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Predictive understanding of cell biological
systems through kinetic analysis
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Biology is governed by combinatorial complexity
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Use predictive modeling and
experimental design to address
biological complexity and
molecular mechanism
In health and disease state




Many physical systems are deterministic and
models are very predictive

Homogeneous / Deterministic: variance in experimental data is lower than variance in measurement
Radio

Simple model Model simulation and prediction
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Fundamental differences in modeling cells in
comparison to physical objects

Homogeneous / Deterministic: variance in experimental data is lower than variance in measurement

Simple model Model simulation and prediction
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Heterogeneous / Stochastic: variance in experimental data is higher then variance in measurement

Stem Cells
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Hanahan, Weinberg, Cell, 2000; Elgar et al, Nature 2010; Bumgarner, Neuert, et al., Mol. Cell 2012; Van Werven, Neuert et al., Cell, 2012




How to practically approach
predictive modeling in biology?




Yeast are a great model organism for modeling

1. Many fundamental biological processes are conserved from
yeast to human and have been first discovered in yeast

(many Nobel prizes). General MAPK
cascade Yeast
2. Yeast cells are much smaller then mouse or human cells Stimulus Stress response

which allows to image the same data in 1 day instead of 10- l

30 days at the same resolution. Osmotic
: Heat
3. Yeast cell cycle (90 min) vs mouse/ human cells (16 — 48h) g8 pH
=> faster turnaround. Oxidative
4. Yeast genetics is still much more controlled, efficient and ‘ *
cheaper then CRISPR in mouse or human cells. . Ssk2/
l * Ssk22
4
-«'«zﬁn’ y
MAlPK . Hog1
Response

Kristen L. et. Al. Nature Reviews Molecular
Cell Biology, 2002




Yeast are a great model organism for modeling

1. Many fundamental biological processes are conserved from
yeast to human and have been first discovered in yeast

(many Nobel prizes). General MAPK

cascade Yeast
2. Yeast cells are much smaller then mouse or human cells Stimulus Stress response

which allows to image the same data in 1 day instead of 10- l

30 days at the same resolution. Osmotic
Heat

3. Yeast cell cycle (90 min) vs mouse/ human cells (16 — 48h) pH

=> faster turnaround. Oxidative
4. Yeast genetics is still much more controlled, efficient and ‘ *

cheaper then CRISPR in mouse or human cells. MAPKKK ‘ Ssk2/
5. What is a representative normal human cell? 1 * Ssk22
6. How do we know results are not tissue or disease specific - A Pbs2

but rather of general interest? l *

MAPK

7. What is a biological replica in a patient sample? l . Hog1
8. Are cell lines more informative then yeast cells? Response

9. Do we want to cure mice or humans?

Kristen L. et. Al. Nature Reviews Molecular

10. We are interested in understanding fundamental Cell Biology, 2002

questions of how to model biological systems.




Single cell approaches to quantify signal
transduction and transcription

Signal transduction Transcription

30 — 60 probes, 20nt each
o 9 o o 9 o

(r Cytoplasm \\

w Osmotic stress / NaCl Target mRNA

l Nucleus

Femino et al., Science 1998

Raj et al., Nature Method 2008

Bumgarner, Neuert et al., Molecular Cell 2012
Munsky, Neuert et al., Science 2012

Van Werven, Neuert et al., Cell 2012

Neuert, Munsky et al., Science 2013

Live cell time lapse microscopy Fluorescent in-situ hybridization
with single molecule resolution




Homogeneous signal transduction results in
heterogeneous transcription

0 4 8 12 16 30 40 50 min

Endogenous mRNA expression of the STL1 gene

® DAPI stained nucleus

STL1 mRNA

3 genes

2 different conditions
WT and three mutants
each 16 time points
2-3 biological replica
~ 160.000 cells

Neuert, Munsky, et al.,
Science 2013




FSP: Solving the stochastic chemical master equation

A N-state gene B Continuous time C Finite State Projection D Total RNA Probability
regulatory model Markov chain (FSP) Mass Function
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Solve chemical master equation: description of the probabilities over time

Determine Probability density of the gene regulatory model:
P.m = P(state =i, mMRNA = m)

Solving CME very fast with finite state projection
Munsky et al., JCP, 2006; Munsky, Fox, Neuert, Methods, 2015; Fox, Neuert, Munsky, JCP, 2016

In collaboration with:

Dr. Brian Munsky
Assistant Professor
Colorado State University




Obijective identification of predictive model

Output:
MRNA expression dynamics
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Munsky et al., JCP, 2006; Neuert, Munsky, et al., Science 2013;
Munsky, Fox, Neuert, Methods, 2015; Fox, Neuert, Munsky, JCP, 2016




Obijective identification of predictive model

Input:

Signal transduction dynamics
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Model identification:

Number of states
Biologically meaningful rate values
Type of regulation (activating / repressing / switch / gradual)

Munsky et al., JCP, 2006; Neuert, Munsky, et al., Science 2013;
Munsky, Fox, Neuert, Methods, 2015; Fox, Neuert, Munsky, JCP, 2016




Chromatin mutants modulate specific rates

Kig Koi kos kap kas Kaz K Ko Kz Kng . - Target gene
WT}L '
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Promoter clearance

2

Ben Kesler Jason Hughes Rohit Venkat o/

Neuert, Munsky, et al., Science 2013 POSter 1 7! 21 Vikki et al., Nature Reviews Genetics, 2010




Are single cell experiments
more predictive than cell
population experiments?

Dr. Brian Munsky
Assistant Professor
Colorado State University

Zachary Fox
Graduate Student
Colorado State University

Guoliang Li,
Post-doctoral fellow
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Single cell data contains information on the mean,
variance, fraction of cells and full distribution
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Munsky et al., PNAS, 2018




Single cell data contains information on the mean,
variance, fraction of cells and full distribution
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Same Same Modeling
Experiments Model Assumption

1. Moment of

Mean

Variance

ON-Fraction

Distribution

the distribution ~ ~entral Limit
Theorem
needs to be
2. Moment of fulfilled

the distribution

From FSP No assumption
on the shape
of the
FSP distribution

Munsky et al., PNAS, 2018




Single cell experimental and modeling framework
Hog1 Time Model fitting on nuclear and cytoplasmic RNA

v

Extracellular Environment Transcription site = k: L
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Use CTT1 data to get Kejong
Export

- Ew Ketong = 91 +/- 9 (simplified)
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L Munsky et al., PNAS, 2018
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Good fits do not result in good predictions

Means

Means and Variances

Extended Moments
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Fitted distribution result in superior
predictions of nascent transcription

Model ﬁtting on nuclear and cytoplasmic RNA
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Inferred parameters are highly reproducible

Parameter comparison (within 8%): Degradation rate
vstL1 = 4.9E-3 1/s (Neuert et al. Science 2013)

YsT1 = 9.3E-3 1/s (Munsky et al., PNAS, 2018)

verm1 = 2.0E-3 1/s (Neuert et al. Science 2013)

Yerm1 = 2.1E-3 1/s (Munsky et al., PNAS, 2018)

Based on:

New geographic location

New lab

New microscope

Different yeast strain

New reagents

New person doing the experiment
Improved image processing software




Why are single cell experiments
more predictive than cell
population experiments?




Quantify contribution to bias and uncertainty of
parameter estimation in modeling

Not Biased
identifyable less uncertain

Unbiased Unbiased
uncertain less uncertain




Quantify contribution to bias and uncertainty of
parameter estimation for different models / data

Not
identifyable

Unbiased
uncertain

Biased
less uncertain

Unbiased
less uncertain

Change in uncertainty

+ Distribution
Physically relevant parameter space

Change in bias

1+ Distribution

Physically relevant para:meter space




Distributions reduce bias and uncertainty

Using Markov Chain Monte Carlo
simulation with Metropolis
Hastings sampling to estimate
parameter bias (distance from true
parameters) and

parameter uncertainty (width of
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Munsky et al., PNAS, 2018




Why is there such a strong bias
In parameters using moments
instead of distributions?




Using moments requires that the Central Limit
Theorem is fulfilled

The central limit theorem (CLT) states that if one makes sufficiently many
quantitative observations from the same underlying distribution then the
average of those observations would be normally distributed with a
deviation given by the standard error of the mean.

Population Y i a9

distribution — L —==——— Number of proteins
Sampling distribution
of the mean from
5 measurements 7 . Mean number

Iz of proteins

Sampling distribution

of the mean from

30 measurements Mean number
2 of proteins




Nonsymmetrical distributions require more
measurements to satisfy the CLT

Population
distribution
. X

X - Number of proteins
- ! -
X - Mean number of proteins

Sampling distribution
of the mean X from
5 measurements

X | %

X - Mean number of proteins

Sampling distribution
of the mean from
30 measurements

. " Mean number
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Nonsymmetrical distributions are a result of high

expressing cells violating the CLT

A

Data

Theoretical model mean using the FSP parameters

Calculated median from 100 stochastic simulations from FSP

100 Stochastic simulation of 200 cells each from FSP
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Munsky et al., PNAS, 2018
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Nonsymmetrical distributions due to outlier cells
require very large number of cells to fulfill the
Central Limit Theorem (CLT), which is a
requirement to apply mean, variance or higher
moment approximations

Munsky et al., PNAS, 2018
Full distribution
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General implications for identification of parametric model
from any positive nonsymmetricly distributed data set
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Take home message

Model inference from means or variances result in
biased parameter sets and poor predictions because
data is positive and non-symmetrical distributed
and therefor modeling assumptions are violated

and not only because of over fitting
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i X Distribution
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Biology is governed by dynamic pocesses

Disease mutations /
Cell types

Cell-intrinsic factors
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Cell environments in humans change kinetically
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Majority of current biomedical research focuses
on static environments
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Multidisciplinary approach to study dynamic cell
signaling and gene regulation

Single-cell and
single-molecule
experiments

L
Computational NI  Cellular

biology perturbation

\ Genetics /




Are biological mechanisms
and phenotypes specific to
kinetic environments?




How do human cells respond to
kinetic environments?




Why are kinetic environments
more informative to built predictive
models?
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