9984015, exact= 2.0000000
x= 1.0e-15, direct= 2.2204460, exact= 2.0000000
x= 1.0e-16, direct= 0.0000000, exact= 2.0000000
x= 1.0e-17, direct= 0.0000000, exact= 2.0000000

MATLAB Source Codes

Program 1.1

%***
%* Example 1.7 *
%* filename: ch01pr01.m *
%* program listing number: 1.1 *
%* *
%* This program finds a machine epsilon by evaluating *
%* *
%* 1 + 2ˆ(-n) > 1 *
%* *
%* At a certain positive n, this inequality becomes false. *
%* Then, the machine epsilon is 2ˆ(n-1). *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 10/13/2013 *
%***

clear all; help ch01pr01;

20 NUMERICAL VALUES AND QUANTIZATION ERRORS

%* Find the single precision machine epsilon
epsilon = single(1); % create a single precision variable
n = int8(0); % reset a counter

%* Reduce the value of epsilon until epsilon becomes too small
while 1+epsilon > 1

epsilon = epsilon/2;
n = n+1;

end

%* The smallest single floating value which can be added to one.
epsilon = epsilon+epsilon;

%* Show the results
fprintf('\n32 bit floating point\n');
fprintf('Stopped after %3d iterations \n',n);
fprintf('machine epsilon by computation = %16.7e \n',epsilon);
fprintf('machine epsilon by MATLAB = %16.7e \n',eps(single(1.0)));
fprintf('1 + epsilon = %16.8e \n',1+epsilon);
fprintf('1 + epsilon/2 = %16.8e \n',1+epsilon/2);

Python Source Codes

Program 1.1

"""
%***
%* Example 1.7 *
%* filename: ch01pr01.py *
%* program listing number: 1.1 *
%* *
%* This program finds a machine epsilon by evaluating *
%* *
%* 1 + 2ˆ(-n) > 1 *
%* *
%* At a certain positive n, this inenqualty becomes false. *
%* Then, the machine epsilon is 2ˆ(n-1). *
%* *
%* Programed by Ryoichi Kawai for Computational Physics Course *
%* Revised on 12/27/2016 *
%***
"""

Find the machine epsilon for 64 bit float
epsilon = 1.0 # create a float64 variable
n = 0 # reset a counter

Reduce the value of epsilon until it becomes too small
while 1.0+epsilon > 1.0:

epsilon = epsilon/2.0
n = n+1

The smallest single floating value which can be added to one.
epsilon = epsilon+epsilon

Show the results

print("Machine epsilon for 64 bit floating point")
print("Stopped after {0:3d} itersations".format(n))
print("machine epsilon by computation = {0:16.7e}".format(epsilon))
print("machine epsilon by Numpy = {0:16.7e}".format(np.finfo(np.float).eps))
print("1+epsilon = {0:24.20e}".format(1+epsilon))
print("1+epsilon/2 = {0:24.20e}".format(1+epsilon/2.0))

Bibliography

[1] See for example Wikipedia. https://en.wikipedia.org/wiki/ascii.

[2] Bernard Widrow and István Kollár. Quantization Noise: Roundoff Error in Digital Computation, Signal
Processing, Control, and Communications. Cambridge University Press, 2008.

[3] David Griffiths. Introduction to Quantum Mechanics. Pearson Prentice Hall, 2nd edition, 2005.

[4] Robert Skeel. Roundoff error and the patriot missile. SIAM News, 25:11, nov 1992.

[5] David Goldberg. What every computer scientist should know about floating point arithmetic. ACM
Computing Surveys, 23(1):5–48, 1991.

[6] Daniel Zwillinger. CRC Stanbdard Mathematical Tables and Formula. CRC Press, 35th edition, 2012.

21

