An Integrated Experimental and Computational Approach to Discover the Biomechanical Controls of Leaf Epidermal Morphogenesis

250 µm

36 hrs

~3000X normal speed

Marks et al. Mol.Plant, 2009

Long-term time lapse imaging of tissue morphogenesis

Wall stress distributions in a turgor-loaded tissue

A biomechanical model for cell lobing and interdigitated growth

MT-cellulose-patterned anisotropic strain

Szymanski, COPB 2014

Pavement cell shape mutants reveal systems-level control of lobe initiation

	described as defective in cell morphogenesis				
cellulose			Area	Circularity	Lobe Number
synthesis	Genotype	<u>N</u>	Mean ± S.D	Mean ± S.D	Mean ± S.D
	any1	38	10741±3190**	0.59±0.10**	8±2**
	clasp1	20	10619±4032**	0.33±0.06**	16±3
pectin: cell-cell	exo84b1	23	10746±5138	0.17±0.07**	21±6**
adhesion	ktn1-2	22	9249±4480	0.34±0.09**	16±2
	qua2-1	26	3281±1932**	0.55±0.009**	10±2**
	tubg1-1;tubg2-2	25	6377±2289	0.18±0.06**	19±5**
microtubule- associated protein	, bpp1;2;5	32	4259±1271**	0.72±0.07**	10±2**
	WT	30	7863±4215	0.26±0.09**	16±4
	** indicates significant satistical difference betweeen the null				

TableX. Cell shape descriptor quantification for genotypes described as defective in cell morphogenesis

ndicates significant satistical difference betweeen the חנ mutant and WT by Wilcox-Whitney test (p<0.05)

A coordinate system to graph cell segment morphogenesis

Scale bar – 50μ m

Time-lapsed analysis of cell segment and lobe morphogenesis

green: lobe width magenta: lobe height aqua: : segment growth increment following initiation

active lobe features (~30 % 5/17)

Spatiotemporal analysis of trans-facial microtubules

Plasma-membrane: magenta Microtubules: green

xy view: projected images

Cross correlation of trans-facial microtubules and lobe formation

Computational modeling and experimental verification

Our approach: apply engineering methods to living plants to create <u>predictive</u> computational models

Viscoelastic Properties (time dependent)

- Viscoelastic materials have properties that are dependent on the loading rate and temperature
- Most biological materials have a time dependent mechanical response for a given biological state
- Many examples of viscoelasticity for small and large displacements

Important for both computational modeling and measurements

Computational Modeling

- Finite element method (FEM) is an approach used to solve partial differential equations that are used to model a physical system
- Geometry is discretized spatially and a model for the local material response is needed
- Outputs include displacement, stress, and strain
- Parameters per element (global heterogeneity)
 - Material symmetry (isotropic or anisotropic?)
 - Viscoelastic properties
 - Linear/nonlinear; small/large strains

Start with simple model and add complexity as needed; use measurements when possible; sensitivity studies otherwise

Nebraska Lincoln

Example result for a pavement cell

Height variation of the periclinal wall

How to determine the mechanical properties to use for the model?

Characterizing Mechanical Properties at the Micro- and Nanoscales

Mechanical Properties using Touch

- The nanoindenter and atomic force microscope are examples of instruments that use a tip in contact with a sample surface for imaging and for determining mechanical properties (scanning probe microscope, SPM)
- Many examples from every day life
- Quantitative vs. qualitative

Quantitative measurements require robust models of the entire measurement system

Length Scales

- Production of new polymers characterization of the properties of these materials is important for their performance
- Polymer blends have many interfaces and overall performance is often controlled by interfacial behavior
- Polymer behavior at small scales may uncover new details about deformation mechanisms, polymer organization, polymer breakdown, etc.

Scales: approximate number of macromolecules involved in test

Macroscale
(DMA)Microscale
(nanoindenter)Nanoscale
(atomic force microscope - AFM)1016106102

Nanoindentation

Hysitron Triboindenter 950

Schematic diagram of the nanoindentation system (Odegard et al.)

Precision control of force (nano-Newton resolution) or displacement (nanometer resolution); custom tips

J. A. Turner, UNL

J. A. Turner, UNL

Cyclic, depth changing measurements

E. Forouzesh, A. Goel, S. A. Mackenzie, and J. A. Turner, "In vivo extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling," *The Plant Journal* 73, 509-520 (2013).

Nanoindentation at different locations of a pavement cell

J. A. Turner, UNL

FE Model of the Nanoindentation Measurements

J. A. Turner, UNL

FYIM, June 13, 2019

Iteration of FE Model

- Slope at shallow indentation depth is sensitive to instantaneous modulus (Forouzesh, 2013)
- Slope at deep indentation depth is most sensitive to turgor pressure
- The infinite modulus affects the static height of the pressurized periclinal wall, but has little influence on the indentation slope

Mechanical Properties

- Mechanical properties govern the force-displacement relations
- Usually unknown for new materials and must be measured
- Nanoscale materials often behave differently than the same materials in macroscopic structure
- To measure these properties at the nanoscale the material must be mechanically deformed
- Time dependent properties are relevant for most polymers (viscoelasticity)

Other Measurements/Models

- Quantify the stresses and strains within groups of cells
- Plant cell wall failure
- Cell wall degradation
- Dynamic nanoindentation to quantify viscoelastic properties
- Measured differences with respect to age, genetics, cell type (i.e., guard cell vs. pavement cell vs. trichome)

Thank you! Questions?

Pavement cell morphodynamics

<u>Genetics and multivariate live imaging</u> Dan Szymanski, Dept. of Botany and Plant Pathology, Purdue U.

Samuel Belteton

Eileen Mallery Makoto Yanagisawa

<u>Lobefinder</u> David Umulis (Purdue) George Wu Finite-element modeling and physical methods Joe Turner Dept. of Mechanical and Materials Engineering, U. Nebraska-Lincoln

Wenlong Li Faezeh Afshar Sedighe Keynia

Anastasia Desyatova (trichome) Ehsan Rezaei (pavement cells)

