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Abstract. We review our work on a discrete model of stochastic, phase-coupled oscillators that is sufficiently simple to 
be characterized in complete detail, lending insight into the universal critical behavior of the corresponding nonequilibrium 
phase transition to macroscopic synchrony. In the mean-field limit, the model exhibits a supercritical Hopf bifurcation and 
global oscillatory behavior as coupling eclipses a critical value. The simplicity of our model allows us to perform the first 
detailed characterization of stochastic phase coupled oscillators in the locally coupled regime, where the model undergoes a 
continuous phase transition which remarkably displays signatures of the XY equilibrium universality class, verifying recent 
analytical predictions. Finally, we examine the effects of spatial disorder and provide analytical and numerical evidence that 
such disorder does not destroy the capacity for synchronization. 
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Time and periodicity play a critical role in a host of physical, biological, and chemical systems [1, 2]. In particular, 
a vast number of systems consist of noisy individual entities characterized by periodic (oscillatory) dynamics that 
give rise to a potentially complex competition between individual dynamics on a microscopic scale and large scale 
cooperative behavior. Originating with the pioneering work of Kuramoto [3, 4], the scientific literature is replete 
with studies of such synchronization [1, 2]. The typical approach involves systems of coupled, nonlinear differential 
equations. As such, work has been traditionally limited to relatively small, deterministic systems in the mean field 
limit [5, 6, 7, 8, 9]. 

While providing a mature understanding of the synchronization dynamics in coupled oscillators, the numerical 
and analytical complexities of these familiar models have prohibited a complete characterization in the large system 
limit. Therefore, the analogy between the cooperative behavior of these oscillators with phase transitions and critical 
phenomena from statistical mechanics [10, 11] has not been fully exploited. Specifically, the onset of synchronization 
when viewed on a long wavelength scale is characterized by a macroscopic change in an inherently nonequilibrium 
symmetry: for systems below the synchronization threshold, the large-scale dynamics appears time-translationally 
invariant, while synchronized systems oscillate collectively, breaking this time-based symmetry. 

With these possible analogies in mind, and with an eye towards critical behavior, we develop a simple, discrete model 
of noisy phase-coupled oscillators [12, 13, 14] which displays the desired macroscopic behavior while remaining 
sufficiently simple to be characterized as a phase transition. Owing to the well-established notion of universality, which 
renders microscopic specifics essentially irrelevant for study of the typically long-wavelength behavior occurring near 
criticality, our model of the phase transition in question must preserve the macroscopic symmetry-breaking while 
incorporating the relevant physical details, namely, stochasticity and microscopic periodicity. 

Our starting point is a three-state unit [12, 13, 14] governed by transition rates g (Fig. 1). Loosely speaking, we 
interpret the state designation as a generalized (discrete) phase, and the transitions between states, which we construct 
to be unidirectional, as a phase change and thus an oscillation of sorts. The probability of going from the current state i 
to state i+ 1 in an infinitesimal time dt is gdt, with i=l,2,3 modulo 3. For an isolated unit, the transition rate is simply 
a constant (g) that sets the oscillator's intrinsic frequency; for many coupled units, we will allow the transition rate to 
depend on the neighboring units in the spatial grid, thereby coupling neighboring phases. 
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FIGURE 1. Three-state unit with generic transition rates ; 

FIGURE 2. Dimensionality (d) dependent phase transition. Left column shows r vs L on a log-log scale for d = 2,3, 4, top to 
bottom. For d = 2, the curves start from a = 2,0 (top) with increments of 0.5. For d = 3, the curves start from a = 2.275 (top) with 
increments of 0.025 (with the exception of a = 2.350, not shown). For the d = 4 case, the curves are a = 1.6,1.7,1.8,2.0,2.1,2.2, 
top to bottom. In the limit of infinite system size, a synchronous phase emerges for d > 3 for sufficiently large a. The right column 
shows rvsa and % vs a for d = 3, L = 80 (top) and d = 4, L = 16, bottom. Fluctuations peak near the critical point, giving an 
estimation of ac = 2.345 ± 0.005 and ac = 1.900 ± 0.025 for d = 3 and d = 4, respectively. 

For an isolated unit we write the linear evolution equation dP{t)/dt = MP{t), where the components P,-(? 
column vector P(t) = (Pi(t) Pz(t) Ps(t))T are the probabilities of being in state i at time t, and 

of the 

M 
0 

(1) 

The system reaches a steady state for Pj* = P2* = P3* = 1/3. The transitions i —> i +1 (with j + 1 = 1 when i = 3) occur 
with a rough periodicity determined by g; that is, the time evolution of our simple model qualitatively resembles that 
of the discretized phase of a generic noisy oscillator. 

We implement microscopic coupling by allowing the transition probability of a given unit to depend on the states of 
the unit's nearest neighbors in a spatial grid. Specifically, we choose a function which compares the phase at a given 
site with its neighbors, and adjusts the phase at the given site so as to facilitate phase coherence. We settle on the 
following form of the transition rate from state i to state j : 

gij = gexp 
a{Nj-Ni) 

2d 
8JM (2) 

50 

Downloaded 20 Jun 2007 to 132.239.1.232. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



Here the constant a is the coupling parameter, g is a parameter related to the intrinsic frequency of each oscillator, and 8 
is the Kronecker delta. Nk is the number of nearest neighbors in state k, and 2d is the total number of nearest neighbors 
in d dimensional cubic lattices. While this choice is by no means unique and these rates are somewhat distorted by 
their independence of the number of nearest neighbors in state i - 1, the form (2) does lead to synchronization and 
allows for fast numerical simulation of large lattices near the critical regime [12, 13]. 

To verify the emergence of global synchrony, we first consider a mean field version of the model. In the large N 
limit with all-to-all coupling we write 

gij = gexp [a(Pj - Pi)} 8jj+i. (3) 

Note that in the mean field limit gij does not depend on the location of the unit within the lattice. Also, there is an 
inherent assumption that we can replace Nt/N with Pk. With this simplification we arrive at a nonlinear equation for 
the mean field probability, dP(t)/dt = M[P(t)]P(t), with 

f-gn 0 g3i \ 
M[P{t)} = gn -£23 0 . (4) 

\ 0 g23 -gilj 

Normalization allows us to eliminate P3 and obtain a closed set of equations for Pi and Pi. We can further 
characterize the mean field solutions by linearizing about the fixed point (Pf,/^*) = (1/3,1/3). The complex conjugate 
eigenvalues of the Jacobian evaluated at the fixed point, A± = g{2a — 3 ± iV3)/2, cross the imaginary axis at a = 1.5, 
indicative of a Hopf bifurcation at this value, which following a more detailed analysis [12, 13] can be shown to be 
supercritical. Hence, as a increases, the mean field undergoes a qualitative change from disorder to global oscillations, 
and the desired breaking of time translational symmetry emerges. Numerical solutions confirm this behavior, yielding 
results that agree with simulations of an all-to-all coupling array [12, 13]. 

We now proceed with a detailed numerical characterization of the locally coupled case. We performed simulations 
of the locally coupled model in continuous time on rf-dimensional cubic lattices with periodic boundary conditions. 
Time steps were 10 to 100 times smaller than the fastest local average transition rate, i.e., dt <C e~a (we set g=l). 
We find that much smaller time steps lead to essentially the same results. Starting from random initial conditions, all 
simulations were run until an apparent steady state was reached, and statistics are based on 100 independent trials. 

Following other works on phase synchronization, we introduce the order parameter [3,4] 

r=(R), R=-x h N 

N 

i = l 
(5) 

Here 0/ is the discrete phase 2?r(fc-l)/3 for state k e {1,2,3} at site j . The brackets represent an average over time in 
the steady state and over all independent trials. Nonzero r in the thermodynamic limit indicates synchrony. We also 
calculate the generalized susceptibility % = Ld[(R2) — (R)2}. 

As shown in Fig. 2, the model undergoes a dimension-dependent transition marked by characteristics of a typical 
phase transition, including a macroscopic change in r in the infinite system limit, a peak in fluctuations at the critical 
point, and a diverging spatial correlation length [12, 13] (not shown). Specifically, in d = 2 we do not see the 
emergence of a synchronous phase. Instead, we observe intermittent oscillations (for very large values of a) that 
decrease drastically with increasing system size. In fact, r —> 0 in the thermodynamic limit, even for very large values 
of a. We conclude that the phase transition to synchrony cannot occur for d = 2. 

In contrast to the d=2 case, which serves as the lower critical dimension, a clear thermodynamic-like phase transition 
occurs in three dimensions. Figure 2 shows explicitly that for a < ac when d = 3, r —> 0 as system size is increased, and 
a disordered phase persists in the thermodynamic limit. For a > ac, the order parameter approaches a finite value as 
the system size increases. In addition, Fig. 2 shows the behavior of the order parameter as a is increased for the largest 
system studied (L=80); the upper left inset shows the peak in % at a = 2.345 ± 0.005, thus providing an estimate of 
the critical point ac. While the accuracy of our current estimation of the critical point is modest, it nonetheless suffices 
to determine the universality class of the transition. Similarly, for d = 4 we estimate the transition coupling to be 
ac = 1.900±0.025 (Fig. 2), and for d = 5 we see a transition to synchrony at ac = 1.750±0.015 [12,13] (not shown). 

To further characterize this transition, we use finite size scaling analysis by assuming the standard scaling 

r = L-vF[(a-ac)Lv]. (6) 

Here F{x) is a scaling function that approaches a constant as x —> 0. To test our numerical data against different 
universality classes we choose the appropriate critical exponents for each, recognizing that there are variations in the 
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FIGURE 3. Finite size scaling analysis for d = 3, d = 4, d = 5: Data collapse using ansatz (6) with mean field exponents. 

reported values of these exponents [15]. For the XY universality class we use the exponents /3=0.34 and v=0.66 [17]. 
For the Ising exponents we use /3=0.31 and v=0.64 [11]. In Fig. 3, we see quite convincingly a collapse when 
exponents from the XY class are used, verifying recent analytic predictions [18, 19]. For comparison, we also show 
the data collapse with d = 3 Ising exponents (note the scale differences). Because we expect d = 4 to be the upper 
critical dimension in accordance with XY/Ising behavior, we anticipate a slight breakdown of the scaling relation (6). 
Nevertheless, as shown in Fig. 4, the data collapse is very good with the mean field exponents. As such, our simulations 
suggest that d = 4 serves as the upper critical dimension. The case d = 5, where the data collapse with the mean field 
exponents is excellent, is also shown in Fig. 3, and further supports the claim that duc=4. 

Having observed convincingly equilibrium-like critical behavior in systems of inherently nonequilibrium oscillators, 
we now turn to the question of spatial disorder. That is, when units are no longer identical (g not equal for all units), 
is the capacity for synchronization destroyed? To address this question, we consider first a dichotomously disordered 
population consisting of two subpopulations of oscillators, each characterized by a different frequency parameter 
g = Yi and g = ji. We assume a modified form of the inter-unit coupling given by 

gij=ge*P 
a{Nj-Ni i-D 

Oj,i+h (7) 

where n is the number of oscillators to which unit v is coupled, and Nk is the number of units among the n that 
are in state k. This form maintains a closer macroscopic analogy with coupled oscillators far above the frequency 
threshold [16], and while more time consuming for in depth studies of the critical regime, it proves more suitable for 
the current disorder studies. 

In the mean field limit, our dichotomously disordered array can be characterized by a six dimensional equation for 
Pit7l and Pit72, i £ 1,2,3, where, for example, P\i7l represents the probability for a unit with transition rate parameter 
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FIGURE 4. (a.) Upper panel: The critical surface ac is shown for a dichotomously disordered system. Specifically, the boundary 
given by the contour ReA+ = 0 is plotted in (71 ,yz,a) space. This contour indicates the critical point, where the Hopf bifurcation 
occurs and the disordered solution becomes unstable. The region above the contour represents the synchronized phase. Lower panel: 
Stability boundary in terms of relative width parameter, (b.) Time evolution snapshots of a dichotomously disordered system with 
71 = 0.5 and 72 = 1.5 are shown for a = 3.5 < ac (left) and a = 4.1 > ac (right). Each color represents the state of the oscillator. 

71 to be in state 1. Following normalization, the set reduces to four equations which can be linearized about the 
nonsynchronous fixed point ( 1 / 3 , 1 / 3 , 1 / 3 , 1 / 3 ) . The eigenvalues of the relevant Jacobian are given by: 

ReA± _ 1 

n + 72 ~ 8 
ImA± 1 

7i + 72 ~ 8 

a — 6±Z?(a , / l )cos(C(a , / l ) ) ] , 

V3(a + 2)±B(a,ii)sm(C(a,ii)) 

(8) 

where 

B(a, li) = y/l [a4 - 6a2\i2 + 3ji4(a2 + 3) 

-V3(a2-(a + 3)fl2)S 

,1/4 

C(a,iL)\ 
(9) 

tan 
a2 + 3(a-l)il2 

In fact, one pair of eigenvalues crosses the imaginary axis (Hopf bifurcation) at a critical value a = ac, but the other 
pair shows no qualitative change as a is varied. Aside from an overall factor (71 + 72), Eqs. (8) depend only on the 
relative width variable 

M - ^ - ^ (10) 
(71+72) 

(—2 < /I < 2), and in fact the Hopf bifurcation occurs at a single value of ac(\l). As shown in Fig. 4, the surface ac 

separates regions of synchronous and asynchronous phases. A small-/i expansion leads to an estimate of ac to 0 ( / i 2 ) , 

I fl2 + 3M2 + \/3A/( 12 + M2)(4 + 3M2) (11) 

a result that exhibits these trends explicitly. In particular, we note the increase in ac with increasing /I. Figure 4 also 
shows snapshots from simulations of a globally coupled, dichotomously disordered population (N = 5000 units, or 
2500 with 71 = 0.5 and 2500 with 72 = 1.5), confirming the emergence of macroscopic synchrony for sufficiently 
strong coupling. 
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FIGURE 5. (a.) As the width of the 0(g) distribution increases, a critical width is reached beyond which synchronization is 
destroyed. The coupling is chosen to be a = 3.2, and the four curves represent the steady state, time-averaged order parameter for 
distributions with different means. As the mean of the 0 (g) distribution increases, the transition to disorder occurs at a greater width. 
The insets at the right show the long-time behavior of an entire population of mean transition rate parameter 3.5 (corresponding 
to the triangle order parameter data) and widths of 0.6, 4.0, and 6.2. (b.) The same data is plotted against /x, the relative width 
parameter. 

Finally, we show that these trends carry over to fully disordered systems, where Jt is drawn from a uniform 
distribution characterized by a relative width variable /I. Explicitly, /i is the ratio of the distribution mean to the 
distribution width. As shown in Fig. 5, synchronization still occurs in these systems and furthermore, the critical 
coupling ac is essentially determined by the distribution parameter /I. We find that, analogous to the dichotomously 
disordered system, synchronization occurs at a single value of ac which depends crucially on /I. 

In conclusion, we have demonstrated the remarkable result that a fundamentally nonequilibrium transition, namely, 
a phase transition that breaks the symmetry of translation in time, is described by an equilibrium universality class. 
By utilizing a simple discrete model for active noisy oscillators, we have shown compelling numerical and analytical 
evidence that the emergence of synchronous oscillations in these systems contains signatures of an equilibrium phase 
transition, including diverging fluctuations at criticality, a macroscopic change in the order parameter, and classic 
exponents belonging to the XY universality class. In addition, we show that synchronization can and does occur in 
both dichotomously and fully disordered populations, leading to large-scale cooperativity in spite of the non-identical 
nature of the constituents. 
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