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Heat pump driven entirely by quantum correlation

Tharon Holdsworth and Ryoichi Kawai
Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA

(Received 22 August 2022; accepted 14 November 2022; published 5 December 2022)

The second law of thermodynamics prohibits spontaneous heat from a cold to a hot body. However, it has been
theoretically and experimentally shown that energy can flow from a cold to a hot body if the bodies are initially
correlated. We investigated the anomalous energy exchange between dissipation-less quantum systems that are
initially entangled. Then, we extended this model to include dissipation demonstrating anomalous heat from a
cold to a hot body. Based on these models, we constructed a heat pump driven entirely by quantum correlation
as fuel and investigated its performance with numerical simulations. Using the recently proposed definition of
efficiency based on mutual information, the performance of the pump is found to be consistent with the second
law of thermodynamics.
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I. INTRODUCTION

In 1854, Rudolf Clausius stated that “Heat can never pass
from a colder to a warmer body without some other change,
connected therewith, occurring at the same time” [1], laying
the foundation for the second law of thermodynamics and
endowing entropy with its monotonically increasing quantity.
Modern interpretations of the Clausius statement tell us that
when heat flows spontaneously from a warmer to a colder
body, entropy irreversibly increases. If heat were to sponta-
neously flow in the opposite direction, entropy would have
to decrease, contradicting the second law. This notion of
irreversibility suggested by the second law extends beyond
thermodynamics, as it is also possible to gauge the “one di-
rectional” nature of time on the basis of increasing entropy
[2–4].

However, Clausius’ statement does allow heat to flow from
a colder to a warmer body with some other change. For exam-
ple, a heat engine that converts some of the heat flowing from
a warmer to a colder body into extractable work. Onsager’s
reciprocal theorem tells us that if the direction of time is
reversed for the heat engine, work added to the engine will
drive heat from the colder to the warmer body. In this example
work from an external source is the some other change in
Clausius’ statement that can reverse the natural direction of
heat.

Since the introduction of quantum information and re-
source theories, it has been shown that quantum coherence
can be a source of thermodynamic work [5–8]. Various
thermodynamic machines driven or enhanced by quantum
coherence and quantum measurement have been proposed that
seemingly violate the thermodynamic second law [9–18]. To
account for the role of quantum coherency in the thermo-
dynamics context, the field of quantum thermodynamics is
being developed at the intersection of thermodynamics and
quantum information theory [5,19,20]. Quantum coherence is
becoming a key thermodynamic resource for quantum ther-
modynamic devices.

In particular, it has been shown that a certain initial cor-
relation between two systems in independent thermal states
can induce energy flow against the temperature gradient
[7,21–24]. The thermodynamics arrow of time and fluctua-
tion theorems for initially correlated systems have also been
discussed [21,22,25]. Recently, Micadei et al. [26] exper-
imentally demonstrated that energy can be spontaneously
transferred from a cold to a hot nuclear spin if their initial
states are locally in a thermal (Gibbs) state with different
temperature but entangled. Since dissipation does not take
place in the isolated spins, the energy exchange between them
cannot be considered heat. However, their experimental data
has clearly shown the anomalous energy exchange caused by
the interplay of interaction Hamiltonian and initial quantum
correlations.

Inspired by the work of Micadei et al., we propose a
heat pump driven purely by quantum coherence. No energy
is added directly to the heat pump through external work
nor quantum measurement; heat spontaneously flows from a
cold to a hot heat bath. This does not imply the heat pump
violates the second law of thermodynamics since the quantum
entanglement must be injected to the pump each cycle as
fuel. By taking into account mutual information as a part
of thermodynamic entropy, we show that the heat pump still
operates below the Carnot efficiency.

This paper is organized as follows: Section II briefly
reviews anomalous heat introduced by the previous works
[21–23,26]. Section III presents our analysis of anomalous
energy exchange between a pair of qubits isolated from en-
vironments. In the following section, the model is extended to
include infinitely large heat baths which tend to decohere the
qubits coupled to them. In Sec. V, we propose a heat pump
based on the anomalous heat conduction discussed in the
preceding sections and report on its simulated performance.
In the final section, we briefly discuss possible mechanisms
of generating an entangled pair of qubits that are locally in
thermal states necessary to fuel our heat pump.
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II. THERMAL PROCESSES STARTING FROM A STATE
LOCALLY IN EQUILIBRIUM BUT GLOBALLY

CORRELATED

When a system is initially in thermal equilibrium, its time
evolution is subject to various restrictions [21–23]. For exam-
ple, it is not possible to extract work from a system in thermal
equilibrium by any periodic process, as the Kelvin-Plank
statement indicates. When two systems are independently in
thermal equilibrium at differing temperatures, their time evo-
lution is again restricted. As the thermodynamic second law
states, heat must flow from the hot to the cold body when the
two systems are coupled. However, if the systems are initially
away from thermal equilibrium, there are no such restrictions.
We consider a special situation where two isolated systems are
individually in local thermal equilibrium but the composite
state of the two systems is initially correlated and thus out
of equilibrium. We will find some thermodynamic restrictions
are relaxed in the presence of initial correlations that allow the
direction of heat to be reversed.

Consider an isolated system comprised of two subsystems
A and B which can be infinitely large or as small as a pair of
qubits. The composite state of the total system is denoted as
ρAB and the local states of each subsystem are given by the
reduced density operators ρA = TrBρAB and ρB = TrAρAB. The
Hamiltonian of each subsystem is notated as HA and HB so the
energy of each subsystem is then given by EA = TrA(HAρA)
and EB = TrB(HBρB), respectively. Since the composite sys-
tem is isolated, the total energy EA + EB remains fixed. (For
simplicity, the interaction energy between the subsystems is
ignored in the spirit of the thermodynamics setting but will be
considered in the proceeding sections.)

Such an isolated system evolves under a unitary transfor-
mation that conserves the total von Neumann entropy SAB =
−Tr(ρAB ln ρAB) where the Boltzmann constant kB = 1 is as-
sumed. On the other hand, the sum of the subsystem entropies,
SA = −Tr(ρA ln ρA) and SB = −Tr(ρB ln ρB), is not conserved
in the presence of correlation between them. We stress that
these entropies do not necessarily represent thermodynamic
entropy, rather, each subsystem entropy should be considered
as a measure of information content at a given time. The corre-
lation between the subsystems can be quantified by the mutual
information IAB = SA + SB − SAB, also equivalently defined by
the relative entropy IAB = S(ρAB‖ρA ⊗ ρB) where S(ρ‖σ ) =
Tr(ρ ln ρ) − Tr(ρ ln σ ). By Klein’s inequality [27], the rela-
tive entropy is strictly non-negative and vanishes if and only
if ρ = σ , implying that the mutual information is always
non-negative and vanishes only if the composite state is in a
separable state ρA ⊗ ρB.

Let us assume that subsystems A and B are initially in
thermal equilibrium at inverse temperature βA = 1/TA and
βB = 1/TB, respectively. The corresponding local densities are
ρ0

A = e−βAHA/ZA and ρ0
B = e−βBHB/ZB, where ZA and ZB are the

respective subsystem partition functions. Inverting the Gibbs
state as HA = −TA(ln ρ0

A + ln ZA), the energy of subsystem A
can be expressed as EA(t ) = −TATrA{ρA(t ) ln ρ0

A} − TA ln ZA

and similarly for subsystem B. The deviation of the energy
and entropy from their initial values must satisfy

βA�EA(t ) − �SA = S
(
ρA(t )‖ρ0

A

)
� 0, (1)

where �EA(t ) ≡ EA(t ) − EA(0) and �SA(t ) ≡ SA(t ) − SA(0)
likewise subsystem B takes a corresponding expression.

Although Eq. (1) resembles the second law of thermo-
dynamics, it does not require a thermal environment and is
valid for any subsystem initially in a Gibbs state. Using the
conservation of total energy, �EA(t ) + �EB(t ) = 0, and total
entropy, �SA(t ) + �SB(t ) = �IAB(t ), Eq. (1) leads to

(βA − βB)�EA(t ) = S
(
ρA(t )‖ρ0

A

) + S
(
ρB(t )‖ρ0

B

) + �IAB(t ),
(2)

where �IAB = IAB(t ) − IAB(0).
Let us now assume that TA > TB. Equation (2) indicates that

if the subsystems are always uncorrelated [�IAB(t ) = 0], �EA

is negative at all times and thus energy is always transferred
from the hot to the cold subsystem (we shall call this normal
energy exchange), as expected from the standard theory
of thermodynamics. Similarly, if �IAB(t ) � 0 the energy
flows in the normal direction but the amount of transferred
energy is larger than the normal energy exchange. On the
other hand, if the mutual information decreases significantly,
that is �IAB(t ) < −[S(ρA(t )‖ρ0

A ) + S(ρB(t )‖ρ0
B )] < 0, then

energy flows from the cold to the hot subsystem against the
temperature gradient (we shall call this anomalous energy
exchange), which is unexpected in the standard theory of
thermodynamics.

It is misleading to say that the above argument represents a
violation of the second law. Temperature is simply a parameter
specifying the initial energy distribution and Eq. (2) is valid
for any type of evolution, unitary or nonunitary. It merely
shows that at a certain time the hot subsystem A can reach
a higher-energy state than its initial state but does not have
to remain in the higher-energy state, in fact the energy can
oscillate in time and �EA(t ) can be positive or negative at
different points in the evolution if the system is finite. Strictly
speaking, only when the subsystems are infinitely large can
�EA and �EB dissipate as heat QA and QB.

Regardless of system size, the above discussion has sig-
nificant ramifications, namely, that the energy of a hot body
can get even higher than its initial energy for a time if and
only if the system is initially correlated. In light of this con-
clusion, we show that particular initial conditions can reverse
the direction of energy flow against the temperature gradient
or enhance the energy flow in the natural direction for a
brief period of time before the initial correlations are lost to
decoherence. In Sec. V, we exploit this effect to construct a
heat pump driven purely by quantum entanglement.

To illustrate the mechanical origin of the anomalous energy
exchange, assume that the initial state of the two qubits A and
B is given by

ρ0
AB = ρ0

A ⊗ ρ0
B + χ, (3)

where χ is the correlation matrix describing all classical and
quantum correlations.

When the two subsystems are coupled through an in-
teraction potential VAB, energy is exchanged between the
subsystems. We are particularly interested in the time evo-
lution of the subspace energy difference (SED) �AB(t ) =
EA(t ) − EB(t ). By expanding it in the Taylor series up to the
first order of t , we find its initial trend:

�AB(t ) = �AB(0) − iTr{(HA − HB)[VAB, χ ]}t + O(t2), (4)
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where [·, ·] is the commutator. If the first-order term is pos-
itive, the SED increases, indicating that the hot subsystem
gets even hotter and the cold subsystem gets even colder.
Thus, [VAB, χ ] �= 0 is a necessary condition for the anomalous
energy exchange. While the initial trend (4) can be nonzero
for any type of correlation satisfying the condition, we focus
on quantum entanglement as a source of correlation.

III. ANOMALOUS ENERGY EXCHANGE
BETWEEN QUBITS

To explicitly demonstrate the anomalous energy exchange,
we consider a pair of identical qubits with Hamiltonians HA =
HB = h̄ω

2 σz. The ground and excited states are denoted as |0〉
and |1〉, respectively. For simplicity, we assume that h̄ω = 1
and all energies are normalized by h̄ω. Initially the qubits are
disconnected and in independent Gibbs states with respective
temperatures TA > TB. The uncorrelated part of density matrix
in Eq. (3) can be expressed in the product basis of two qubits
{|00〉, |01〉, |10〉, |11〉}:

ρ0
A ⊗ ρ0

B =

⎛
⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞
⎟⎠, (5)

where the matrix elements are defined by

λ1 = e(βA+βB )/2/(ZAZB),

λ2 = e(βA−βB )/2(ZAZB),

λ3 = e(−βA+βB )/2/(ZAZB),

λ4 = e−(βA+βB )/2/(ZAZB). (6)

The choice of χ in the initial state (3) will depend on the
type of interaction established between the qubits. We assume
a simple interaction potential

VAB = 	(eiφV |01〉〈10| + e−iφV |10〉〈01|), (7)

where 	 and φV are the magnitude and the phase of the
coupling operator. VAB becomes the standard XY model with
φV = 0, and the asymmetric Dzyaloshinskii-Moriya (DM)
interaction [28,29] with φV = π

2 . To satisfy the necessary con-
dition for the anomalous energy exchange, [VAB, χ ] �= 0, the
correlation matrix χ must include coherence between |01〉 and
|10〉. Hence, the simplest possible structure of the correlation
matrix is

χ =

⎛
⎜⎝

χ11 0 0 0
0 χ22 χ23 0
0 χ∗

23 χ33 0
0 0 0 χ44

⎞
⎟⎠. (8)

The correlation matrix must further satisfy three physical
conditions: (a) ρ0

AB must be positive and normalized, (b) ρ0
A

and ρ0
B must remain in the Gibbs state, and (c) ρ0

AB must con-
tain entanglement, which imply the mathematical conditions

ρ0
AB > 0 and Trρ0

AB = 1, (9a)

TrAχ = TrBχ = 0, (9b)

C
(
ρ0

AB

)
> 0, (9c)

where the magnitude of entanglement is measured by the
concurrence C [30]. To obtain the strongest anomalous heat
current we maximize the concurrence of the initial state under
the above constraints. The optimal correlation matrix is found
to be (see Appendix A)

χ =

⎛
⎜⎜⎝

−λ4 0 0 0
0 +λ4 eiφχ

√
λ4 0

0 e−iφχ
√

λ4 +λ4 0
0 0 0 −λ4

⎞
⎟⎟⎠, (10)

where φχ is a phase between |01〉 and |10〉. The maximum
possible concurrence under the above constraints is given by

C0 = 2
√

λ4. (11)

We assume that a mapping from ρ0
A ⊗ ρ0

A to ρ0
AB can be re-

alized by some quantum channel. However, there may be
additional restrictions. For example, if the channel is unitary,
the temperature of the thermal state must be sufficiently low
[31]. Micadei et al. [26] used a sequence of pulses to prepare
the initial entangled state and, while not necessarily optimal,
were still able to measure an anomalous energy exchange.

We solved the Liouville-von Neumann equation with the
initial state (5) and (10), and obtained an exact solution for
the time evolution of the SED between the two coupled qubits
(Appendix B),

�AB(t ) = �AB(0)

√
1 +

(C0 sin (δ)

�AB(0)

)2

cos (2	t + θ ), (12)

where δ = φV − φχ and

θ = atan

[C0 sin (δ)

�AB(0)

]
, |θ | <

π

2
. (13)

In the absence of initial entanglement (C0 = 0 and thus
θ = 0), SED never exceeds the initial value and normal energy
exchange proceeds as expected. In the presence of an initial
correlation, the energy exchange is still normal if the coupling
and coherence are in phase, δ = 0. Otherwise, the energy
exchange is anomalous.

Expanding Eq. (4) in time the first-order term is found
to be −2	[�2

AB(0) + C2
0 sin2(δ)]1/2 sin(θ )t . Hence, the SED

increases only when −π
2 < θ < 0, which requires δ < 0, oth-

erwise, it initially decreases faster than the normal oscillation.
The sufficient condition for the anomalous energy exchange
against the temperature gradient is thus C0 > 0 and −π < δ <

0. The fastest growth rate of the SED is obtained at δ = −π
2

and it reaches the first maximum at time τ = |θ |
2	

.
Figure 1 plots the SED, concurrence and mutual infor-

mation in the presence of an initial correlation with δ =
0,±π

2 . When the energy oscillation is normal (δ = 0), the
concurrence and mutual information are nearly constant in
time. Otherwise (δ = ±π

2 ) the energy oscillation is anoma-
lous, the entanglement and mutual information vanish as the
SED reaches a maximum, indicating that the correlation is
consumed to increase the SED.

Figure 2 plots the normal (δ = 0) and anomalous (δ = −π
2 )

energy oscillations for three different temperature gradients
TA = TB, TA > TB, and TA < TB. The normal energy exchange
vanishes in the absence of the temperature gradient and flows
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FIG. 1. Evolution of (a) energy difference, (b) concurrence, and
(c) mutual information of two entangled qubits at respective temper-
atures TA = 2, TB = 1 coupled through potential VAB with 	 = 0.1.
The dotted black, dashed blue, and solid red lines correspond to
δ = 0, π

2 , − π

2 . For the normal energy exchange (dotted black lines),
the SED never exceeds the initial value �AB(0), and the concurrence
and mutual information change very little. For the anomalous energy
exchange with δ = − π

2 (solid red lines), the SED initially increases
while the concurrence and the mutual information decrease in con-
trast to normal energy exchange. For the other anomalous energy
exchange with δ = π

2 (dashed blue lines), the SED initially decreases
faster than the normal energy exchange, while the concurrence and
the mutual information still decrease in almost the same way as the
anomalous energy exchange with δ = − π

2 . In all cases, the oscilla-
tions of the energy gap have the same period π

	
.

in the normal direction in the presence of temperature gradi-
ent, as expected. In contrast, the abnormal energy exchange
is almost independent from the temperature gradient. The
amplitude of abnormal energy exchange is nearly an order
of magnitude larger than that of the normal energy exchange,
desirable properties for the construction of an efficient heat
pump.

IV. ANOMALOUS HEAT CONDUCTION
BETWEEN HEAT BATHS

The anomalous energy exchange in the isolated qubits
oscillates periodically and no dissipation takes place. In this
section, we investigate the anomalous energy exchange in a
dissipative system by adding heat baths. Consider two sub-
systems A and B each consisting of a heat bath and a qubit
as shown in Fig. 3(a). The total system A + B is isolated and
thus total energy and entropy are conserved. In the absence of
the qubit-qubit coupling, each qubit relaxes to a thermal state
(Gibbs state with TA > TB) after a sufficiently long time.

Once a local thermal equilibrium has been established in
each subsystem an initial correlation χ is prepared between
the qubits with δ = −π

2 as discussed in Sec. III. As soon

(a)

(b)

FIG. 2. Subspace energy difference �AB is plotted for (a) normal
energy exchange (δ = 0) and (b) anomalous energy exchange (δ =
− π

2 ) with three different temperature gradients: dotted black line,
TA = TB = 1.5; solid red line, TA = 2.0 > TB = 1.0; and dashed blue
line, TA = 1.0 < TB = 2.0. The coupling strength, 	 = 0.1 is used
for all cases. A reversal of the temperature gradient inverts the normal
energy flow but has little effect on the anomalous energy exchange.

as the entanglement is formed, the interaction potential VAB

is turned on. Since trρ0
ABVAB = 0, there is no energy cost to

switch on the coupling, hence no work is done during this
step. Energy begins flowing from qubit B to A as predicted by
the previous analysis. However, the heat baths quickly destroy
the coherence between the qubits and thus the anomalous
energy exchange ceases at a certain time followed by normal
heat conduction from A to B. If the period of energy oscil-
lation, τ	 = π

	
is shorter than the decoherence time τd , the

anomalous energy exchange will reach the first maximum of
its oscillation and qubit A gains energy exceeding its thermal

FIG. 3. Heat pump cycle: (a) Qubits A and B are uncoupled from
each other and thermalized with hot bath A and cold bath B, re-
spectively. (b) Entanglement is prepared between the qubits. (c) The
qubits are coupled via an interaction potential. (d) Anomalous heat
flows from qubit B to A against the temperature gradient. Returning
to step (a), the excess energy in qubit A is transferred to heat bath A

and the energy deficiency in qubit B is recovered from heat bath B

during the thermalization.
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(a)

(b)

(c)

(d)

FIG. 4. Transient anomalous dynamics of heat baths at respec-
tive temperatures TA = 2 and TB = 1 coupled through the interaction
potential VAB parametrized by 	 = 0.1 and δ = − π

2 . Weak coupling
to the heat baths (κA = κB = 0.01) is assumed, where κA and κB are
the coupling constants (see Refs. [32,33]). (a) In contrast with Fig. 2,
the oscillation of the SED between qubits decays due to decoherence.
(b) Heat is initially extracted from bath A (solid red line) and deliv-
ered to bath B (dashed blue line) against the temperature gradient
TA = 2 and TB = 1. (c) Concurrence initially takes a maximum value
then dies abruptly. (d) Mutual information decays exponentially after
the sudden death of the concurrence.

energy at TA and qubit B loses energy below its thermal energy
at TB.

We define heat QA and QB as energy extracted from heat
bath A and B, respectively [32]. When qubit A acquires some
excess energy due to the anomalous energy exchange, it flows
into heat bath A and thus QA is negative. Meanwhile, the
deficiency of energy in qubit B results in positive QB. As a
whole, heat flows from bath B to A against the temperature
gradient. We shall call this delivery of heat from one bath to
another facilitated by the anomalous energy exchange anoma-
lous heat.

The time evolution of the system is numerically simu-
lated with the method of hierarchical equations of motion
(HEOM) [34]. The detailed simulation method is described in
Refs. [32,33]. In brief, the qubits are coupled to ideal Bose
gases with the Drude-Lorenz spectra. The evolution of the
qubits is numerically evaluated by the HEOM. Figure 4(a)
clearly shows a sharp peak in the SED near t = τ	, indicating
that the anomalous energy exchange is taking place even in
the presence of heat baths. However, the oscillation quickly
decays due to decoherence induced by the heat baths.

Heat plotted in Fig. 4(b) confirms that the excess energy
in qubit A is released to heat bath A and at the same time
qubit B recovers the missing energy from heat bath B. It also
shows that the normal heat conduction takes over after one
oscillation of the SED in Fig. 4(a).

In contrast with the case of isolated qubits discussed in
the previous section, Fig. 4(c) shows that the concurrence
suddenly dies after one oscillation characteristic of the “entan-
glement sudden death” [35]. The mutual information plotted
in Fig. 4(d) survives longer than the concurrence and grad-

ually decays primarily due to decoherence-induced classical
correlation.

Even though this reversed heat is transient, a heat cur-
rent against the temperature gradient seemingly violates the
second law of thermodynamics. If we apply the traditional
theory of thermodynamics to the heat transfer between two
subsystems, the entropy change in the subsystem A(B) is
given by �SA(B) + QA(B)

TA(B)
and the net entropy production in this

interpretation is given by

�0(t ) =
[
�SA(t ) + QA

TA

]
+

[
�SB(t ) + QB

TB

]
, (14)

which can be negative in certain situations in violation of
the second law. The problem with this interpretation is that
correlation between the subsystems is not taken into account.
The standard theory of thermodynamics is built upon the
assumption that the two subsystems are uncorrelated. To over-
come this issue, we consider the pair of qubits as a single
system interacting with two heat baths simultaneously. Then
the entropy change is defined as

�(t ) = �SAB(t ) + QA

TA

+ QB

TB

. (15)

The difference between the two definitions, �0(t ) − �(t ) =
�IAB(t ), is simply the mutual information. It turns out that
�(t ) is strictly positive if the heat baths are initially in thermal
equilibrium, as shown in Appendix C. Hence, the definition
(15) is consistent with the second law, suggesting that the mu-
tual information plays a significant role in thermodynamics.

Figure 5 plots numerical simulation of � and �0. In the
absence of initial correlation [Fig. 5(a)], heat flows in the
normal direction and both �0(t ) and �(t ) remains positive
at all times. However, �0 is not monotonically increasing
due to the transient correlation generated by the introduction
of qubit-qubit coupling. Once the steady heat is established,
entropy production increases linearly. The result is quite dif-
ferent when the qubits are initially correlated and the direction
of heat is reversed [Fig. 5(b)]. �0 is negative until the normal
heat is recovered. On the other hand, �(t ) remains positive
and monotonically increases apart from the initial oscillation.
The entropy production with the anomalous heat is larger than
that with the normal heat by an order of magnitude. It is clear
that most of the entropy production comes from the loss of the
mutual information, suggesting that the dissipation associated
with the anomalous heat is compensated by the loss of mutual
information.

V. A PROPOSED HEAT PUMP

Now we construct a heat pump operated cyclically by
repeating the process discussed in the previous section (see
Fig. 3). When the energy of qubit A reaches its first maximum
at time τ = |θ |

2	
instead of allowing normal heat to start, the

qubits are disconnected by turning off the interaction poten-
tial. As a result the excess energy gained by qubit A is unable
to return to qubit B and energy must flow from the qubit to
heat bath A as heat (QA < 0). Similarly, the energy deficiency
in qubit B is restored by absorbing heat from heat bath B and
thus heat QB > 0 flows. Eventually the subsystems reach the
original thermal equilibrium. By repeating the process, heat
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(a)

(b)

FIG. 5. Two different definitions of entropy production, �0

(dashed blue lines) and � (solid red lines), along with the change
of mutual information (dot-dashed black lines) are plotted. For the
normal heat, the two definitions of the entropy production are both
positive, consistent with the second law of thermodynamics. For
the anomalous heat, �0 is negative until steady normal heat is re-
covered, disqualifying it as the definition of entropy production. �

remains positive all time, consistent with the second law. The main
contribution to the entropy production is the reduction of mutual
information, which is far bigger than the entropy production in
the normal heat conduction. Parameters: 	 = 0.1, δ = − π

2 TA = 2,
TB = 1, κA = κB = 0.01.

can be cyclically extracted from the cold bath and delivered to
the hot bath.

In Fig. 6, heat QA and QB obtained from numerical sim-
ulation are plotted for the first two cycles. The qubits are
connected for a brief period of time τ (narrow shaded area)
and actual heat flows from the cold to the hot bath during
rethermalization. Unlike traditional heat pumps, all of the
energy extracted from the cold bath is delivered to the hot bath
(|QA| = |QB|), indicating high efficiency. For comparison, the
normal heat is also plotted. The amount of pumped heat is of
the same order of the magnitude as that of the normal heat,
indicating significant pumping power.

Coupling the qubits does not require any external energy,
but uncoupling the qubits requires some external work unless
the interaction energy 〈VAB〉 vanishes at the moment of de-
tachment. We note that VAB commutes with all components of
the Hamiltonian except for the interaction potential between
heat baths and qubits. Therefore, the interaction energy at the
time of disconnection is negligibly small. Furthermore, it can
be made infinitesimally small by adjusting the disconnection
time and the coupling strength with heat baths.

From the standard thermodynamic perspective, the effi-
ciency of a heat pump is measured by the coefficient of
performance (COP)

ηCOP = QB

W
= QB

QA + QB

, (16)

which diverges when evaluated for our heat pump because
no work is done on the system, and thus QA + QB = 0 at
the end of every cycle. The second law of thermodynam-

FIG. 6. The performance of the heat pump obtained from numer-
ical simulation. To eliminate the energy cost of qubit decoupling,
asymmetric coupling strengths κA = 0.01 and κB = 0.023 are used.
See Fig. 5 for other parameter values. The accumulation of heat
is plotted for two cycles of operation, drawn from the cold bath
(solid blue line) and delivered to the hot bath (solid black). The
qubits are connected for a brief period of time τ = 6.1 (narrow gaps
between two vertical lines) and the system is relaxed for the period of
τrelax = 500. See Fig. 5 for other parameter values. For comparison,
the normal steady-state heat drawn from the hot bath (dashed gray
line) and delivered to the cold bath (dashed black line) in the absence
of initial correlation is also plotted.

ics demands that the efficiency should be bounded by the
Carnot efficiency ηmax

COP = TB/(TA − TB). It has been shown that
quantum coherency or correlation cannot violate the Carnot
statement of the second law [36]. To reestablish the second
law, we must change the definition of the COP. Recalling
the definition of entropy production (15) and further noting
that �SA = �SB = 0 at the end of one cycle, the second law
becomes

I0 − Q̄A

TA

− Q̄B

TB

� 0, (17)

where I0 is the initial mutual information and Q̄ is heat per
cycle. Rearranging Eq. (17) yields

TB

TA − TB

� Q̄B

TAI0
. (18)

The direct comparison of (18) with the standard Carnot ef-
ficiency suggests that an effective work may be defined as
W = TAI0 [6]. Substituting the results of the simulation, we
find Q̄B/(TAI0) = 0.186 which is lower than the Carnot effi-
ciency ηmax

COP = 1, satisfying the inequality (18).

VI. DISCUSSION AND CONCLUSIONS

We first investigated the anomalous energy exchange be-
tween an entangled pair of qubits locally in thermal states
with different temperature. We have shown that the direction
and magnitude of the energy flow can be controlled by tuning
the phases in the initial coherence and coupling operator as
well as the concurrence of the initial state. The direction
of the anomalous energy flow is nearly independent of the
temperature gradient

Second, we investigated the effect of decoherence on the
anomalous energy exchange by coupling independent thermal
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baths to the qubits. The anomalous energy exchange quickly
disappears as the entanglement vanishes due to decoherence.
However, as the qubits are thermalized, the excess energy
in the qubits dissipates to the baths as heat, reversing the
direction of heat against the temperature gradient.

Based on the anomalous heat, we have constructed a heat
pump. By tuning the parameters, namely, the concurrence of
the initial state, the phases and the coupling strength, we have
shown numerically that rather strong heat current is created
against the temperature gradient. If we assume that the initial
mutual information multiplied by temperature is equivalent to
external work, the coefficient of performance obtained from
simulation is consistent with the second law of thermodynam-
ics.

To operate the heat pump cyclically, the initial correlation
must be periodically reestablished. Micadei et al. [26] used
a sequence of single-qubit rotations and two-qubit interac-
tions to prepare the fuel state experimentally and were able
to realize some correlation sufficient to reverse the direction
of the energy exchange between qubits. Other possibili-
ties include the entanglement-preserving local thermalization
channel [37] or entanglement swapping in the presence of
thermal environments [38–43].

It has been shown that coherence can be created or in-
creased using the temperature gradient (heat) as resources
[44,45]. It would be interesting to investigate the time-
reversed process of our proposed heat pump. If the heat from
a hot to a cold bath is increased compared with normal heat
conduction, is it possible to amplify coherence?
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APPENDIX A: OPTIMAL CORRELATION MATRIX

In this Appendix, we determine the optimal correlation
matrix (10) using the conditions (9). Since the matrix (8) takes
a so-called X form [46], we can easily evaluate the conditions.
The positivity condition (9a) is satisfied by

λi + χii � 0 ∀ i, (A1a)√
(λ2 + χ22)(λ3 + χ33) � |χ23|. (A1b)

The traceless conditions (9b) constrains the diagonal elements
by χ11 = −χ22 = −χ33 = χ44, which reduces the conditions
(A1) to

min (λ2, λ3) � χ11 � −λ4, (A2a)

and √
(λ2 − χ11)(λ3 − χ11) � |χ23|. (A2b)

Now, we have only two parameters to determine, χ11 and
χ23.

Concurrence is found to be

C(ρ) = 2 max{0, |χ23| −
√

(λ1 + χ11)(λ4 + χ11)}, (A3)

and thus entanglement is formed only if

|χ23| >
√

(λ1 + χ11)(λ4 + χ11). (A4)

FIG. 7. The schematic representation of three conditions (A2a),
(A2b), and (A4). x and y represent χ11 and |χ23|2, respectively. The
shaded region satisfies all conditions. The vertical edge of the region
corresponds to the square of maximum concurrence.

Combining the conditions (A2) and (A4), the parameters take
values in the shaded area in Fig. 7.

Finally, we obtain the maximum concurrence C0 = 2
√

λ4

with χ11 = −λ4 and |χ23| = √
λ4 (see Fig. 7). Now, we have

the optimal correlation matrix (10).

APPENDIX B: UNITARY EVOLUTION
OF COUPLED QUBITS

We solve the Liouville-von Neumann equation iρ̇ =
[(HA + HB + VAB), ρ] where the Hamiltonians are defined in
Sec. III. The initial state (3) is specifically written in the matrix
forms (5) and (10). Noting that ρ11 and ρ44 are independent
from other matrix elements, they are constant in time and thus
ρ11(t ) = λ1 − λ2 and ρ44(t ) = 0. The remaining equations of
motion are

iρ̇22 = 	[eiφVρ32 − e−iφVρ23], (B1a)

iρ̇23 = 	eiφV (ρ33 − ρ22) (B1b)

with the conservation of two quantities: ρ̇22 + ρ̇33 = 0 and
eiφV ρ̇32 + e−iφV ρ̇∗

23 = 0. We obtain the following solution:

ρ22(t ) = 1
2 [λ2 + λ3 + 2λ4

−�AB(0) cos (2	t ) + sin (δ)C0 sin (2	t )], (B2a)

ρ33(t ) = 1

2
[λ2 + λ3 + 2λ4

+�AB(0) cos (2	t ) − sin (δ)C0 sin (2	t )], (B2b)

ρ23(t ) = ρ∗
32(t ) = eiφV

2
[C0 cos (δ)

− i{sin (δ)C0 cos (2	t ) − �AB(0) sin (2	t )}].
(B2c)

Next we evaluate the energy expectation values EA =
Tr[(HA ⊗ I )ρ] and EB = Tr[(I ⊗ HB)ρ]. Using the above so-
lutions, they are evaluated as

EA/B(t )= 1
2 [λ1 − λ4∓�AB(0) cos (2	t )∓ sin (δ)C0 sin (2	t )],

(B3)
from which we obtain Eq. (12).
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APPENDIX C: ENTROPY PRODUCTION

We show that Eq. (15) is non-negative. Consider a system
s in contact with hot bath h and cold bath c. The Hilbert space
of the total system is given by Hs ⊗ Hh ⊗ Hc. We assume that
they are initially uncorrelated and the heat baths are in thermal
equilibrium, thus the initial density can be written as

ρ(0) = ρs(0) ⊗ ρG
h ⊗ ρG

c , (C1)

where ρs(0) is an arbitrary initial system density and the initial
density of bath k = h, c takes the Gibbs form ρG

k = e−βkH�/Zk

with the bath Hamiltonian Hk , inverse temperature βk , and
partition function Zk .

We define heat as energy leaving the heat bath:

Qk (t ) = Trk
(
ρG

k Hk
) − Trk

(
ρk (t )Hk

)
= − 1

βk

[
Trk

(
ρG

� ln ρG
�

) − Trk
(
ρk (t ) ln ρG

k

)]
. (C2)

The change in the entropy of the system is defined with the
von Neumann entropy:

�Ss = −Trs(ρs(t ) ln ρs(t )) + Trs(ρs(0) ln ρs(0)). (C3)

Rewriting Eqs. (C2) and (C3) using trace over the whole
Hilbert space, substituting them to the definition of entropy
production (15), rearranging terms, and using the conservation
of total entropy, we obtain

� = �Ss − βhQh − βcQc

= −Tr
[
ρ(t ) ln

(
ρs(t ) ⊗ ρG

h ⊗ ρG
c

)]
+ Tr

[(
ρs(0) ⊗ ρG

h ⊗ ρG
c

)
ln

(
ρs(0) ⊗ ρG

h ⊗ ρG
c

)]
= S(ρ(t )‖ρs(t ) ⊗ ρG

h ⊗ ρG
c ) � 0, (C4)

which shows that Eq. (15) is always non-negative for t � 0.
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