PHYSICAL REVIEW E 69, 051104(2004

Macroscopic limit cycle via pure noise-induced phase transitions
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Bistability generated via a pure noise-induced phase transition is reexamined from the view of bifurcations
in macroscopic cumulant dynamics. It allows an analytical study of the phase diagram in more general cases
than previous methods. In addition, using this approach we investigate spatially extended systems with two
degrees of freedom per site. For this system, the analytic solution of the stationary Fokker-Planck equation is
not available and a standard mean field approach cannot be used to find noise-induced phase transitions. A
different approach based on cumulant dynamics predicts a noise-induced phase transition through a Hopf
bifurcation leading to a macroscopic limit cycle motion, which is confirmed by numerical simulation.
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I. INTRODUCTION Fokker-Planck equatio®®{(x;(x)), which is in general not

. . . . available. Furthermore, if the system does not have a station-
The interplay between nonlinear dynamics and noise of;

. ; N ary state(i.e., (x) is time dependeit we must use a time-
ten generates interesting and counterintuitive phenomen y ( (x) P n

Popular examples are stochastic resonafide coherence %‘ependent self-consistent condition which is prohibitively
S a[.‘lq__ ifficult. F i f iall -
resonancg?], and noise-induced phase transitigs5]. In more difficult. For certain types of spatially extended sto

) . chastic problems, there is an approximate method which re-
the latter example noise creates an ordered phase which dogs o5 stochastic dynamics with effective deterministic dy-
not exist in the absence of noise. Unlike noise-induced tranaamics[21]. However, the extent of applicability to other
sitions in systems with few degrees of freedom, the noisemqdels is not known. A general and systematic method is
induced phase transition breaks ergodicity and has the chagighly desired.
acteristics of a genuine phase transition. In previous studies, |n this paper we present a systematic method to investi-
many variations of pure noise-induced phase transitions wergate noise-induced phase transitions. While it does not pro-
introduced[5]. Spatial patterns can be induced via the purevide exact solutions, the method does not require an analyti-
noise-induced phase transitigh—9]. The noise-induced first cal expression of the stationary state probability distribution
order phase transition was also shown to be possibland can be applied to general cases including time-dependent
[10-12. The systems with colored noise were investigatedoroblems. In the following section, we investigate a model
by various group$12-15. Furthermore, the bistability cre- System with a single variable introduced by Van den Broeck
ated by the noise-induced phase transition exhibits stochasts al. [3] for which an exact solution is known. The present
resonance when a time-periodic perturbation is add&fl ~ method predicts a pitchfork bifurcation to an ordered state as
and it can lead to propagation of harmonic sigrfaig. The the noise intensity increases and also the reentrant transition
idea of noise-induced phase transition was also used ifp @ disordered phase at a higher noise intensity. This behav-
coupled Brownian motor§l8,19. ior is qualitatively in a good agreement with the exact mean
Most previous investigations take a mean field approacfi€!d results. .
and use the self-consistent conditif20] '!'hen, we apply th? same method to a mode! W'.th two
variables. The model is expected to undergo a noise-induced
o phase transition to a time-dependent ordered phase for which
<x>:f X P (x;(x))dx (1) the time-independent self-consistent approach is not practi-
- cal. The present method predicts a Hopf bifurcation to a

. : . . . macroscopic limit cycle phase from a disordered state as the
to determine the meafx) and also bifurcation points. This noise intensity increases and shows also a reentrant transi-

method yields an exact solution for the phase boundariego, e also demonstrate that the present method can pro-

within the mean field limit23]. However, to solve EQl)  jge other information such as a period and amplitude of the
one needs to know the analytic solution of the stationary,gqijjation.

II. NOISE-INDUCED PITCHFORK BIFURCATION

*Electronic address: kawai@uab.edu In this section, we consider the following stochastic sys-
URL: http://kawai.phy.uab.edu/ tem of N globally coupled microscopic variablés}:
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DN Some previous studiegt,22) have considered only the
X; :f(xi)—NE (X = X)) +g(x)&(1), (2) Oth order term, thereby neglecting the fluctuations(x),
=1 and worked with the equation

whereD is a coupling strength angl(t) is a Gaussian white o2
noise, defined by Xy =f((x)) + ?g’«x))g((x)). 9

(ED)=0, (GO§)) =50t -1). & Since this equation does not depend on the coupling constant

Equation(2) is interpreted in the Stratonovich sense. D, it cannot explain the reentrant transition. In fact, Fy.is

With certain nonlinear function$(x) and g(x), Eq. (2)  exact wherD —« under which condition no reentrant tran-
exhibits a phase transition from a disordered ph@se=0) sition takes placg3,4]. Even with higher order terms, E(})
to an ordered phasgx)+ 0) as the noise intensity? in-  still does not explicitly depend on the coupling constant. The
creases. At larger noise intensities the system undergoeseffect of finite coupling strength arises only through the dy-
reentrant transition to another disordered ph&6¢=0)  namics of the second and higher order moments as(@&g.
[3,4]. Since the ordered phase does not exist in the absenddicates.

of noise, the phenomena is callpdre noise-induced phase I order to see how the higher order terms create the
transition. Van den Broeckt al. [3] originally investigated it ~ reentrant transition, we investigate the previous model Eq.
using the following nonlinear functions: (4). Here we show the equations of motion only faj and
f00=-X1+32 g =1+x2 @

because a stationary state solution to the corresponding (X = (0"~ 2ua = ps+ [07 = 1 + X0 = 2) p = Bpal(X)
Fokker-Planck equation can be obtained analytically, which = 10ug(x)? + (0% = 2 = 10u) ()% = (x)°, (10)
allowed them to find the exact phase boundary in the limit of
N— o with the _self-con5|stent equatigf). _ o= 02+ 2202 — (1 +D) ]y + (302 — ) g — 24+ [2(502

In the following, we present a method which allows us to )
investigate more general cases approximately but without an = 6) i3 = 10us](x) + [20% + 120 = 1) up = 20u4](X)
analytlcal probability distribution. We apply the method to — 20u4(¥)% + (02 — 10u,) (X% (11)
this model(4) and compare the results with the exact solu- . _
tion and also with numerical simulations. Noting f(-x)=—f(x) and g(-x)=g(x), the system(5) is

invariant under the variable transformati@r-—x. Due to
this symmetry the odd moments must be zero wher 0.
Then, we find a fixed point k)" =0 anduy,,;=0. The even
AssumingN— o0, we write Eq.(2) in a mean field form: moments at this fixed point are not zero and must be deter-
_ mined by setting the right-hand side of E&) to zero. For
x= 100 = D(x = () + g &(1). (5)  example, Eq(11) provides the following equation:
Taking the mean of E(5) under the Stratonovich interpre-
tation, the dynamics ofx) is given by

A. Moment dynamics

02+ 2[20% = (1 +D) |y + (30?2 = Ay — 2ug=0. (12)

o2 A linear stability analysis of Eq(10) yields the bifurca-
(%) = (F(x)) + —(g' (X g(x)). (6) tion condition for a pitchfork bifurcation:
2

2 _ 2 _ * _ * -
Expandingf(x) and g(x) in Taylor's series aroundx), Eq. e~ 1+ H0e= 2wy =5 =0, (13

(6) forms an infinite set of simultaneous ordinary differential whereo is a critical noise intensity. Even without the exact
equations: knowledge of the higher moments useful information can be
u o2 derived from Eq.(13). Since bothu, and u, d%re non-
A= £nd cn) +—Tq’ (n) negative, the left-hand side is alway negative dor< 1. In
® n% n! {f () 2 CRE } @) this regime the fixed pointx)”" =0 is stable regardless of the
magnitude oD. For 1< ¢?< 2, only the Oth moment term is
) Nnemt) o(m positive but the other terms are negative and support stabil-
fin == Dy + 2 | () ity. The bifurcation is possible in this range of noise intensity
m=0 ’ only when the moments are sufficiently small. Since increas-

o2 - ing the coupling strength reduces fluctuation, the bifurcation
+ ?[9'(<X>)9((X))] " takes place above a certain magnitudeDof
Interestingly, the role of the second moment term changes
£ n(n- 1)Mn+m—2f[gz(<x>)](m) ®) at 0?=2. At higher values it supports instability of the fixed
m! 2 ' point. The fourth moment term is always negative and sup-

mo ports stability. Wheru, grows faster tham, with increasing

Here, (™ is thenth order derivative ange,=((x—(x))" the o2, it eventually dominates and the left-hand side of @)
nth central moment with, by definitionyy=1 andu,=0. becomes negative again. Then, the system reenters the disor-
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FIG. 1. Stationary momenta; (left pane) and ,uz (right pane) obtained by Gaussian approximatigsolid lineg and numerical
simulation (dashed lines The coupling strengtid=10 is used. The Gaussian approximation appears in a good agreement with the
simulation belowo?=2. However, it overestimates both second and fourth order moments aBe2e This rapid growth causes reentrant
transition at a smaller noise intensity than the exact solution. The grey region shows the location of the ordered phase.

dered phase. In order to determine the critical noise intensitiarge and the Gaussian approximation significantly overesti-
o from Eg. (13), one needs to know stationary even mo-mates the fluctuation.

ments,u; and,uz, which are to be determined by Ed.2). In Once we find all stationary moments, we can quantita-
turn, it requires,ug. At the end, all even moments must be tively evaluate the stability conditio(l3) for (x). With the
simultaneously solved, which is practically impossible for Gaussian approximatiofi4), the bifurcation conditior{13)
general cases. An approximation is necessary. becomes

B. Gaussian approximation 05 -1+ 3(05 - 2),([; - 15(,u;)2 =0. (16)

When f(x) or g(x) is nonlinear, the stochastic dynamics Here, x, must also satisfy Eq15) with noise intensityr.. In
(2) is not a Gaussian process and in general we cannot solygner viords, Eqs(15) and (16) must be solved simulta-
the system of equationd) and(8) exactly. For an approxi- neously foro, and Mz
mate solution it is convenient to assume a probability distri- Figure 2 shows the results and compares them with the
bution P(x;{x)) for which the cumulants above a certain or- exact solution obtained from Eql). Although there is a

der are negligible. We chose here the simplest examplgjear quantitative discrepancy between the approximation
where the cumulants above the second order are set to zegaq the exact solution the main features, namely the entrant
(Gaussian approximationin general, this approximation is transition into the ordered phase at medium noise intensities

quantitatively not justified but reproduces the main featuregng the reentrant into the disordered phase at high intensities
of the noise-induced phase transition, especially the reentrant

transition into the disordered phase.

In the Gaussian approximation all odd moments vanish.
The even moments can be expressed by the second mome
Mo. For example,

15

pa=3u5 and pe= 1543. (14)
Applying these relations, Eq12) becomes D I -
. . 10 |- =
02+ 2[26% = (1 +D) 1z + 3(30% - 4)(up)? — 30(u)3=0 ;
(15)
which determinesu, as a function ofg2. In turn, we can e
determine higher order even moments via the Gaussian ap 2

proximation. Figure 1 plotsu, and u, obtained by the
Gaussian approximation and also the results of numerical FIG. 2. The phase diagram. The ordered phése* 0) is above
simulation for comparison. Up te?=2, the Gaussian ap- the lines and the disordered phaée =0) below them. The dashed
proximation is in a good agreement with the simulation. Atline is the exact solution in the mean field limit obtained by &4,
higher noise intensities, non-Gaussian behavior becomehe solid line is the Gaussian approximation.
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0.5

Yi = kx (18)
with f(x) andg(x) defined by Eq.(4) as before. Again, we
0.4 expand the dynamical equations in terms of the central mo-
ments:
03F P o2
2 *=2 L,O X)) + g (NN [ =y,
\% n=o N 2
02 19
0.1F (Y) =kx), (20)
00 /:Ln,m == nI:):’~Ln,m “Nup-1mer + mkﬁ’vn+l,m—1 + mk:“n,m—1<x>

—Nptn-1lY) + E M]{ f<€)(<x>)
' =0 !

FIG. 3. The meaxix) by the Gaussian approximatig¢solid line)

and by numerical simulatiotdashed ling The coupling strength o2

D=10 is used. + E[g’(<X>)g(<X))](€)

is reproduced. As in the exact solution a certain minimim NN = 1) s ¢—om 0°

coupling strength is required for the transition to take place. + ;O—m - m3[92(<X>)](€), (21)

We can also evaluate the me&) as a function ofo?

from Egs.(10), (14), and(15). The result is plotted in Fig. 3 wheren+m=2 and u, = {(X={(x)"(y=(y)™ with =1
along with the results of simulation. The agreement near th@nd ., = o ,=0.
first transition point is quite good. However, the Gaussian For the p’resent modeh), Egs.(19) and(21) are explic-
approximation predicts the reentrant transition much earliefily written as
than the simulation as mentioned earlier.

We noticed that the present results resemble the phas@) = (0% - 2)uz 0~ s 0+ [0 = 1+ 3(0? = 2) s 0= Spta,0l(X)
boundary for the two-dimensional system with a local cou- 2 3 5
pling examined in Ref[4] surprisingly well. This coinci- = 10u5 %)% + (0% = 2 = 10up 0> = (X)°=(y),  (22)
dence is partly due to the fact that the locally coupled system
has much larger fluctuation than the globally coupled system ft2,0= 0%+ 2[26% = (1 +D)]uz 0= 2111+ (302 = D) a0

which induces the reentrant transition at a smaller noise in-

o . N . - 2ug o+ 2 (50% - 6) g g— 5 X) + 2[? + 6(c?
tensity. Since the Gaussian approximation overestimates the #oo+ 2l )13,0~ Spts o) +2] (
fluctuation, it shares some similarity with locally coupled = D0~ 10uq o[(¥)* = 20u3 (%)% + (0% = L0u,)(x)*,
systems. (23)

I1l. NOISE-INDUCED LIMIT CYCLE

In this section we investigate a model with two variables Ho.2= 2Kua 1, (24)

at each site. Multivariate stochastic systems are mathemati-
cally quite difficult. Even if the system has a stationary state,it1 1= (6% =D = D)uy 1+ Kpip o= pro o+ (07 = 2 pg 1~ ps 1

it is usually hard to find an analytical expression of its prob- +[3(g2 -2 -5 +[3(2 -2 -10
ability distribution. It will be even more difficult if the sys- [3(07 = 2.1~ Spta}0 + [3(07 = 2) 1,1 = 10p5.4]
tem does not have a stationary state and the probability dis- X(X)? = 10up 1(X)° = Suq 1(X¥)*. (25)

tribution is explicitly time dependent. The lack of an
analytical expression of the probability distribution makes ) .
the standard method based on the self-consistent equajion | T?klng |r]1to 3(3009”{[ the ,?er?itcr)y of (tjhe*modgl, there is at
futile. Direct numerical simulation of multivariate Langevin eas ong ixed point agx) =(y) =0 an Hnome1= Momian
equations demands more computational power than tha0- Statllonary even mome_nts are determined by an |nf|n|t9
single variable cases. However, we expect that the Gaussigt 0f Simultaneous equatlons.' Here we show three condi-
approximation provides a degree of accuracy similar to thati©ns derived from Eqsi23)-(25):
in the single variable case without increasing mathematical * * *

We use the following simple model that keeps a close (26)
connection to the previous model:

Here only the lowest order moments are shown.

kM*z,o_ :“(*),2‘F (%= 2):“;,1_ M;,lz 0, (27)

. D
x = f(x) - NE (x - Xj) +g() &M - i, 17) *
j and Iu‘1,1:0'
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Now, we apply the Gaussian approximation to this sys- 15
tem. For any two variable Gaussian system, all odd moment:
are zero(um,,=0 for m+n=odd integey and any even oder
moment can be expressed as a product of the second ord
momentsu, o, io 2, andu, ;. For the present model we need
only the following relations:

Oscillations

_ _n 2
M31= 3;”«2,0#1,1a Ma0— 3#2,07

Simulation

M5 1= 15#%,0#1,1, M6,0= 15#3,0- (28)

Under tpe Gaus*sian approximation, the stationary even mo
mentsu, o andu, , can be determined by Eq26) and(27).
The equations of motion(22)«25) become a five-

dimensional dynamical system af=((% ) w0 wo

5

w1 1). A standard linear stability analysis yields a Jacobian: 0 > 4 6 8 10 12
o
N -1 0 0 O
FIG. 4. Phase diagram for the two variable case. In the region
k 0 0O 0 O . - .
above the lines we observe oscillations of the mean, below it we do
0 0 A O O (29)  not. The line labeled theory is the analytic solution in the Gaussian
0O 0 0O 0 2k approximation, the line labeled simulation is the numerically ob-
0 0 k 1 tained result for the Langevin dynamics of E@$7) and (18) for
- 3

N=625 systems withk=0.1.
where

N =07 = 1+30% = 2uy o~ 15(u5 0%, (30

N2 = 2(20% 1 -D) + 6(20% - 4) i o 901y 92, (31)

Ng=0?=1-D+3(0” - 2Quz0— 151u'2,02. (32

The Jacobiari29) is in a block diagonal form and the stabil- B B
ity of (x) and(y) are separated from that of the higher order L T
moments, which makes analytical investigation easier. The
two-by-two block at the top-left corner determines the stabil-
ity of (x)"=(y)"=0 and its eigenvalues are given by

1 -
)\25()\11\/)\%—4@, (33 Lt e ——

which indicates that the fixed point becomes unstablg;at

=0. This bifurcation condition is identical to E¢16) and =
therefore the two-variable model also undergoes reentrant
transition because of the same reason as in the single variable -1F —Hr .
model. Figure 4 compares the phase boundary obtained by e bt
the Gaussian approximation and the simulation results. oot T
Quantitatively, the disagreement is rather large. However,
the qualitative features are correctly captured.

Since the eigenvalue has an imaginary part at the bifurca-
tion point, it is a Hopf bifurcation and a stable limit cycle is
formed above the critical noise intensity, which is confirmed Lo .
by numerical simulation. Figure 5 shows snapshots of an -1 0 1 -1 0 1
ensemble of particles. One observes a quite regular limit
cycle motion of the mean, even though the system is rather g 5 Snapshots of an ensemble of 625 elements in phase
small (N=625 and the individual units are spread widely space. The single dots denote the individual elements. The solid
around the mean. The width of the cloudsndirection is  circle shows the mean and the line depicts the trajectory of the
much larger than the one indirection due to smak, which ~ mean. The time series goes from left to right and from the top to the
is in a good agreement with E@27). Analogous to the bottom. Parameter valudd=20, o=2, andk=0.1 are used.
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FIG. 6. Power spectrum of a limit cycle motion obtained by
numerical simulatior{solid line) and the period obtained from the 0.4r q
linear stability analysigdashed ling Parameter values af2=10,

0?=1.5, andk=0.1. The agreement is perfect. A 02
>

. : . _— \%

single-variable case we will call the oscillating phase the o

ordered phase and the nonoscillating phase the disordered g 0

phase. o)
V02

From the imaginary part of the eigenvalue the period of
oscillation near the bifurcation point is approximately given
by T=2#/+k. Since it does not depend on any moment, this 0.4
period is valid even without the Gaussian approximation.

Indeed it perfectly agrees with numerical simulation as e
shown in Fig. 6. 0 20 40 . 60 80 100

If the time evolution of the means is needed, Langevin
equation or time-dependent Fokker-Planck equation are usu- FIG. 7. Time evolution ofx) (solid line) and(y) (dashed ling
ally solved numerically. Numerical simulation of coupled obtained by numerically solving Eq$20) and (22)—25) in the
Langevin equations is computationally rather time consumGaussian approximatiapper pangland Langevin equationd7)
ing especially near the bifurcation point due to the finite sizeand (18) (lower pane). For the Gaussian approximatigs o (thin
effect. One needs a large number of samplings to obtain redne) is also shown. Parametes=10, 0?=2, andk=0.1 are used.
sonable statistics. Furthermore, ensemble averaging is cum-
bersome since each realization oscillates in a different phase.

Numerical integration of time-dependent Fokker-Planck i

equations does not have a problem of statistical error but 0.101- | I
often suffers from numerical instability. Special care may be

needed. While it is difficult to solve moment dynami@), 0.05- 1
(20), and(23)—(25) analytically even with Gaussian approxi- '

mation, it is much easier to solve them numerically com-

pared to the Langevin or Fokker-Planck equation. Since the :l;, 0.00- i

moment dynamics is deterministic, there is no statistical er-
ror. The upper panel of Fig. 7 shows the time evolution of
(x), {y), and u, o with the Gaussian approximation. Other -0.05
moments,uo » and u; ; (Not shown converge to stationary
values. The lower panel shows the results of numerical simu- /
lation. Only one realization with 10 000 particles is shown. -0.10F -
Although the amplitude and period are overestimated by the : -0|.4 02 0 02 04
Gaussian approximation, all qualitative features are captured.
Finally, we discuss a special case whkrel (relaxation

oscillation limit). In this limit, Eq. (20) indicates(y) varies FIG. 8. A noise-induced relaxation oscillation. Dashed line: a
very slowly. Furthermore, from Eq27) the fluctuation of nulicline determined by Eq35). Solid line: a limit cycle trajectory
the variabley is negligibly small, suggesting that all particles obtained by numerical simulation. Parameter valuesDard 0, o?
experience the same value pf Sincex dynamics is much =3, and k=0.01. The simulation result follows the theoretical
faster thary, a “stationary” probability distribution is formed nullcline and jumps to another branch of the nulicline.
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beforey varies. In another word, the variabjen Eq.(19)is  noise-induced phase transitions. It is based on the dynamical
just a parameter for the dynamics xfin this case, we can equations for the central moments. In general the exact solu-
investigate the Hopf bifurcation using the self-consistention involves the solution of the infinite dimensional set of
equation(1). Following Ref.[3], the stationary distribution is  ordinary differential equations for these moments. However,

given by even without solving this system useful qualitative informa-
1 K o2 2% tion can be gathered from the equations. Furthermore, quan-
PSY(x;(x),{y)) = —exp{—f dx’{— X'=——— titatively reasonable solutions can be obtained by neglecting
z a*Jo 2 1+x the cumulants of the distributions above a certain order and
D(X' = (x)) +{y) then solving the remaining finite set of equations.
ST a2z || (34 Using this method we investigated two systems. One ex-
hibits a noise induced pitchfork bifurcation, the other one a
where Z is a normalization constant. The self-consistentHopf bifurcation. In the latter case, the macroscopic quanti-
equation(1) yields a relation betwee¢x) and(y): ties oscillate in time when the system is in an ordered phase.
- ) This oscillation is purely induced by noise via spontaneous
(3= }J ax X exp{— x b 1 symmetry breaking. The macroscopic oscillation suggests a
ZJ)_., 1+x? a? L+ strong synchronization of microscopic degrees of freedom
despite the presence of noise. Actually, it is the noise that
N D —(y)] X + arctanx } (35) generates the macroscopic order. On the other hand a strong
o? 2 noise destroys the order again. The reentrance into the disor-

. . . ... dered phase is due to the fourth moment, that grows faster
vv_h|ch corresponds to a n_ullcllne of the relaxatlo_n oscnlatlon.With noise intensity than the second moment.
Flgure_ 8 plgts th‘? nulicline ?”d an actual trajectory from In the Gaussian approximation we have reproduced the
numerical simulation. The trajectory follows one branch Ofbasic features of the noise-induced phase transition, namely

the nuII'cI.lm'e and Jumps to the o'ther brgnch anglog'ous to thﬁwe existence of a critical coupling strength and the disorder-
deterministic relaxation oscillation. This nulicline is exact. Prder-disorder transition

However, its derivation requires an analytical expression o
the probability distribution and may not be applicable to
other cases. An alternative method such as the Gaussian ap-
proximation is useful for general cases where the analytical
distribution is not available.
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